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Abstra
t

This paper des
ribes an interesting and powerful approa
h to the 
onstrained

fuel-optimal 
ontrol of spa
e
raft in 
lose relative motion. The proposed ap-

proa
h is well suited for problems under linear dynami
 equations, therefore

perfe
tly �tting to the 
ase of spa
e
raft �ying in 
lose relative motion. If the

solution of the optimisation is approximated as a polynomial with respe
t to

the time variable, then the problem 
an be approa
hed with a te
hnique de-

veloped in the 
ontrol engineering 
ommunity, known as �Sum Of Squares�

(SOS), and the 
onstraints 
an be redu
ed to bounds on the polynomials.

Su
h a te
hnique allows rewriting polynomial bounding problems in the form

of 
onvex optimisation problems, at the 
ost of a 
ertain amount of 
onser-

vatism. The prin
iples of the te
hniques are explained and some appli
ation

related to spa
e
raft �ying in 
lose relative motion are shown.
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1. Introdu
tion

The sear
h for fuel-optimal manoeuvres is a 
lassi
al problem in spa
e

engineering (S
harf et al., 2003), whi
h is still thoroughly investigated by the

aerospa
e 
ommunity in sear
h of more e�
ient and reliable methods, for

di�erent mission pro�les (Li, 2016; Bolle and Cir
i, 2012; Qi and Jia, 2012).

The problem is of 
riti
al interest due to the hard 
onstraints on the quantity

of fuel (and 
onsequently, of delta-v) that a spa
e
raft 
an 
arry at laun
h.

The 
lassi
al analyti
al approa
h is based on Pontryagin's prin
iple, whi
h

yields the 
lassi
al bang-o�-bang solutions (Kirk, 2012). Nevertheless, 
losed

form solutions of fuel-optimal problems are often impossible to �nd, whi
h

makes it ne
essary the use of numeri
al optimisation methods.

The numeri
al solution of the optimal 
ontrol problem, whi
h is 
entral to

the fuel-optimal problem, 
an be found in two di�erent ways, using indire
t

methods or dire
t methods. Indire
t methods are based on the writing of the

Hamiltonian fun
tion and on the solution of the Euler-Lagrange di�erential

equation. In general they lead to very a

urate results with the use of few

variables. On the 
ontrary, dire
t methods are based on the trans
ription

of the di�erential problem into a pure parametri
 problem whi
h 
an be

solved using dire
t optimization methods. This kind of methods 
an lead

to solutions as a

urate as indire
t methods but requires the use of many

more variables. In both 
ases, the dis
rete problem 
an be fa
ed with the

algorithms developed for parameter optimization whi
h are typi
ally based

on the Newton method (Betts, 1998). Example of indire
t methods 
an

be seen in (Casalino et al., 1999) and (Zhang et al., 2015), while example

of dire
t methods 
an be seen in (Massari and Bernelli-Zazzera, 2009) and

(Massari et al., 2003).

In general, both indire
t and dire
t methods are very powerful, but being

based on the Newton method, they require an initial solution guess to start

the iterations. Moreover, this solution should be near enough to a lo
al

minimum to guarantee the 
onvergen
e of the method to a solution. This

shows also a se
ond drawba
k of those methods, only lo
al minima 
an be

rea
hed, no information on the globality of the optimum 
an be a
hieved.

The method presented in this paper belongs to the 
lass of 
onvex op-

timisation based methods, as do those based on Linear Programming (LP)

(Magnani and Boyd, 2009) and moment measures (Claeys et al., 2014), whi
h

have also been applied to the problems des
ribed above. In this arti
le, we

explore an approa
h based on a te
hnique known as Sum Of Squares (SOS)
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(Parrilo, 2003), whi
h lets one formulate polynomial optimisation problems

in the form of a 
onvex optimisation without any need of dis
retising the

dynami
al equations. With this te
hnique, assuming that the solution has

a polynomial expression, the problem 
an be 
ast into the form of an opti-

misation under Linear Matrix Inequality (LMI) 
onstraints or Semi-De�nite

Programming (SDP), a form of 
onvex optimisation that has been developed

in the last de
ades in the 
ontext of automati
 
ontrol (Boyd et al., 1994).

The interest of this method is that it turns the problem into a 
onvex one,

in a very dire
t and simple way whi
h is easily understandable even for the

non-experts of the spe
i�
 optimisation te
hniques involved. For this reason,

this paper has also an introdu
tory or tutorial part whi
h allows a better

understanding of the fundamentals.

As it will be explained later on, the reformulation of the problem required

by the te
hnique is done at the 
ost of a loss of pre
ision, but on the other

hand, the 
onvex formulation does not require any initial guess, and it does

not feature the risk of yielding lo
al optima. The proposed te
hnique 
learly

brings advantages with respe
t to 
lassi
al indire
t or dire
t approa
h to the

solution of optimal 
ontrol problems.

The paper is organised as follows. Se
tion 2 introdu
es and formulates the

problem. Se
tion 3 and Se
tion 4 
ontain a short tutorial for explaining the

ideas behind Sum Of Squares (SOS) and Linear Matrix Inequalities (LMIs)

te
hniques, whi
h we think improve the readability of this paper, but they 
an

be skipped by those who are already familiar. Se
tion 5 
ontains the baseline

algorithm that is the main result of this arti
le, whereas Se
tion 6 introdu
es

a few variants on it. Se
tion 7 shows a set of appli
ation to spa
e
raft in


lose relative motion and �nally Se
tion 8 draws the 
on
lusions.

