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Dierentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure

This paper aims at determining under which conditions the semi-discrete optimal transport is twice dierentiable with respect to the parameters of the discrete measure and exhibits numerical applications. The discussion focuses on minimal conditions on the background measure to ensure dierentiability.

We provide numerical illustrations in stippling and blue noise problems.

Introduction

Optimal transport [START_REF] Gaspard Monge | Mémoire sur la théorie des déblais et des remblais[END_REF][START_REF] Kantorovich | On a problem of monge[END_REF] is a blossoming subject that has known major breakthroughs these last decades. Its applications range from nance [START_REF] Pages | Optimal delaunay and voronoi quantization schemes for pricing american style options[END_REF], mesh generation [START_REF] Du | Grid generation and optimization based on centroidal voronoi tessellations[END_REF], PDE analysis [START_REF] Jordan | The variational formulation of the fokkerplanck equation[END_REF] and imaging [START_REF] Rubner | The earth mover's distance as a metric for image retrieval[END_REF][START_REF] Wang | A linear optimal transportation framework for quantifying and visualizing variations in sets of images[END_REF] to machine learning and clustering [START_REF] Solomon | Wasserstein propagation for semi-supervised learning[END_REF][START_REF] Flamary | Wasserstein discriminant analysis[END_REF]. This paper is limited to the semi-discrete case, which consists in transporting discrete measures (Dirac masses) towards a background measure.

However we allow more general background measures than the densities with respect to the Lebesgue measure that are usually found in the literature. In this setting, we prove second order dierentiability of the optimal transport distance for an arbitrary cost with respect to the locations of the Dirac masses.

Precursors include De Goes [START_REF] Ferrari De Goes | Geometric discretization through primal-dual meshes[END_REF] (Proposition 2.5.4) who has given the formula of the Hessian in the Euclidean setting. However he has given no proof of existence. We will make use of the framework developed by Kitagawa et al. [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF] to overcome these restrictions.

As a by-product, we obtain the second order dierentiability conditions for the so-called energy of a Voronoi diagram. The latter remark generalizes results presented in [START_REF] Du | Convergence of the Lloyd algorithm for computing centroidal Voronoi tessellations[END_REF][START_REF] Liu | On centroidal Voronoi tessellation, energy smoothness and fast computation[END_REF] to higher dimensions and lower regularity of the background measure.

Semi-discrete optimal transport

The optimal transport [START_REF] Villani | Topics in optimal transportation[END_REF] between two probability measures µ and ν dened respectively on the spaces X and Y with cost c : Y × X → IR + is the 

where Π(ν, µ) is the set of positive measures on Y × X with marginal distributions on Y (resp. X) equal to ν (resp. µ), that is :

γ ∈ Π(ν, µ) ⇔      Y φ(y)dµ(y) = Y ×X φ(y)dγ(y, x) ∀φ ∈ L 1 (µ) and X ψ(x)dν(x) = Y ×X ψ(x)dγ(y, x) ∀ψ ∈ L 1 (ν)
.

Intuitively, a coupling γ may be seen as a way to transport the mass of µ to the mass of ν. Specically γ(B, A) is the mass moved from A to B.

Interpreting φ and ψ as Lagrange multipliers of the constraint Π(µ, ν)

and using a standard inf-sup inversion (see [START_REF] Villani | Topics in optimal transportation[END_REF] for details), one derives the Kantorovitch dual problem: sup φ(y)+ψ(x)≤c(y,x) Y φ(y)dµ(y) + X ψ(x)dν(x).

When φ is given, it can be explicitly solved in ψ and the problem turns into

sup φ g(φ) with g(φ) = Y φ(y)dµ(y) + X inf y∈Y (c(y, x) -φ(y))dν(x), (2) 
where the function g, as a dual function, is naturally concave.

Recall that a Lipschitz set is a set for which the boundary is, up to a partition and rotations, the graph of a Lipschitz function. Suppose that the support of ν is included in a bounded convex Lipschitz set Ω ⊂ IR d , and that µ is a discrete measure on IR d , that is, given n ∈ IN, there exists z = (z i )i=1..n with z i ∈ IR d and m = (m i )i=1..n ∈ IR n such that

µ = n i=1 m i δ z i ,
where δ z i is a Dirac measure located at z i . In this case the set of test functions φ can be identied to IR n , so that φ = (φ i )i=1..n ∈ IR n . Finally introducing the Laguerre tessellation [START_REF] Aurenhammer | Power diagrams: properties, algorithms and applications[END_REF] dened by its cells

Li(z, φ) = {x ∈ Ω such that c(z i , x) -φ i ≤ c(z j , x) -φ j ∀j ∈ [ [1, n]]}, [START_REF] Aurenhammer | Power diagrams: properties, algorithms and applications[END_REF] so that the nal formulation of the optimal transport problem (1) in the semi-discrete setting is

sup φ g(φ, z, m) with g(φ, z, m) = n i=1 L i (z,φ) c(z i , x) -φ i 1 #M -1 ({x}) dν(x) + n i=1 φ i m i , (4) 
where #M -1 ({x}) is dened in Section 2.1 as the counting factor of the number of Laguerre cells containing x.

The Laguerre cells Li(z, φopt) associated to an optimal φopt in the maximization (4) are the arrival zones of the mass located at each z i by a coupling γ of optimal transportation, namely :

γ(z i , A) =ν(A) ∀A ⊂ Li(z, φopt), γ(z i , B) =0 if B ∩ Li(z, φopt) = ∅.
We aim at studying the dierentiation properties up to the second order of g(φ, z, m) with respect to its parameters. The dierentiation with respect to m is rather straightforward and will not be discussed hereafter. The second order dierentiability of g with respect to φ is known [START_REF] Mérigot | A comparison of two dual methods for discrete optimal transport[END_REF][START_REF] De Goes | Blue noise through optimal transport[END_REF][START_REF] Lévy | A numerical algorithm for l2 semi-discrete optimal transport in 3d[END_REF] and proved in [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF]. This proof mainly uses that the Laguerre cells Li(z, φ) are the intersection for all j = i of the sub-level sets (with respect to the value of φ i -φ j ) of the function x → c(z i , x) -c(z j , x). Using the co-area formula, the authors are able to compute the dierential of g with respect to φ. Dierentiating with respect to z is more involved and is the main goal of the present paper. Note also that the authors of [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF] prove C 2,α regularity with respect to φ, whereas we only deal with second order derivatives. Hence our set of hypotheses is slightly dierent. 