Notation

We denote by N the set of non-negative integers, by R the set of real

numbers and by R
n�m

the set of real n �m matri
es. Rmrxs is the set of

real-valued polynomials of degree m in the entries of x, AJ

indi
ates the

transpose of a matrix A; the notation A © 0 (resp. A ¨ 0) indi
ates that all

the eigenvalues of the symmetri
 matrix A are positive (resp. negative) or

equal to zero. The symbol

�

n

k




indi
ates the binomial 
oe�
ient, for whi
h

we have

�

n

k




�

n!

k!pn� kq!
.
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For the reader's 
onvenien
e, all the symbols of this paper with ex
eption of

those used in the examples are listed at the end in the Appendix.

2. Problem formulation

We 
onsider linear dynami
 equations des
ribing the motion of one or

more point masses, of the kind

:xptq � fpxptqq � uptq (1)

where t is the time variable, xptq� rx1ptq, ..., xnptqs
J

P R
n
the position ve
-

tor (with n P N), uptq� ru1ptq, ..., unptqs
J

P R
n
a ve
tor of 
ontrol a
tions

and fpxptqq � rf1pxptqq, ..., fnpxptqqs
J

a ve
tor-valued linear fun
tion 
oming

from the physi
s of the problem. The typi
al fuel-optimal problem 
onsists

in �nding a traje
tory x�ptq whi
h brings the state from an initial posi-

tion x0 and velo
ity v0 at time t � 0, to a �nal position xf and velo
-

ity vf at a �xed time tf , minimising the time integral of a one-norm of

u�ptq � :x�ptq � fpx�ptqq. This 
an be formulated formally as follows.

Problem 1 (Fuel-optimal 
ontrol). Given (1), tf ¡ 0, umax,i ¡ 0, x0,

v0, xf , vf , �nd a 
ontinuous and derivable fun
tion x�ptq : r0, tfs ÞÑ R
n
su
h

that

» tf

0

¸

i

|u�i ptq| dt is minimised (2)

under x�p0q � x0, 9x�p0q � v0, x
�

ptf q � xf , 9x�ptf q � vf , |u
�

i ptq| ¤ umax,i,

with u�i ptq � :x�i ptq � fipx
�

ptqq.

Noti
e that by setting one of the umax,i as very small or 
lose to zero, one


an take into a

ount situations where not all the dire
tions of the spa
e are

dire
tly a
tuated, i.e. the 
ases in whi
h uiptq � 0 for a few (not all) values

of i.

The methods dis
ussed in this paper 
annot deal dire
tly with Problem 1,

but rather with a relaxation of it. By �relaxing a problem�, we mean repla
ing

the original problem with a se
ond one that 
onverges to the �rst under


ertain hypotheses. The advantage of doing so is that the se
ond problem is

amenable to a new approa
h, and it is formulated as follows.
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Problem 2 (Relaxed fuel-optimal 
ontrol). Given (1), tf ¡ 0, umax,i ¡

0, x0, v0, xf , vf , N P N, d P N, �nd a pie
ewise-polynomial ve
tor-valued

fun
tion x�ptq : r0, tf s ÞÑ R
n
de�ned as

x�i ptq � pi,jptq for pj � 1qtf{N ¤ t   jtf{N, i � 1, ..., n (3)

with pi,jptq P R2drts, su
h that

J �

tf

N

¸

i,j

γi,j is minimised (4)

under

1. x�p0q � x0, 9x
�

p0q � v0
2. pi,jpjtf{Nq � pi,j�1pjtf{Nq, 9pi,jpjtf{Nq � 9pi,j�1pjtf{Nq for j � 1, ..., N�

1, i � 1, ..., n

3. x�ptf q � xf , 9x
�

ptf q � vf ,

4. �γi,j ¤ u�i ptq ¤ γi,j, for pj � 1qtf{N ¤ t   jtf{N

5. 0 ¤ γi,j ¤ umax,i, for i � 1 ..., n, j � 1, ..., N ,

again with u�i ptq � :x�i ptq � fipx
�

ptqq.

The quantity J in (4) is the upper bound to the fuel 
onsumption, to

be minimised. The minimisation has been shifted from the absolute value

of u, a non-
onvex fun
tion, to the sum of a set of de
ision variables γi,j,

whi
h is 
onvex; this is a standard tri
k for yielding 
onvex optimisation

problems, as explained for example in (Boyd and Vandenberghe, 2004). The

time interval r0, tf s is divided into N intervals, where ea
h fun
tion x�i ptq is

assumed to be of a di�erent polynomial form pi,jptq with respe
t to time,

with degree 2d (the fa
tor 2 simpli�es the notation later on). The �rst and

the third 
onstraints set the initial and �nal values of the fun
tion x�ptq

and its derivative. The se
ond 
onstraint for
es x�ptq to be 
ontinuous and

derivable (i.e. its derivative is 
ontinuous). The fourth 
onstraint states that

the 
ontrol a
tion ui is bounded in modulus by γi,j in ea
h interval where

x�i ptq � pi,jptq; the �fth 
onstraint states that γi,j is bounded too by the

maximum 
ontrol a
tion umax,i. The optimal 
ontrol a
tion u�ptq is retrieved

from the optimal traje
tory x�ptq by inversion of (1) (as 
ommonly done in

inverse dynami
s te
hniques).

Noti
e that for N Ñ8, the polynomial approximation of x� 
an 
onverge

to any 
ontinuous derivable fun
tion, and the sum in (4) 
onverges to a tight
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upper bound for the integral in (4) of Problem 1. In this sense, Problem 2


onverges to Problem 1 for N Ñ8.

As it will be shown in Se
tion 5, Problem 2 
an be formulated as a Sum

Of Squares (SOS) problem, whi
h 
an be turned into an optimisation under

linear matrix inequality (LMI) 
onstraints. LMI optimisations are 
onvex

problems, whi
h means that the global optimal solution 
an be found e�-


iently by an appropriate solver, without any risk of �nding lo
al optima and

without the need of providing an initial guess.

The next two se
tions provide some ba
kground for the reader who is

unfamiliar with SOS and LMIs. They 
an be skipped by the experts.

3. Sum Of Squares

The basi
 idea of the Sum Of Squares (SOS) (Parrilo, 2003) te
hnique is

very simple: one 
an prove that a polynomial is non-negative (positive or

zero) for any values of its variables if it 
an be written as the sum of square

terms.

Example 1 (Polynomial as sum of squares). Prove that pex1pxq � x2

1
�

2x1x2 � 2x1 � 2x2

2
� 3 ¥ 0 for all x1, x2.

Solution: pex1pxq � px1 � x2 � 1q
2
� px2 � 1q

2
� 1

2
.

The problem of �nding a lower bound for the minimum value of a poly-

nomial 
an be also 
ast as an SOS problem, i.e. the lower bound σ of the

minimum value of a polynomial ppxq (su
h as ppxq ¥ σ �x) is obtained by

solving the following optimisation problem

maximize σ su
h as ppxq � σ is SOS. (5)

Example 2 (Lower bound of a polynomial). Find the biggest value of

σ for whi
h pex1pxq ¥ σ.

Solution: pex1pxq � σ � px1 � x2 � 1q2 � px2 � 1q2 � 12 � σ; the maximum

σ allowed is 1, in fa
t for σ ¡ 1 and x1 � 2, x2 � 1, pex1pxq � σ be
omes

negative.

One last interesting 
lass of problems 
onsist in assessing whether a poly-

nomial is positive for values of its variables in a given interval or satisfying a

set of 
onstraints. Su
h problems 
an be 
ast into SOS form by using a simple

property known as S-pro
edure in the automati
 
ontrol literature (or also
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known as Positivstellensatz in the 
ontext of the theory of polynomials). The

S-pro
edure allows restri
ting a variable-dependent inequality to the subset

of variables satisfying another inequality.

Lemma 1 (S-pro
edure).

fpxq � τgpxq ¥ 0 �x, τ ¥ 0

ó

fpxq ¥ 0 for x P tx|gpxq ¥ 0u.

(6)

Example 3 (Lower bound for bounded variables). Find the biggest σ

for whi
h pex2pxq � �x2

1
� 2x1 ¥ σ, with ||x1|| ¤ 1.

Solution: pex2pxq � σ � �x2

1
� 2x1 � σ ¥ 0 for 1 � x2

1
¥ 0 is implied by (S-

pro
edure) �x2

1
�2x1�σ�τ1p1�x2

1
q ¥ 0 with τ1 ¥ 0. We noti
e that if we pi
k

τ1 � 2, we have �x2

1
�2x1�σ�τ1p1�x2

1
q � x2

1
�2x1�2�σ � px1�1q2�3�σ

whi
h is SOS for σ ¤ �3. So �3 is the lower bound of the polynomial in the

interval �1 ¤ x1 ¤ 1.

These three examples 
an be 
onvin
ing about the fa
t that SOS 
an

deliver results, but on the other hand, it is indeed not always obvious how to

�nd an SOS de
omposition of a 
omplex multivariate polynomial, if it exists.

Moreover, the result might be a�e
ted by �
onservatism�, i.e. it might be that

the polynomial is indeed always positive but no SOS formulation exists (or,

if it exists, we 
annot �nd it), or the lower bound might be underestimated.

The good news is that the sear
h for an SOS de
omposition 
an be done

numeri
ally, and even better, the optimisation problems whi
h stem from

su
h a sear
h turn out to be 
onvex. In fa
t, we 
an prove that an SOS

formulation of a polynomial 
an be found through an optimisation under

Linear Matrix Inequality (LMI) (Boyd et al., 1994) 
onstraints, a 
onvex

problem well known in the automati
 
ontrol literature.

4. Linear matrix inequalities and sum of squares

The optimisation problems under LMI 
onstraints in whi
h we are inter-

ested 
an be formalised as

minimise gpνq under F pνq © 0 (7)
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where ν is a ve
tor of unknowns, g is a s
alar fun
tion and F a symmetri


matrix valued fun
tion, both a�ne in ν; the expression A © 0 (A ¨ 0)

indi
ates that the symmetri
 matrix A is positive (negative) semi-de�nite, i.e.

its eigenvalues are positive (negative) or equal to 0. Su
h problems are 
onvex

and 
an be solved e�
iently; a very popular approa
h relies on using Matlab-

based solvers, typi
ally SeDuMi (Sturm, 1999) with the help of the Yalmip

(Löfberg, 2004) user-friendly interfa
e. Noti
e that equality 
onstraints of

the kind hpνq � 0, with h a�ne in ν, 
an be taken into a

ount as well by a

simple 
hange of base for the spa
e of the unknowns.

The key point here is that SOS problems 
an be turned into LMI problems.

First of all, we noti
e that for a polynomial p2mpxq of degree 2m, we 
an

always �nd a �quadrati
� formulation of the kind p2mpxq � χpxqJPχpxq, with

χpxq a ve
tor 
ontaining all the possible monomials in the x variables from

degree 0 to degree m; P is a square symmetri
 matrix, whi
h is not uniquely

de�ned thanks to the fa
t that produ
ts of di�erent 
ouples of entries in χpxq


an yield the same result. So in general P � P pµq � P0 �

°ι

i�1
µiQi, with

µ P R
ι
a ve
tor of so-
alled �sla
k variables� whi
h 
an assume any value,

as they multiply 
onstant matrix terms Qi simplifying to 0. The following

example 
lari�es this notion.

Example 4 (Sla
k variables). Express the polynomial pex3pxq � 5x4

1
�

4x2

1
� 2x1 � 3 as χpx1q

JP pµqχpx1q.