Link with Voronoi diagrams

The Voronoi diagram {Vi(z)}i is the special case of the Laguerre tessellation when φ = 0 and the cost is the square Euclidean distance, as can be seen from denition [START_REF] Aurenhammer | Power diagrams: properties, algorithms and applications[END_REF],

Vi(z) = Li(z, 0) = {x ∈ Ω such that z i -x 2 2 ≤ z j -x 2 2 ∀j ∈ [[1, n]]}.
Moreover, as noticed by Aurenhammer et al. [START_REF] Aurenhammer | Minkowski-type theorems and least-squares clustering[END_REF], for any choice of Lagrange multipliers φ, the vector of masses m i = ν(Li(z, φ)) turns φ into a solution of (4). In particular, the Voronoi diagram is the Laguerre tessellation of the optimal transport problem associated to the choice of mass mi := ν(Vi(z)). Now recall that φ is a Lagrange multiplier for the mass constraint in (1), so that setting φ = 0 releases this constraint and the corresponding choice of m minimizes the optimal transportation cost:

g(0, z, m) = sup φ g(φ, z, m) = inf m sup φ g(φ, z, m). (5) 
Another more physical interpretation of ( 5) is that, without mass constraints, the best way to transport a measure ν to a nite number of points is to send each part of ν to its closest neighbour. Hence we build the Voronoi diagram of the points.

The expression [START_REF] Bertsekas | Nonlinear programming[END_REF] has been coined as the energy of the Voronoi diagram:

GS(z) = g(0, z, m) = i V i (z) x -z i 2 dν(x) (6) 
Finding critical points of this energy GS is also known as the centroidal Voronoi tessellation (CVT) problem. Indeed, at a critical point z of GS, each zi is the barycenter of Vi(z) with respect to the measure ν:

zi V i (z) dν(x) = V i (z) xdν(x).
Results of second order dierentiability of GS with respect to z has been proven in [START_REF] Liu | On centroidal Voronoi tessellation, energy smoothness and fast computation[END_REF] and inferred in many dierent previous papers [START_REF] Iri | A fast voronoi-diagram algorithm with applications to geographical optimization problems[END_REF][START_REF] Asami | A note on the derivation of the rst and second derivative of objective functions in geographical optimization problems[END_REF][START_REF] Du | Centroidal voronoi tessellations: Applications and algorithms[END_REF]. However those papers do not tackle the question of the regularity of ν. Moreover the cost c in the Voronoi setting is the square of the Euclidean distance. Our work is a generalization of both of this points. Indeed dierentiability of GS stems from dierentiablity of g, see equations ( 17) and [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF].

Organization of the paper

In Section 2, the main result is given. The hypotheses needed to ensure second order dierentiability are given in 2.1, the result is stated in Section 2.2, Theorem 1 and is reformulated in the Euclidean case in Section 2.3. The rest of Section 2 is devoted to the proof of Theorem 1. Section 3 presents some numerical results.

Second order dierentiability

The main goal of this section is to state, in Theorem 1, the sucient conditions that ensure dierentiability of second order of the function

g(φ, z) = Ω min i c(z i , x) -φ i dν(x),
which yields immediately the second order derivatives of g = g +φ•m dened in (4).

Hypotheses and notation

In order to state the hypotheses required for Theorem 1, additional notation is required.

For all x ∈ Ω, denote M(x) the subset of [ [1, n]] given by

M(x) = i ∈ [[1, n]] s.t c(z i , x) -φ i ≤ c(z j , x) -φ j ∀j ∈ [[1, n]] . (7) 
The Laguerre cell Li(z, φ) is then exactly given by

x ∈ Li(z, φ) ⇔ i ∈ M(x).

For i = k ∈ [[1, n]], denote e ik := {x ∈ IR d s.t. c(z i , x) -φ i = c(z k , x) -φ k }. (8) 
Note that Li(z, φ) ∩ L k (z, φ) is included in e ik but the converse fails to be true. First notice that e ik is not included in Ω whereas the Laguerre cells are included in Ω by denition. Second e ik is only the competition zone"

∂ L 1 ∩ ∂ L 2 e 1 3
e 14 between the i th and the k th Laguerre cells but it may (and will) happen that x ∈ e ik is included in Lj(z, φ) for some other j and in neither Li(z, φ) nor L k (z, φ). Note also that the dependence of both e ik and M(x) in (z, φ) is dropped to shorten the notation.

For all i and k, we denote the ε-neighborhood of e ik by N ik (ε). By convention, e i0 is the boundary of Ω and thus Ni0(ε) is an ε-neighborhood of ∂Ω. Figure 1 illustrates these geometric objects.

In the following denitions σ denotes the d -1-Hausdor measure. The sucient geometric hypotheses on the Laguerre tessellation for second order dierentiability are :

Denition 1 (Di-2) We say that hypothesis (Di-2) holds at point (z0, φ0)

i • for all 1 ≤ i ≤ n, (z, x) → c(z i , x) is W 2,∞ (B(z0, r) × Ω)
, where B(z0, r) is a ball around the point z0. • there exists ε > 0 such that for all

1 ≤ k = i ≤ n, ∀x ∈ e ik ∇xc(z i 0 , x) -∇xc(z k 0 , x) ≥ ε, (Di-2-a)
• for all i, there exists s, C > 0 such that for all 0 ≤ k = j ≤ n, for all ε, ε in ]0, s[, it holds

N ik (ε) ∩ Nij(ε ) ≤ Cεε . (Di-2-b)
and

lim ε→0 σ e ik ∩ Nij(ε) = 0, (Di-2-c)
In the above denition, all the geometric objects e ik , N ik (ε), Nij(ε) are dened with parameters (z, φ) = (z0, φ0).

The geometric hypothesis for continuity of second order derivatives is Denition 2 (Cont-2) We say that hypothesis (Cont-2) holds at point (z0, φ0)

i there exists C > 0 such that for all i, j σ(e ij ∩ Ω) ≤ C,

(Cont-2)
where e ij is dened in [START_REF] Ferrari De Goes | Geometric discretization through primal-dual meshes[END_REF] with parameters (z, φ) = (z0, φ0).