Solution: 
onsidering that the polynomial is of degree 4, we need χ at least

of degree 2, i.e. χpx1q � r1 x1 x2

1
s

J

. Noti
ing that x1 � x1 � 1 � x2

1
� x2

1
� 1, we


an then write

pex3pxq�

�

�

x2

1

x1

1

�

�

J

�

�

5 0 µ1�2

0 �2µ1 1

µ1 � 2 1 3

�

�

�

�

x2

1

x1

1

�

�

(8)

with µ1 a sla
k variable (ι � 1 in this 
ase).

On
e the quadrati
 formulation has been found, it is enough to �nd

one value µ� of the sla
k variables µ for whi
h the matrix P pµ�q © 0

for proving that the polynomial is SOS. In fa
t, �rst of all, if we have

pnpxq � χpxqJP pµ�qχpxq, with P pµ�q © 0, it is obvious that pnpxq ¥ 0

for all χ and so for all x; at the same time, if P pµ�q © 0 it means that there

exists a matrix square root S su
h as SJS � P pµ�q, so if we de�ne θ � Sχ,

then pnpxq � θJθ, i.e. the sum of the squares of the entries of the 
olumn

8



ve
tor θ. In this way, an SOS problem be
omes the problem of �nding a µ

for whi
h P pµq © 0, whi
h is 
alled an LMI feasibility problem (as it is not

really an optimisation, no fun
tion is minimised). Adding additional 
on-

straints with the S-pro
edure does not 
hange the type of problem, it just

adds the additional unknowns (or �de
ision variables�) τ . Adding an obje
-

tive fun
tion to minimise (e.g. the lower bound times �1) turns the problem

into a true optimisation under LMI 
onstraints, as shown in the following

last example.

Example 5 (SOS as LMI). Estimate the lower bound σ for pex3pxq, with

||x1|| ¥ 1.

Solution: adding the S-pro
edure term �τ1p1�x2

1
q, with τ1 ¥ 0, we have that

pex3pxq � σ ¥ 0 for

�

�

�

�

5 0 µ1�2 0

0 �2µ1 � τ1 1 0

µ1 � 2 1 3� σ � τ1 0

0 0 0 τ1

�

�

�

�

© 0 (9)

with µ1, τ1, σ unknown. This time we 
ode the problem into Matlab with the

help of Yalmip:

>> m1 = sdpvar(1);

>> t1 = sdpvar(1);

>> s = sdpvar(1);

>> P = [5,0,m1+2,0; 0,t1-2*m1,1,0; m1+2,1,3-s-t1,0; 0,0,0,t1℄;

>> lmi = (P >= 0);

and we solve it with SeDuMi, minimising �σ (whi
h means, maximising σ):

>> optimize(lmi, -s, sdpsettings('solver','sedumi'));

>> value(s)

The solver �nds the result of σ � 2.7653, 
onsistent with the plot of pex3pxq

in the r�1, 1s interval. (Fig. 1). The 
onvexity of the problem ensures that

this global optimal value is obtained for one unique value of all the de
ision

variables, whi
h 
an be found e�
iently by the solver.

5. Fuel-optimal problems as sum of squares optimisation

After reading the previous se
tions, the reader should be aware that any

optimisation where the 
ost fun
tion is linear in the unknowns, under in-

equality 
onstraints 
on
erning polynomials (whose 
oe�
ients are also lin-

ear in the unknowns) 
an be 
ast into an SOS/LMI form. The polynomial

9
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Figure 1: Plot of pex3pxq and its lower bound (dashed).


onstraints 
an be spe
ialised for t belonging to an interval by the use of

the S-pro
edure (Lemma 1). The 
oe�
ient τ used in the S-pro
edure 
an

also be a positive polynomial τpxq, still leading to an LMI formulation of the

problem. Looking at Problem 2, it is apparent that the 
ost fun
tion is linear

in the unknowns γi,j, and that all the 
onstraints are of the kind allowed in

an SOS problem. The pie
ewise-polynomial fun
tion x�i ptq in (3) has to be

formulated by assuming

pi,jptq � ξptqJPi,jξptq (10)

with ξptq � r1, t, ... tdsJ P R
d�1

. We are in the 
ase of univariate polynomials

(in t), for whi
h the number of sla
k matri
es ι is given by (see Parrilo, 2003):

ι �
1

2

�

�

d� 1

d




2

�

�

d� 1

d




�

�

�

1� 2d

2d




�

d2 � d

2
. (11)

The steps that need to be taken to reformulate Problem 2 as a 
onvex

optimisation are expressed intuitively in the list that follows (the rigorous

expressions are reported just afterwards).

� Express the optimal traje
tory x� as a pie
ewise polynomial fun
tion

of time t of unknown 
oe�
ients (to be determined); this fun
tion is

made of N polynomial segments of degree 2d.

� Enfor
e the 
onstraints in the optimal traje
tory, i.e. initial position,

�nal position, 
ontinuity, derivability. This results in linear relation

10



between the unknown 
oe�
ients, whi
h are equivalent to the removal

of some of the unknowns.

� The optimal 
ontrol a
tion u� 
an be retrieved by inverting (1); this is

a pie
ewise polynomial fun
tion too, whose 
oe�
ients depend linearly

on the 
oe�
ients of x�.

� Set an upper bound for ea
h |u�i |, for ea
h segment of the pie
ewise

polynomial fun
tion; this 
an be done, for ea
h polynomial segment

of index j, turning the inequality |u�i | ¤ γj,i (non
onvex) into �γj,i ¤

u�i ¤ γj,i (
onvex).

� Set the upper bound for ea
h γj,i, i.e. γj,i ¤ umax,i.

� By using the SOS te
hnique and the S-pro
edure, the inequalities�γj,i ¤

u�i ¤ γj,i for ea
h time interval are turned equivalently into a set of

LMIs.

� Minimising the sum of all the γj,i under the 
onstraints found above

allows �nding the optimal solution through a 
onvex optimisation prob-

lem.

All of this leads to Problem 3, summarised here.

Problem 3 (Relaxed fuel-optimal 
ontrol, 
onvex formulation). Given

(1), tf ¡ 0, umax,i ¡ 0, x0, v0, xf , vf , N P N, d P N, �nd a value for the

following unknowns:

� Pi,j � PJ

i,j P R
pd�1q�pd�1q

, for j � 1, ..., N , i � 1, ..., n;

� Ωi,j,k � ΩJ

i,j,k P R
pd�1q�pd�1q

, for j � 1, ..., N , i � 1, ..., n, k � 1, 2;

� µi,j,k,l for j � 1, ..., N , i � 1, ..., n, k � 1, 2, l � 1, ..., ι;

� γi,j, for j � 1, ..., N , i � 1, ..., n;

under

1. ξp0qJPi,1ξp0q � px0qi, ξp0qJP 1

i,1ξp0q � pv0qi, for i � 1, ..., n (initial


onditions, equality 
onstraints);

2. ξpjtf{Nq

J

pPi,j�Pi,j�1qξpjtf{Nq � 0, ξpjtf{Nq

J

pP 1

i,j�P
1

i,j�1
qξpjtf{Nq �

0, for j � 1, ..., N � 1, i � 1, ..., n (
ontinuity and derivability, equality


onstraints);
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3. ξptfq
JPi,Nξptfq � pxf qi, ξptfq

JP 1

i,Nξptfq � pvfqi, for i � 1, ..., n (�nal


onditions, equality 
onstraints);

4.1.1. Ui,j � Iγi,j �
°ι

l�1
µi,j,1,lQl � Ξi,j,1 © 0, for i � 1, ..., n, j � 1, ..., N

(linear matrix inequalities)

4.1.2. �Ui,j � Iγi,j �
°ι

l�1
µi,j,2,lQl � Ξi,j,2 © 0, for i � 1, ..., n, j � 1, ..., N

(linear matrix inequalities)

4.2.1. ξptqJΩi,j,kξptq P R2d�2rts, for j � 1, ..., N , i � 1, ..., n, k � 1, 2 (equality


onstraints)

4.2.2. Ωi,j,k © 0, for j � 1, ..., N , i � 1, ..., n, k � 1, 2 (linear matrix inequal-

ities)

5.1. γi,j ¥ 0, for j � 1, ..., N , i � 1, ..., n (s
alar inequalities)

5.2. γi,j ¤ umax,i, for j � 1, ..., N , i � 1, ..., n (s
alar inequalities)

su
h that

J �

tf

N

¸

i,j

γi,j is minimised (12)

with

� P 1

i,j su
h that ξptqJP 1

i,jξptq �
d
dt
pξptqJPi,jξptqq,

� Ui,j su
h that ξptqJUi,jξptq �
d2

dt2
pξptqJPi,jξptq � fipxptqqq,

� I su
h that ξptqJIξptq � 1,

� Ξi,j,k su
h that ξptqJΞi,j,kξptq �

ξptqJΩi,j,kξptq
J

p1� p2tN{tf � p2j � 1qq2q,

� Ql for l � 1, ..., ι su
h that ξptqJQlξptq � 0 (sla
k matri
es).

The optimal solution sought is given by

x�i ptq � ξptqJPi,jξptq for pj � 1qtf{N ¤ t   jtf{N, i � 1, ..., n. (13)

Noti
e that the terms P 1

i,j and Ui,j are just linear re
ombinations of the

unknowns in the matri
es Pi,j , so linear matrix 
onstraints 
ontaining them

are linear also in the original unknowns. The 
onstraints in Problem 3 are

dire
tly related to those in Problem 2.
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The term J in (12) is the integral of the sum of all the upper bounds (γi,j)

of fuel 
onsumption in ea
h interval. It gives an upper bound for the global

propellant 
onsumption, whi
h has to be minimised.

Constraints 1 to 3 are obvious.

Constraint 4 of Problem 2 is split in two inequalities: 4.1.1 assures that

uiptq ¥ �γi,j in the interval, whereas 4.1.2 assures that uiptq ¤ γi,j. The

terms Ξi,j,k are the S-pro
edure terms for the interval bounds of the polyno-

mials. First noti
e that p1�p2tN{tf �p2j�1qq
2
q is positive if and only if t is

in the jth time interval; Ξi,j,k is obtained multiplying this expression with the

positive multiplier ξptqJΩi,j,kξptq. Noti
e that a sla
k term

°ι

l�1
µi,j,k,lQl is

present in 4.1.1 and in 4.1.2. To better see how 4.1.1 and 4.1.2 work, it is su�-


ient to multiply them on both sides by ξptq; looking for example at 4.1.1, we

have that ξptqJUi,jξptq is basi
ally ui in the jth interval; ξptqJIγi,jξptq � γi,j;

ξptqJ
°ι

l�1
µi,j,2,lQlξptq � 0 by de�nition of Ql, and ξptqJΞi,j,kξptq is positive

when (p1� p2tN{tf � p2j � 1qq2q is positive, i.e. when t is in the jth interval.

This boils down to for
ing ui�γi,j to be positive when t is in the jth interval,

whi
h implies ui ¥ �γi,j. A similar reasoning leads 4.1.2 to imply ui ¤ γi,j
in the jth interval.

Constraint 4.2.2 assures the positivity of the polynomial multipliers, on
e


onstraint 4.2.1 has assured that their degree is two less than the maxi-

mum whi
h 
an be expressed by the quadrati
 formulation (i.e. 2d). This

makes sure that no terms of order greater than 2d appear when multiplying

ξptqJΩi,j,kξptq with the (quadrati
) 
onstraint on the time, making sure that

the terms Ξi,j,k exist.