Remark : At some point, we closely follow the ideas of [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF]. Our hypotheses (Di-2) and (Cont-2) are a consequence of more general geometric hypotheses in [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF], in particular Loeper's condition. Using Loeper's condition requires an exponential mapping to reduce the problem to a convex one.

Hence the proofs of this paper would be even more technical and hard to read.

Main result

Directional derivative of g can be obtained using very mild assumptions on the cost function c and the approximated measure ν.

Proposition 0.1 Set Ω a bounded Lipschitz convex set and z0 a vector of positions of Dirac masses. Suppose that for all i and for ν-almost every x, the function y → c(y, x) is dierentiable around y = z i 0 and that there exists h ∈ L 1 (Ω, ν) with |∇yc(z i , x)| ≤ h(x) ν-a.e. for all z around z0. Then g is directionally derivable at point (φ0, z0) with derivative given by :

lim t→0 + g((φ0 + td φ , z0 + tdz)) -g(φ0, z0) t = A⊂[[1,n]] M -1 (A) min i∈A ∇yc(z i 0 , x), d i z -d i φ dν(x),
where M is dened in [START_REF] De Goes | Blue noise through optimal transport[END_REF] with parameters (z, φ) = (z0, φ0). If ν(M -1 (A)) = 0 for each A of cardinal ≥ 2, it holds that g is dierentiable and

∂z g(φ0, z0) = n i=1 L i (z 0 ,φ 0 ) ∇yc(z i 0 , x)dν(x) and ∂g ∂φ i (φ0, z0) = -ν(Li(z0, φ0))
If in addition for ν-almost every x, the function y → ∇yc(y, x) is continuous around z i 0 for all i, then g is C 1 around (φ0, z0).

The theorem ensuring second order dierentiability is:

Theorem 1 If the hypotheses of Proposition 0.1 and (Di-2) hold at point (φ0, z0), and if ν admits a density with respect to the Lebesgue measure which is

W 1,1 (Ω) ∩ L ∞ (Ω) then g is twice dierentiable at point (φ0, z0). Let σ denote the d -1
Hausdor measure, m be the density of ν, and k = l be in

[[1, n]],
the formula for the Hessian at point (φ0, z0) is given by :

∂ 2 g ∂φ k ∂φ l = ∂L k ∩∂L l 1 ∇xc(z k 0 , x) -∇xc(z l 0 , x) m(x)dσ ∂ 2 g (∂φ k ) 2 = j =k ∂L k ∩∂L j -1 ∇xc(z k 0 , x) -∇xc(z j 0 , x) m(x)dσ ∂ 2 g ∂φ k ∂z l = ∂L k ∩∂L l -∇yc(z l 0 , x) ∇xc(z k 0 , x) -∇xc(z l 0 , x) m(x)dσ ∂ 2 g ∂φ k ∂z k = j =k ∂L k ∩∂L j ∇yc(z k 0 , x) ∇xc(z k 0 , x) -∇xc(z j 0 , x) m(x)dσ ∂ 2 g ∂z k ∂z l = ∂L k ∩∂L l ∇yc(z k 0 , x) ⊗ ∇yc(z l 0 , x) ∇xc(z k 0 , x) -∇xc(z l 0 , x) m(x)dσ ∂ 2 g (∂z k ) 2 = L k ∂ 2 c ∂y 2 (z k 0 , x)dν(x) - j =k ∂L k ∩∂L j ∇yc(z k 0 , x) ⊗ ∇yc(z k 0 , x) ∇xc(z k 0 , x) -∇xc(z j 0 , x) m(x)dσ
Note that the Laguerre cells in consideration are computed for parameters (z, φ) = (z0, φ0) and that for each j ∈ [ [1, n]], z j is a vector in IR d . As a consequence, dierentiating g once with respect to z j yields a vector in IR d and dierentiating g twice with respect to z j yields a matrix. Recall that the derivatives in y of c refer to derivatives in the rst variable. If in addition (Cont-2) holds at point (φ0, z0) and if the density m is C 0 (Ω) then g is C 2 .

2.3

The Euclidean case

This section deals specially with the Euclidean case c(

z i , x) = 1 2 z i -x 2 2 . Then we have Proposition 1.1 If c(y, x) = 1 2 y-x 2
2 , all the hypotheses of Theorem 1 are veried if ν admits a C 0 (Ω) ∩ W 1,1 (Ω) density with respect to the Lebesgue measure, and z i 0 = z j 0 for i = j and if the Laguerre tessellation for (z0, φ0) has no cell of zero Lebesgue volume. In this case the rst order formulas are given by :

∂g ∂zi (φ0, z0) = L i z i 0 -x dν(x) and ∂g ∂φi (φ0, z0) = -ν(Li)
and the second order formula are given by :

∂ 2 g ∂φ i ∂φ j (φ0, z0) = ∂L i ∩∂L j m(x) z i 0 -z j 0 dσ if i = j ∂ 2 g (∂φ i ) 2 (φ0, z0) = - j =i ∂ 2 g ∂φ i ∂φ j (φ0, z0) ∂ 2 g ∂φ i ∂z j (φ0, z0) = - ∂L i ∩∂L j (z j 0 -x)m(x) z i 0 -z j 0 dσ if i = j ∂ 2 g ∂φ i ∂z i (φ0, z0) = - j =i ∂ 2 g ∂φ j ∂z i ∂ 2 g ∂z i ∂z j (φ0, z0) = ∂L i ∩∂L j (z j 0 -x)(z i 0 -x) T m(x) z i 0 -z j 0 dσ if i = j ∂ 2 g (∂z i ) 2 (φ0, z0) = I d ν(Li) - j =i ∂L i ∩∂L j (z i 0 -x)(z i 0 -x) T m(x) z i 0 -z j 0 dσ,
where the Laguerre cells Li, Lj in consideration are computed with parameters (z0, φ0) and I d is the identity matrix of dimension d.

Proof

In the Euclidean case the regularity assumption on c is trivially satised. Moreover e ik is an hyperplane and Ω is bounded so that (Cont-2) is trivial.