Constraints 5.1 and 5.2 translate 
onstraint 5 of Problem 2 (they are s
alar

inequalities, whi
h are a spe
ial 
ase of linear matrix inequalities).

The optimal traje
tory in (13) is obtained by 
ombining the optimal

traje
tory in ea
h time interval, remembering that Pi,j is the matrix for-

mulation of its polynomial expression as explained in Se
tion 4 or in (10).

From the optimal traje
tory, one 
an re
over the optimal 
ontrol a
tion as

u�i ptq � :x�i ptq � fipx
�

ptqq.

Remark 1 (on the 
onservatism of Problem 3). As said, the SOS for-

mulation of an optimisation problem is 
onservative, in the sense that a


ertain degree of e�e
tiveness or pre
ision is lost when a positive polyno-

mial is approximated by an SOS polynomial. In the univariate 
ase though,

whi
h is the 
ase here, all positive polynomials are SOS (Lasserre, 2009,

page 22), so no loss of pre
ision is due to the SOS formulation itself when
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going from Problem 2 (SOS) to Problem 3 (LMIs). On the other hand, the

S-pro
edure (Lemma 1) is in most 
ases 
onservative, but Markov-Luka
s's

thorem (Genin et al., 2000) states that there is no 
onservatism in our spe
ial


ase here, with univariate polynomials in t and multipliers of degree 2d� 2.

So the passage from SOS to LMI is exa
t, i.e. Problem 3 is equivalent to

Problem 2 (we do not go into the details here as we think that it would be

out of the s
ope of the paper). The only approximations are in the relax-

ation from Problem 1 to Problem 2, whi
h be
omes more and more pre
ise

with in
reasing N and d. In pra
ti
e it 
an be pointed out that no signi�
ant

problems arise even at low d (e.g. d � 2), for a su�
ient value of N .

Remark 2 (
omputational 
omplexity). The 
omputational 
ost of an

LMI optimisation in terms of number of Floating Point Operations (FLOPs)

depends on the spe
i�
 solver used; we 
an estimate in general that it is

proportional to the third power of the number of s
alar unknowns (Gahinet

et al., 1994). Su
h a number 
an be qui
kly 
omputed. Looking at Problem 3,

there are

� p2d� 1qNn unknowns in the Pi,j matri
es;

� pd2 � dqNn unknowns in the Ωi,j,k matri
es;

� pd2 � dqNn unknowns in the µi,j,k,l variables;

� Nn unknowns in the γi,j variables,

where ι is given by (11) as a fun
tion of d. Noti
e that P 1

, Ui,j and Ξi,j,k

do not 
ontribute to the number of the unknowns as their entries are just

linear 
ombination of the variables listed above. Noti
e also that the equality


onstraints (initial, �nal 
ondition, 
ontinuity and derivability) remove 2pN�

1qn unknowns. This leads to the following grand total for the number of

unknowns

Nunk � p2d2 � 2d� 1qNn � 2n. (14)

The number of unknown grows linearly with respe
t to N and n, on
e d is

�xed. In general, LMI solvers 
an deal with a few thousands of unknowns

without problems. Noti
e also that in most 
ases, it is 
onvenient to operate

a 
hange in the time variable, repla
ing t with t1 � 2tN{tf �p2j� 1q in ea
h

time interval. This normalises the time within ea
h interval, improving the

pre
ision of the numeri
al solution.
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In the appli
ation se
tion at the end of this paper (Se
tion 7), the number

of unknowns is reported as well as the time ne
essary to solve the optimisation

with a standard quad-
ore personal 
omputer with a 2.67 GHz pro
essor and

8 GB of random a

ess memory.

6. Additional features

Problem 3 
an be upgraded in order to in
lude additional features. The

most relevant possibilities are listed here.

6.1. Extra state 
onstraints

In ea
h of the N intervals into whi
h the polynomial fun
tion is divided,

one 
an enfor
e any number of additional state 
onstraints of the kind

LJ

k x ¥ ckptq for pjpkq � 1qtf{N ¤ t   jpkqtf{N (15)

where jpkq tells in whi
h interval j the k-th 
onstraint is lo
ated, and with

Lk � rLk,1, ... Lk,ns
J

P R
n
and ckptq � ξptqJCkξptq P R2drts (a polynomial in

t, it 
an be 
hosen as a 
onstant). The 
onstraint is obtained by de
laring

the extra unknowns

� ∆k � ∆
J

k P R
pd�1q�pd�1q

, for k � 1, ..., kmax, ;

� ηk,l, for k � 1, ..., kmax, l � 1, ..., ι.

De�ning Πk su
h that ξptqJΠkξptq � ξptqJ∆kξptq
J

p1� p2tN{tf � p2j � 1qq2q

(noti
e that Πk and ∆k are analogous to Ξi,j,k and Ωi,j,k), the 
onstraints to

be added to Problem 3 are

6.1

°n

i�1
Lk,iPi,j � Ck �

°ι

l�1
ηkjQl � Πk © 0 for k � 1, ..., kmax (linear

matrix inequalities)

6.2 ξptqJ∆kξptq P R2d�2rts for k � 1, ..., kmax (equality 
onstraints)

6.3 ∆k © 0 for k � 1, ..., kmax (linear matrix inequalities).

Ea
h state 
onstraint of this kind limits the a

essible zone for the traje
-

tory to time-varying half-spa
es. Constraints of a similar kind, whi
h for
e

a state at a spe
i�
 time instant to belong to an half-spa
e are also possi-

ble, and they are easily implemented with a simple s
alar inequality (with

no extra unknowns). The 
onstraints 
an be 
ombined together to obtain

relevant meaningful 
onstraints, like for example imposing safety distan
e
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onstraints. The fourth appli
ation example in Se
tion 7 shows how these

kind of 
onstraints 
an be exploited.

The ability to deal with inequality state 
onstraints on the entire tra-

je
tory makes the approa
h espe
ially suitable for the 
ase of spa
e
raft in


lose relative motion. In those 
ases, the typi
al 
onstraints 
an arise form


ollision avoidan
e as well as approa
h geometry in the 
ase of do
king.

6.2. Linear time-varying dynami
s

Problem 3 
an be also adjusted to a

ount for linear time-varying dynam-

i
s, i.e. if (1) is repla
ed by

:xptq � fpxptq, tq � uptq (16)

where f depends expli
itly from the time; if f is linear with respe
t to the

state xptq and polynomial with respe
t to t, the optimisation problem 
an still

be 
ast into an SOS form. The only 
are to be taken is that the expression

of fpxptq, tq is of degree smaller than the maximum degree 2d with respe
t to

t (this might require 
onstraining xptq to be of a degree lower than 2d). The

�fth appli
ation example in Se
tion 7 shows a 
ase of time-varying dynami
s.

7. Appli
ation examples

This se
tion 
ontains a set of a
ademi
 examples whi
h show the e�e
-

tiveness of the approa
h. The examples, although normalised and involving

dimensionless quantities, are based on the real engineering problems whi
h

arise in spa
e
raft 
ontrol. Problem 3 (in
luding its variants) has been 
oded

in Matlab and used to �nd solutions. In the 
ontext of this work, an Ad-

Ho
 SOS pa
kage has been used for the SOS-to-LMI 
onversion (the same

one used in Ben-Talha et al., 2017), but several SOS toolboxes for Matlab

are available for users, free of 
harge (as SOSTOOLS, see Papa
hristodoulou

et al., 2013).

7.1. Se
ond order integrator

As a �rst example, we test a standard ben
hmark 
ase for whi
h the

solution is known and it 
an be 
omputed analyti
ally. Namely, we 
onsider

the double integrator, or a spa
e
raft in deep spa
e with linear motion. The

dynami
 equation is the following s
alar one:

:x � u (17)
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with tf � 100, xp0q � 0, xptf q � 10000, 9xp0q � 9xptfq � 0, umax,1 � 10.

The solution of the fuel-optimal problem is the well known bang-o�-bang

solution, in whi
h u is set to the positive maximum for a 
ertain time, then

set to 0, then set to the negative maximum until the spa
e
raft rea
hes the

destination. We solve Problem 3 for N � 10, d � 2 (the number of unknowns

is 108). The solver (SeDuMi) takes 0.5830 s to �nd the solution, whi
h is

shown in Figure 2. The result approximates exa
tly what expe
ted, the

bang-o�-bang solution. The upper bound for the propellant 
onsumption is

J � 228.57.
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Figure 2: First appli
ation example (double integrator, or spa
e
raft in deep spa
e), N �

10.

A more a

urate solution is found for N � 100 (the number of unknowns

is 1098), with a still a

eptable solver time of 3.6142 s (see Figure 3). The

upper bound for the propellant 
onsumption is now J � 225.45. The exa
t

bang-o�-bang solution for this problem requires a propellant 
onsumption of

225.4033 (maximum a

eleration for 11.270166 s, 
oasting, then maximum

de
eleration for the same amount of time). It 
an be seen that with N

in
reasing the solver tends to arrive at this solution.

7.2. Clohessy-Wiltshire equations, out-of-plane dynami


We 
onsider the proximity dynami
s of a spa
e
raft in orbit, a

ording to

the the Clohessy-Wiltshire equations (Clohessy and Wiltshire, 1960), in the

z dire
tion:

:z � �ω2z � u (18)
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Figure 3: First appli
ation example (double integrator, or spa
e
raft in deep spa
e), N �

100.

ω � 0.0314, tf � 200, zp0q � 0, zptf q � 200, 9zp0q � 9zptfq � 0, umax,1 � 0.5.

For N � 100, d � 2, the number of unknowns is 1098, the solver time

is 9.7057 s and the upper bound for the propellant 
onsumption is J �

3.1438. See Figure 4 for the results, again a bang-o�-bang optimal strategy

is automati
ally found by the solver.

7.3. Clohessy-Wiltshire equations, in-plane dynami


We 
onsider now the same Clohessy-Wiltshire model for the x/y dire
tion:

"

:x � 3ω2x� 2ω 9y � ux

:y � �2ω 9x� uy
(19)

with ω � 0.0314, tf � 100, x0 � y0 � 0, xf � 0, yf � 1000, v0 � vf � 0.

N � 50, d � 2, umax,1 � umax,2 � 100. This optimisation des
ribes a 
lassi
al

rendez-vous problem in given time. The solver time is 12.2629 s, J � 3.1438

see Figure 5 for the results.

7.4. Spa
e station approa
h

We 
onsider now a more 
omplex example, representing an approa
h to

a berthing box of a spa
e station (Fehse, 2003). We 
onsider, for ω � 0.1,

that the 
haser has xp0q � 0, yp0q � �1000 and null initial velo
ity, and has

to rea
h the target (xptf q � yptfq � 0) at tf � 500 by approa
hing it from a


orridor of �15� in the negative x dire
tion. Additional safety 
onstraints are

added, for t   300 the 
haser must keep a distan
e of 200 to the station in the
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Figure 4: Se
ond appli
ation example: Clohessy-Wiltshire equations, out-of-plane dynam-

i
s.
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Figure 5: Third appli
ation example: Clohessy-Wiltshire equations, in-plane dynami
s.

y dire
tion, and for 300   t   350 the 
haser must have the same distan
e

to the station in the x dire
tion. The 
onstraints are added as explained in

Se
tion 6. For N � 40 and d � 3, the number of unknowns is 2556, the
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solver time is 23.5913 s and J � 15.7191. The solution is shown in Figure 6

and Figure 7 (�nal approa
h). The strategy of the manoeuvre is indeed non

trivial as the spa
e
raft moves away from the station �rst, in order to be able

to approa
h it from the bottom later on.
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Figure 6: Fourth appli
ation example: approa
h to spa
e station in berthing box dire
tion.