A direct computation shows that ∇xc(z i 0 , x) -∇xc(z j 0 , x) = z i 0 -z j 0 ,
which is non zero by hypothesis and hence uniformly non-zero, so that Hypothesis (Di-2-a) is satised.

For j, k = 0, the sets N ik (ε) are ε-neighbourhoods of the hyperplane e ik , so that (Di-2-b) and (Di-2-c) are veried as soon as the hyperplanes e ik and e ij are dierent for j = k. On the other hand, it is impossible that e ik = e ij for any j = k. Indeed, by the denition [START_REF] Ferrari De Goes | Geometric discretization through primal-dual meshes[END_REF], it would mean that z i 0 ,z k 0 and z l 0 are aligned and that the Laguerre cell corresponding to the point between the two others has empty interior, contradicting the hypotheses of the theorem.

Similarly, if e ik ∩∂Ω is not reduced to at most two points, by the convexity of Ω, the set Ω lies on one side of e ik and one of the two Laguerre cells Li(z0, φ0) or L k (z0, φ0) is therefore empty. This nal argument proves the case (Di-2-b) and (Di-2-c) for j = 0. Now let A be of cardinal ≥ 2. Let i and k belong to A, then M -1 (A) is included in e ik , but e ik is an hyperplane which is of zero Lebesgue measure, hence ν(M -1 (A)) = 0.

The rest of the hypotheses of Proposition 0.1 is trivial to prove. .

As proved in [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF], the constant C appearing in (Di-2-b) depends on the minimal angle between the intersection of two competition zones e ik and e il . This constant is non-zero since there is a nite number of such intersections and it drives the C 2,α regularity of the function g.

Technical lemmas

This section is devoted to proving two technical lemmas, the rst one ensures second-order dierentiability of the function g and the second one ensures continuity. In this section, x i, x a C ∞ mapping t → (z(t), φ(t)) that we aim at deriving at time t = 0 . Set s small enough and consider only t ∈ [0, s]. Throughout this section the objects that depend on (z, φ) (say of the Laguerre cell Lj(z, φ)) will be written as depending on t (with the obvious notation Lj(t)). Denote

u ik t (x) := c(z i (t), x) -φ i (t) -c(z k (t), x) -φ k (t) . Denote (u ik t ) -1 (0) := {x ∈ IR d s.t. u ik t (x) = 0}. Note that (u ik 0 ) -1 (0) = e ik
, where e ik is dened in (8), Section 2.1.

Lemma 1.1 Suppose that the Laguerre tessellation veries (Di-2). Let

ξ : t → L i (t) f (x, t)dx, with f in W 1,1 (Ω × IR) ∩ L ∞ (Ω × IR) then ξ is derivable at time t = 0 with : ∂tξ(0) = k L i (0)∩L k (0) ∂tu ik 0 (x) ∇xu ik 0 (x) f (x, 0)dσ + L i (0) ∂tf (x, 0)dx,
where σ is the d -1 Hausdor measure.

Lemma 1.2 Suppose the Laguerre tessellation veries (Cont-2). Let f be continuous, then ξ : t → L i (t)∩L k (t) f (x, t)dσ is continuous.

These lemmas are proven using tools of dierential geometry via a bi-Lipchsitz map θ that maps approximatively Li(0) to Li(t). The organization of this section is as follows: In Section 2.4.1 the map θ is built, and it is shown that θ(Li(0)) Li(t). The lemmas are then proven in Section 2.4.2.

Construction of the ow

For any k = i, k > 0, (Di-2-a) ensures that ∇xu ik 0 (x) is uniformly nonzero on (u ik 0 ) -1 (0). By Lipschitz regularity of ∇xu, ∇xu ik t (x) is uniformly non-zero for all x ∈ N ik (s), t ∈ [0, s], provided s is chosen small enough.

Hence the vector eld dened as :

V k t (x) := -∂tu ik t (x)
∇xu ik t (x) ∇xu ik t (x) 2 ∀x ∈ N ik (s), t ∈ [0, s],
is Lipschitz and can be extended as wanted outside N ik (s). The ow θ k associated to V k t is dened as :

θ k 0 (x) = x and ∂tθ k t (x) = V k t (θ k t (x)). (9) 
The ow θ k preserves the level-sets of u ik t in the sense that for all x, the mapping t → u ik t (θ k t (x)) is a constant as long as θ k t (x) remains in N ik (s). Hence the ow θ k t preserves the competition zone between Li(t) and L k (t).

L 1 L 2 V 2 t V 4 t V 3 t e 13 (t) L 4 Ṽ 3 t :
Figure 2: Example of the vector elds V 3 t and Ṽ 3 t for i = 1

The objective is to build a ow θ which preserves the whole boundary of Li(t). To that end, introduce: 

N ik (ε) = 0≤j =k≤n Nij(ε),
Ṽ k t (x) = ζ( δ k (x) s )V k t (x) Vt(x) = n k=1 Ṽ k t (x)
Then Vt is equal to V k t on N ik (s) \ N ik (s). One can safely interpret that Vt = V k t on the edge of Li(t) that is shared with L k (t) and has been smoothed to zero on every corner of Li(0).

Denote θ the ow associated to Lipschitz vector eld V . We claim that Proposition 1.2 There exists C, c > 0 such that for all s small enough, for all k, and 0 ≤ t ≤ cs, the symmetric dierence between θt(Li(0)) and Li(t) has Lebesgue volume bounded by Cst.

Proof Note rst that the vector eld Vt is always zero on ∂Ω so that θt(Ω) = Ω for all t. In the sequel Cv denotes an upper bound of the velocity of θ and θ k . Set c ≤ 1/Cv, then for all k :

θ k t (e ik ) ⊂ N ik (s), (10) 
and then θ k t (e ik ) = (u ik t ) -1 (0). Let x ∈ θt(Li(0))∆Li(t) and denote x0 such that x = θt(x0). We claim that there exists k ∈ [ [1, n]] and 0 ≤ r1, r2 ≤ t such that u ik r 1 (θr 1 (x0)) = 0 and u ik r 2 (θr 2 (x0)) = 0. Indeed, if for instance x ∈ θt(Li(0)) but x / ∈ Li(t), then trivially x0 ∈ Li(0), meaning that for all k, u ik 0 (x0) ≤ 0. But x / ∈ Li(t) means that there exists a k such that u ik t (θt(x0)) > 0. The continuity of the mapping t → u ik t (θt(x)) ensures that for some r1 we have u ik r 1 (θr 1 (x0)) = 0. The other case is done the same way.

Since θ has bounded velocity,

∀r ≤ t θr(x0) -θr 1 (x0) ≤ Cv|r -r1|.
By [START_REF] Du | Centroidal voronoi tessellations: Applications and algorithms[END_REF], since θr

1 (x0) ∈ (u ik r 1 ) -1 (0), then θr 1 (x0) ∈ N ik (Cvr1), then ∀0 ≤ r ≤ t, θr(x0) ∈ N ik (2Cvt). (11) 
Upon reducing c by a factor 2, θr(x0) ∈ N ik (s). We now claim that there exists 0 ≤ r3 ≤ t such that θr 3 (x0) ∈ N ik (s).

(

) 12 
Indeed, if it is not the case, then for all r Vr(θr(x0)) = V k r (θr(x0)) and then θr(x0) = θ k r (x0) and hence u ik r (θr(x0)) is a constant which is in contradiction with u ik r 2 (θr 2 (x0)) = 0 and u ik r 1 (θr 1 (x0)) = 0. Using the bounded velocity of θ, and (12) we conclude that x = θt(x0) ∈ N ik (s + Cvt) ⊂ N ik (2s). Finally, using [START_REF] Du | Grid generation and optimization based on centroidal voronoi tessellations[END_REF], we obtain

x ∈ N ik (2s) ∩ N ik (Cvt) = j =k (Nij(2s) ∩ N ik (Cvt)) .
By hypothesis (Di-2-b), the last set has volume bounded by Cst for some constant depending on Cv, the maximum velocity of θ k and θ. Since Cv may be chosen independently of s when s is small enough, then C is independent of s and t. .

Proof of lemmas

We are now ready to tackle the proof of Lemmas 1.1 and 1.2 in this section.

Proof of Lemma 1.1 In this proof, the rate of convergence of o(t) t towards 0 depends on s (as s -1 ). Let f in L ∞ (Ω × R) with gradient in L 1 (Ω × R) and s small enough. For all t ≤ cs, Proposition 1.2 asserts

L i (t) f (x, t)dx = θ t (L i (0)) f (x, t)dx + O(st) = L i (0) f (θt(x), t)|det(Jθt(x))|dx + O(st)
Where Jθt is the Jacobian matrix of θt. Using θt(x) = x + tV0(x) + oL∞ (t), we then have (see [START_REF] Henrot | Variation et optimisation de formes: une analyse géométrique[END_REF])

f (θt(x)) = f (x, 0) + t∂tf (x, 0) + t∇xf (x, 0) • V0(x) + o L 1 (t), |det(Jθt(x))| = 1 + tdiv(V0) + oL∞ (t),
where oLa (t) is a time dependent function that, when divided by t goes towards zero in L a norm as t goes to zero. The rate of convergence depends on the Lipschitz norm of Vt which scales as s -1 .

Then nally

L i (t) f (x, t)dx - L i (0) f (x, 0)dx = tα f (s) + o(t) + O(st) (13) with α f (s) = L i (0) (∂tf (x, 0) + ∇xf (x, 0) • V0(x) + f (x, 0)div(V0)) dx.
Recall that V0 depends on s, hence α f depends on s.

A Stokes formula yields

α f (s) = L i (0) ∂tf (x, 0)dx + ∂L i (0) f (x, 0)V0(x) • nidσ
This formula is true for Lipschitz domain and Li(0) is Lipschitz because each e ik is Lipschitz as can be proven by a an implicit function theorem

using (Di-2-b). Denote Y (s) = {x ∈ ∂Li(0) ∩ ∂L k (0) s.t. ζ( δ k (x) s ) = 1}. Since Y (s) ⊂ j =k Nij(s) ∩ e ik , we know lim s→0 σ(Y (s)) = 0 by (Di-2-c).
Since f is in W 1,1 , its trace on e ik is in L 1 (e ik ) for the measure σ [START_REF] Brezis | Analyse fonctionnelle: théorie et applications[END_REF].

Hence, noticing that

I 1 ∂L i (0) V0(x) = k =i I 1 ∂L i (0)∩∂L k (0) ζ( δ k (x) s )V k 0 (x),
the dominated convergence theorem asserts that α(s) converges as s goes to zero towards

lim s→0 α f (s) := α f (0) = L i (0) ∂tf (x, 0)dx+ k =i ∂L i (0)∩∂L k (0) f (x, 0)V k 0 (x)•nidσ. Now denote, r(t) = t -1 L i (t) f (x, t)dx - L i (0) f (x, 0)dx .
Let t go to zero in (13), we have lim sup 0 + r(t) = α f (s)+O(s) and lim inf 0 + r(t) = α f (s) + O(s). Letting s goes to zero shows that lim 0 + r(t) exists and is equal to α f (0) which proves lemma 1.1.

Proof of lemma 1.2 The proof of this proposition owes so much to [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF], proposition 3.2 that we even take the same notations. Consider the following partition of Li(t) ∩ L k (t) :

At = θ k t (x) s.t. θ k r (x) ∈ Li(r) ∩ L k (r) ∀r ∈ [0, s] Bt = {x ∈ Li(t) ∩ L k (t) s.t. x / ∈ At}
It is clear that for all t ≤ s, we have

ξ(t) = A t f (x, t)dσ + B t f (x, t)dσ
In [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF], in the rst part of the proof of Proposition 3.2, the authors show that lim

s→0 + As f (x, s)dσ = A 0 f (x, 0)dσ,
while actually controlling the convergence rate by the modulus of continuity of f . The reason is that θ k t is a bi-Lipschitz map between At and A0 and that a change of variable allows to prove continuity. Note that no regularity assumption is made on the set At except that its d -1 Hausdor measure is bounded, which is exactly hypothesis (Cont-2). In order to prove that the sets Bt are small with respect to the measure dσ, we follow a slightly simpler and quicker path than [START_REF] Kitagawa | Convergence of a Newton algorithm for semi-discrete optimal transport[END_REF] due to the fact that we use a stronger hypothesis in (Di-2-c).