7.5. Example 5: rendez-vous on ellipti
al orbit

We now 
onsider the in-plane equations of 
lose-motion for an ellipti
al

orbit

"

:x � p2k0 9θ
3{2

�

9θ2qx� :θy � 2 9θ 9y

:y � p�k0 9θ
3{2

�

9θ2qy � :θx� 9θ 9x
(20)

where x is the displa
ement with respe
t to the referen
e position in the radial

dire
tion (positive towards the 
enter), y the displa
ement in the orthogonal

planar dire
tion, θ is the true anomaly and k0 is a 
onstant (for details see

Yamanaka and Ankersen, 2002). These equations are linear time-varying due

to the time-dependen
e of θ; this 
an be taken into a

ount as explained in

Se
tion 6.

As an example, we have 
hosen an orbit with e

entri
ity 0.3; the orbit is

normalised so that its period is T � 80, and the starting time 
orresponds to

the position at the peri
enter. We 
onsider a rendez-vous problem with an

initial position with a �100 o�set in the y dire
tion, and the �nal position

is at the origin for tf � 100. Choosing N � 30, the 
oe�
ients of all the
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Figure 7: Fourth appli
ation example: detail of the �nal approa
h.

terms in (20) 
an be modeled as pie
ewise-linear fun
tion of the time with

standard astrodynami
s 
omputations.

Taking d � 3, the number of unknowns is 1916, the solver time is 11.3731 s

and J � 5.2397. The results are shown in Figure 8, the solution is non-trivial

with three bangs. Noti
e that the se
ond thrust ar
 is in proximity of the

se
ond passage at the peri
enter, whi
h 
orrespond to the maximum e�
ien
y

zone for the thrusting.

8. Con
lusions

This paper has demonstrated the appli
ability of the Sum Of Squares

(SOS) approa
h for a set of fuel-optimal 
ontrol problems under linear dy-

nami
s, with potential appli
ation to traje
tory design for spa
e
raft in 
lose

relative motion. The approa
h is made possible by a simpli�
ation or relax-

ation of the fuel-optimal problem, but on the other hand the SOS formulation

turns the problem into a 
onvex optimisation problem, whi
h 
an be solved

e�
iently by existing LMI solvers with guarantee of 
onvergen
e to the global

optimum. Moreover, the proposed framework allows the in
lusion of inequal-

ity state 
onstraints on the traje
tory as well as on the 
ontrol. The SOS
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Figure 8: Fifth appli
ation example: rendez-vous on an ellipti
al orbit.

method of this paper 
an then either be used alone, or to provide an ex
ellent

�rst guess for non-
onvex numeri
al optimisation methods. Future resear
h

will fo
us on extending the approa
h to nonlinear dynami
s.

Appendix

We report here, for extra 
larity, a list of all the symbols 
on
erning Prob-

lem 2 and Problem 3.

Symbol Explanation

t time

t0 starting time

tf �nal time

n number of dimensions

xptq position ve
tor, xptq � rx1ptq, ..., xnptqs
J

x0 starting position ve
tor

xf �nal position ve
tor

9xptq velo
ity ve
tor, 9xptq � r 9x1ptq, ..., 9xnptqs
J

v0 starting velo
ity ve
tor

vf �nal velo
ity ve
tor

fpxq dynami
s fun
tion, fpxq � rf1pxq, ..., fnpxqs
J

uptq 
ontrol input ve
tor, uptq � ru1ptq, ..., unptqs
J
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umax bounds on 
ontrol ve
tor, umax � ru1,maxptq, ..., un,maxptqs
J

x�ptq optimal traje
tory

u�ptq optimal 
ontrol a
tion

N number of time intervals

pi,jptq polynomial approximating x�i ptq in the jth time interval

d half-degree of polynomials pi,jptq

γi,j bound on uiptq on the jth time interval

ξptq ve
tor of monomials of t, ξptq � r1, t, ..., tdsJ

Pi,j matrix representation of pi,jptq, i.e. pi,jptq � ξptqJPi,jξptq

Ωi,j,k positive multiplier (equivalent to the �τptq�) for S-pro
edure

µi,j,k,l sla
k term taking into a

ount non-uniqueness of Pi,j

P 1

i,j matrix representation of 9pi,jptq, i.e. 9pi,jptq � ξptqJP 1

i,jξptq

Ui,j matrix representation of ui in the jth time interval,

i.e. uiptq � ξptqJUi,jξptq in su
h interval

I polynomial matrix representation of 1, i.e. ξptqJIξptq � 1

Ξi,j,k S-pro
edure terms for limiting inequalities to jth time interval,

i.e. ξptqJΞi,j,kξptq � ξptqJΩi,j,kξptq
J

p1� p2tN{tf � p2j � 1qq2q

ι number of sla
k matri
es for non-uniqueness of Pi,j

Ql sla
k matri
es for non-uniqueness of Pi,j, i.e.

ξptqJQlξptq � 0 (for l � 1, ..., ι)

∆k positive multiplier (equivalent to the �τptq�) for S-pro
edure

ηk,l sla
k term taking into a

ount non-uniqueness of Pi,j

Πk S-pro
edure terms for limiting inequalities to jth time interval,

i.e. ξptqJΠkξptq � ξptqJ∆kξptq
J

p1� p2tN{tf � p2j � 1qq2q.
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