First if x = θ k t (x0) ∈ Bt, then there exists r ∈ [0, s], such that :

θ k r (x) ∈ ∂Ω j / ∈{i,k} (u ij r ) -1 (0) (14) 
Indeed if x ∈ Bt then θ k r (x) is in Li(r) ∩ L k (r) for r = t and strictly outside this set for some r = r1. Recalling that

Li(t)∩L k (t) = x ∈ Ω s.t. u ik t (x) = 0 and u ij t (x) ≤ 0 and u kj t (x) ≤ 0 ∀j / ∈ {i, k} ,
and that θ k t preserves the level-set 0 of u ik t , then for some r, we must have by the intermediate value theorem either θ k r (x) ∈ ∂Ω or u ij r (θ k r (x)) = 0 or u kj r (θ k r (x)) = 0. Finally if u kj r (θ k r (x)) = 0, then implies that u ij r (θ k r (x)) = 0, since u ik r (θ k r (x)) = 0. Suppose that we are in the case u ij r (θ k r (x0)) = 0 in [START_REF] Peter | Optimum quantization and its applications[END_REF], then θ k r (x0) is in (u ij r ) -1 (0), which, by nite velocity of θ j , is at distance at most Cvs of e ij = (u ij 0 ) -1 (0). By nite velocity of θ k , x0 is at distance at most Cvs of θ k r (x0), meaning that x0 is at distance at most 2Cvs of e ij . Since u ik 0 (x0) = 0, we have that x0 ∈ C0 := e ik ∩ N ik (2Cvs) which dσ goes to zero as s goes to zero by (Di-2-c). Finally Bt ⊂ θ k t (C0), since θ k t is a bi-Lipschitz map. Hence as s goes to zero, dσ(Bt) goes to 0 and hence.

lim

s→0 + B t f (x, t)dσ = 0 = lim s→0 + B 0 f (x, 0)dσ.

Proof of the results of Section 2

The goal of this section is to prove the dierent results of Section 2. We begin by Proposition 0.1. Suppose rst z i → c(z i , x) is dierentiable ν a.e. for all i and that ν is a positive Borelian measure of nite mass and rewrite g as

g(t) = Ω ψopt(z(t), φ(t), x)dν(x)
where ψopt(z, φ, x) = min

i ψ i (z, φ, x) with ψ i (z, φ, x) = c(z i , x) -φ i ,
As the minimum of a nite number of dierentiable functions, ψopt is measurable and is ν-a.e directionally derivable with formula ψopt (x) := lim

t→0 + ψopt(z + tdz, φ + td φ , x) -ψopt(z, φ, x) t = min i∈M(x) ∇ψ i (x), d , with d = (dz, d φ )
and ∇ is the gradient with respect to z and φ. Recall for that purpose that M(x) is exactly the argmin of ψ i (x). The function (ψopt)

is seen to be measurable when rewritten as :

ψopt (x) = A⊂[[1,n]] I 1 {M -1 (A)} (x) min i∈A ∇ψ i (x), d , the set M -1 (A) being measurable since (M(x) = A) ⇔ (ψi(x) = ψopt(x) ∀i ∈ A and ψi(x) > ψopt(x) ∀i ∈ A c )
A standard dominated convergence theorem asserts that the directional derivative of g exists and is given by :

g = Ω (ψopt) (x)dν(x)
and we retrieve

g = A⊂[[1,n]] M -1 (A) min i∈A ∇ψ i (x), d dν(x)
which is exactly the formula of Proposition 0.1. When one supposes that ν(M -1 (A)) = 0 as soon as the cardinal of A is strictly greater than 1, then g is linear w.r.t d and hence dierentiable. In this case, we have M -1 ({i}) = Li(z, φ) up to a set of zero ν-measure, and hence

∇g(z, φ) = n i=1 L i (z,φ) ∇ψi(z, φ, x)dν(x)
In order to prove the continuity of the gradient of g, we use the following technical lemma with f = ∇ψi(z, φ, x).

Lemma 1.3 Suppose that ν(M -1 (A)) = 0 if #(A) ≥ 2. If f is continuous
with respect to z, φ for almost every x and if there exists l ∈ L 1 (ν) such that |f (z, φ, x)| ≤ l(x) ν-a.e. for all (z, φ) then

Fi : (z, φ) → L i (z,φ) f (z, φ, x)dν is continuous. Proof of Lemma 1.3 First recall that Li(z, φ) = {x ∈ Ω s.t. ψ i (z, φ, x) ≤ ψopt(z, φ, x)}.
For a sequence (zn, φn) that goes to (z, φ), denote hn(x) = f (zn, φn, x) I 1 ψ i (zn,φn,x)≤ψ opt (zn,φn,x) (x) I 1Ω(x),

and h = I 1L i f . Then Fi(zn, φn) = Ω hndν, Fi(z, φ) = Ω hdν.
Moreover hn ≤ l for all n.

If x is such that i / ∈ M(x), that is ψ i (z, φ, x) > ψopt(z, φ, x), then hn(x) converges to h(x). If x is such that M(x) = {i}, then by continuity of ψ j (z, φ, x) for all j = i, ψ i (zn, φn, x) = ψopt(zn, φn, x) for n suciently large, hence hn(x) converges to h(x). Then hn converges to h = I 1L i f except possibly on the sets where M -1 (A) is of cardinal greater or equal than 2, which is, by hypothesis, of zero ν-measure.

Since hn ≤ l for all n, a dominated convergence theorem ensures the continuity of the integral with respect to (z, φ).

Proof of Theorem 1 The proof of Theorem 1 is straightforward. We

apply Lemma 1.1 to f (z, x) = ∂zc(z i , x)m(x) or f (z, x) = m(x)
, where m is the density of ν. Then we apply Lemma 1.2 to the formula of the second order derivative in order to prove second order continuity. We obtain the following formula for the second order derivatives of g, taken at point (φ, z) = (φ0, z0) :

∂ 2 g ∂a∂b = i =j ∂L i ∩∂L j (∂ac(z j , x) -∂aφ j -∂ac(z i , x) + ∂aφ i )(∂ b c(z i , x) -∂ b φ i ) ∇xc(z i , x) -∇xc(z j , x) m(x)dσ + i L i ∂ 2 c ∂a∂b (z i , x)dν(x),
where σ is the d -1 Hausdor measure, m is the density of ν and a or b have to be replaced by the coordinates of φ or of one of the point z k . Replacing the a and b, yields the formulas stated in Theorem 1.

Numerical experiments

In this section we test a second order algorithm for the 2-Wasserstein distance, when c is the Euclidean cost. Two problems will be solved: Blue Noise and Stippling. In both cases, we optimize a measure µ of the form µ(z, m) = n i=1 m i δ z i , so that the 2-Wasserstein distance W2(µ(z, m), ν) is minimal. The cost function for the Stippling problem is refered to as GS, the one for the Blue Noise as GB. We denote by G B/S the cost function when no dierence is made between the two problems.

There are many applications for the Blue Noise and Stippling problems, from data compression in computer graphics to clustering in data science described in [START_REF] Du | Centroidal voronoi tessellations: Applications and algorithms[END_REF], or more recently in anisotropic meshing [START_REF] Lévy | L p centroidal voronoi tessellation and its applications[END_REF]. Note also that these problems fall within the scope of optimum quantization, that is nding a set of supporting points that approximates a probability distribution, see [START_REF] Graf | Foundations of quantization for probability distributions[END_REF][START_REF] Peter | Optimum quantization and its applications[END_REF] and the references inside.

• Blue Noise: Here the weights m i are xed. Hence the functional to minimize reads as :

inf z∈I R nd GB(z) with GB(z) = W2(µ(z, m), ν) = max φ g(φ, z, m). (15)
• Stippling: This problem consists in optimizing in m and in z simultaneously :

inf z∈I R nd inf m∈∆n W2(µ(z, m), ν),
where ∆n is the canonical simplex.

The Stippling problem is actually easier than the Blue Noise problem.

Following the discussion of Section 1.2, optimizing the mass amounts to set φ = 0 and mi = ν(Vi):

inf z∈I R nd GS(z) with GS(z) = W2(µ(z, m), ν) = g(0, z, m), ( 16 
)
where GS is the Voronoi energy dened in [START_REF] Brezis | Analyse fonctionnelle: théorie et applications[END_REF]. Hence no optimization procedure is required in φ and m is merely given by computing the ν-mass of each Voronoi cells.

Note that ∂zG B/S , the dierential of G B/S with respect to z is equal to: ∂zGB = ∂zg and ∂zGS = ∂zg + ∂mg∂z m since ∂mg = 0 when φ = 0, we obtain

∂zG B/S = ∂zg (17) 
Formulas Recall that in the Euclidean case, the formulas for g boils down to

∂g ∂z i = M i (z i -zi ) ∂ 2 g ∂z i z j = ∂L i ∩∂L j (z j -x)(z i -x) T m(x) z i -z j dσ if i = j ∂ 2 g ∂(z i ) 2 = M i - i =j ∂ 2 g ∂z i z j where M i = L i
dν is the mass of the i th Laguerre cell and zi = L i xdν/M i is its barycenter.

Lloyd's algorithm

The gradient algorithm for computing the Blue Noise (resp. the Stippling problem) is to move each point in the direction of the barycenter of its Laguerre cell (resp. Voronoi cell). Taking the diagonal metric given by the Algorithm 1 Lloyd's algorithm with Wolfe stabilization. 1: Inputs:

2: Initial guess z 0 3: target measure ν 4: Outputs:

5: An approximation of the solution of (15).

6: while Until convergence do 7:

Compute φ opt (z k ).

8:

Compute zk i the barycenter of the i th Laguerre cell L i (z k , φ opt (z k )).

9:

Set d k = zk i -z k i 10: Set σ k = 1 and z k+1 i = z k i + σ k d k 11:
while The Wolfe conditions are not fullled do 12:

σ k = σ k /2 and z k+1 i = z k i + σ k d k . 13:
end while 14:

k = k + 1 15: end while 16: Return z k . mass of the cells M = (M i )i=1.
.n (which is a decent approximation of the Hessian), yields the following formula for the gradient of

G B/S a, b M = i M i a i b i =⇒ ∇G B/S (z k ) = z i -zi . (18) 
A xed step gradient Algorithm with step 1 is to set each point z i exactly at the location of the barycenter zi . This algorithm is well known as a Lloyd- like or a relaxation algorithm [START_REF] Lloyd | Least squares quantization in pcm[END_REF][START_REF] Du | Centroidal voronoi tessellations: Applications and algorithms[END_REF]. An improvement of Lloyd's algorithm is to ensure a Wolfe step condition [START_REF] Bertsekas | Nonlinear programming[END_REF].

G B/S (z k+1 ) < G B/S (z k ) + 10 -4 ∇G B/S (z k ), z k+1 -z k M (Wolfe)
This naturally leads to algorithm 1. The only dierence between the Stippling and Blue Noise problems lies in the choice of φopt(z). It is chosen equal to 0 in the Stippling problem and to argmax φ g in the Blue Noise problem.

Numerical experiment shows that it is not necessary to check for Wolfe's second condition which ensures that the step is not too small, indeed Lloyd's algorithm (and Newton's algorithm) have a natural step σ k = 1.

Newton's Algorithm

The second algorithm is a Newton algorithm. Denoting by H the Hessian, in the Stippling case, we have by [START_REF] Jordan | The variational formulation of the fokkerplanck equation[END_REF]:

HzzGS = Hzzg (19) 
The computation of HzzGB for the Blue Noise case is more involved. A chain rule yields

HzzGB = Hzzg + H zφ g • ∇zφopt
The existence of ∇zφopt is given by an implicit function theorem, from ∇ φ g(φopt(z), z, m) = 0.

Dierentiating the above equation with respect to z and applying the chain rule, we get H zφ g + H φφ g∇zφopt = 0 and hence HzzGB = Hzzg -H zφ g(H φφ g) -1 H φz g.

The implicit function theorem that proves existence of ∇zφopt requires the matrix H φφ g to be invertible. Note that constant φ are always part of the kernel of H φφ g since g is invariant under the addition of constants to φ . Upon supposing that φ has zero average, the invertibility of H φφ g is veried throughout the optimization procedure. In theory, H φφ g can only be proven to be invertible generically [START_REF] Mérigot | An algorithm for optimal transport between a simplex soup and a point cloud[END_REF]Theorem 18].

Once the Hessian is computed, the Newton algorithm with preconditioning by the matrix M amounts to changing in Algorithm 1 the descent direction d k by a solution to the linear problem

AM 1/2 d k = -M 1/2 ∇G B/S (z k ) with A = (M -1/2 HzzG B/S M -1/2 ), (20) 
and ∇G B/S (z k ) is dened in [START_REF] Kantorovich | On a problem of monge[END_REF] as the gradient with respect to the metric M . Newton's algorithm fails if the Hessian is not positive denite, hence we propose a work-around based on the conjugate gradient method on the system [START_REF] Lévy | A numerical algorithm for l2 semi-discrete optimal transport in 3d[END_REF]. Recall that conjugate gradient method solve exactly the problem in the Krylov space and that the residues of the conjugate gradient method form an orthogonal basis of this Krylov space, hence are equal (up to a normalization procedure) to the Lanczos basis. Denote πn the projection on the Krylov space at iteration n, the matrix πnAπn is tridiagonal in the Lanczos basis hence the computation of its determinant is a trivial recurrence [START_REF] Saad | Iterative methods for sparse linear systems[END_REF].

By monitoring the sign of the determinant throughout iterations one checks the positiveness of the matrix. The conjugate gradient algorithm is stopped whenever the matrix A stops being positive denite. The descent direction is then given by

(πnAπn)M 1/2 d k = -πnM 1/2 ∇G B/S (z k ),
By convention for n = 0, we solve d k = -∇G B/S (z k ). If A is positive, then the problem ( 20) is solved exactly.

Other considerations

The computation of φ in the Blue Noise problem is a standard unconstrained concave maximization procedure with knowledge of second order derivatives. In order to compute φopt in a robust manner, we settled on a Levenberg-Marquardt type algorithm: denoting H(σ) = H φφ g -1 σ Id, we take as descent direction -H(σ) -1 ∇g(φ), where σ is reduced until Wolfe's rst order conditions are met. In the Stippling problem, the computation of φ = 0 is trivial.

The Laguerre tessellation is computed by CGAL [1]. All the tests where performed using a standard Lena image as background measure ν which has been discretized as bilinear by pixel (Q1 nite element method). In the Blue Noise problem, the mass m is constrained to be equal to 1 n for all Dirac masses.

3.4

Numerical results

Direct comparaison of the algorithms

For the rst example, we search the optimal positions of the Dirac masses for either the Blue Noise or Stippling problem. Three methods are benchmarked, the Gradient method (Lloyd-like method), the Newton method discussed in the previous section and a LBFGS method with the memory of the 8 previous iterations. Tests are performed for 1K and 10K uniformly drawn points. The evolution of the cost functions and the L2 norms of the gradient are displayed throughout iterations. Figure 3 10K points problems, the three dierent methods seem equivalent. Our interpretation of the 10K points behavior is the combination of two factors.

First we believe that an augmentation of the number of points reduces the basin of attraction of local minimum. Indeed, in our test the Newton method failed to attain locally convex points (the Hessian always had a negative eigenvalue throughout iterations). The second eect of the augmentation of the number of points is that numerical errors trickle down the algorithm, eventually preventing the Newton method to accurately nd the minimum.

As a conclusion, we nd that using second order derivative information in computing centroidal Voronoi tessellation (Stippling problem) is useful for a small number of points, which renders the application range of this method quite limited. Note that very similar tests have already been performed in [START_REF] Liu | On centroidal Voronoi tessellation, energy smoothness and fast computation[END_REF]. The main conclusions of the tests in Figure 3 and Figure 4 is that the basin of attraction of the Newton method for the Blue Noise problem seems bigger than the one of the Stippling problem. Hence a second order method for the Blue Noise problem is of interest as the number of points rises.

Adding a point

In order to exhibit the helpfulness of second order method for Stippling, we build an example where the classic gradient algorithm fails to converge. Empirically the main drawback of Lloyd algorithm is its lack of globalisation. Suppose one has optimized the position of n Dirac masses for the Blue Noise or Stippling problem and that one adds one mass at some random location and wants to optimize the position of the n + 1 Dirac masses. Lloyd's algorithm for the Stippling problem will converge slowly due to the fact that the new point will modify the Voronoi cells of its neighbours only, whereas the Blue Noise functional is global and every Laguerre cell will be modied at the rst iteration. Hence Lloyd's algorithm for the Stippling problem has to wait for the information to propagate through each Voronoi cell, like the peeling of an onion, one layer at each iteration. The advantages of the second order method can then be seen, since the Hessian encodes the connectivity and propagates instantly the information. This eect should be less important for the Blue Noise case where information is propagated instantly. In Figure 5, we exhibit this eect for the Blue Noise and Stippling problem. We optimize with 1K pts with a second order method and then test either Lloyd's or Newton's method.

Our interpretation of Figure 5 lies mainly in the observation of the cost function.

Newton's method converges for the Blue noise or Stippling case, where LLoyd's method convergence rate towards a critical point is way slower. Note however that the objective function for the Stippling problem decreases very slowly for Lloyd's method compared to the Newton method whereas the decrease of the objective function for the Blue Noise is comparable. We interpret this result as the "peeling layers" eect, only seen in the Stippling problem, described earlier.

Conclusion

In this paper we have studied the conditions under which second order dierentiability of the semi-discrete optimal transport with respect to position of the Dirac masses holds for generic cost function c. This result encompasses the second order dierentiability of the energy of a Voronoi diagram. We have numerically implemented the second order procedure for both the Blue Noise and Stippling problem. In the Stippling problem, the numerical applications are limited by arithmetic precision and small basins of attraction.

The Blue Noise problem is less sensitive to theses eects. An interpretation of this fact is that the Blue Noise problem is global, a change in the position of a mass as an eect on the whole set of masses, whereas in the Stippling problem, a mass only sees its direct neighbours. The Blue Noise problem is then a more stable problem than the Stippling one.

It is then of the highest interest to understand the smallness of the basins of attraction and the disposition of local minima for the two corresponding problem. It is also the aim of future work to understand optimal transportation between Dirac masses and non-regular background measures (say measures supported by curves) and the corresponding Blue Noise problem.

Such an application requires to dierentiate the semi-discrete optimal transport with respect to parameters that describe the underlying background measure ν.
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