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Abstract

This paper describes an interesting and powerful approach to the constrained
fuel-optimal control of spacecraft in close relative motion. The proposed ap-
proach is well suited for problems under linear dynamic equations, therefore
perfectly fitting to the case of spacecraft flying in close relative motion. If the
solution of the optimisation is approximated as a polynomial with respect to
the time variable, then the problem can be approached with a technique de-
veloped in the control engineering community, known as “Sum Of Squares”
(SOS), and the constraints can be reduced to bounds on the polynomials.
Such a technique allows rewriting polynomial bounding problems in the form
of convex optimisation problems, at the cost of a certain amount of conser-
vatism. The principles of the techniques are explained and some application
related to spacecraft flying in close relative motion are shown.
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1. Introduction

The search for fuel-optimal manoeuvres is a classical problem in space
engineering (Scharf et al., 2003), which is still thoroughly investigated by the
aerospace community in search of more efficient and reliable methods, for
different mission profiles (Li, 2016; Bolle and Circi, 2012; Qi and Jia, 2012).
The problem is of critical interest due to the hard constraints on the quantity
of fuel (and consequently, of delta-v) that a spacecraft can carry at launch.
The classical analytical approach is based on Pontryagin’s principle, which
yields the classical bang-off-bang solutions (Kirk, 2012). Nevertheless, closed
form solutions of fuel-optimal problems are often impossible to find, which
makes it necessary the use of numerical optimisation methods.

The numerical solution of the optimal control problem, which is central to
the fuel-optimal problem, can be found in two different ways, using indirect
methods or direct methods. Indirect methods are based on the writing of the
Hamiltonian function and on the solution of the Euler-Lagrange differential
equation. In general they lead to very accurate results with the use of few
variables. On the contrary, direct methods are based on the transcription
of the differential problem into a pure parametric problem which can be
solved using direct optimization methods. This kind of methods can lead
to solutions as accurate as indirect methods but requires the use of many
more variables. In both cases, the discrete problem can be faced with the
algorithms developed for parameter optimization which are typically based
on the Newton method (Betts, 1998). Example of indirect methods can
be seen in (Casalino et al., 1999) and (Zhang et al., 2015), while example
of direct methods can be seen in (Massari and Bernelli-Zazzera, 2009) and
(Massari et al., 2003).

In general, both indirect and direct methods are very powerful, but being
based on the Newton method, they require an initial solution guess to start
the iterations. Moreover, this solution should be near enough to a local
minimum to guarantee the convergence of the method to a solution. This
shows also a second drawback of those methods, only local minima can be
reached, no information on the globality of the optimum can be achieved.

The method presented in this paper belongs to the class of convex op-
timisation based methods, as do those based on Linear Programming (LP)
(Magnani and Boyd, 2009) and moment measures (Claeys et al., 2014), which
have also been applied to the problems described above. In this article, we
explore an approach based on a technique known as Sum Of Squares (SOS)



(Parrilo, 2003), which lets one formulate polynomial optimisation problems
in the form of a convex optimisation without any need of discretising the
dynamical equations. With this technique, assuming that the solution has
a polynomial expression, the problem can be cast into the form of an opti-
misation under Linear Matrix Inequality (LMI) constraints or Semi-Definite
Programming (SDP), a form of convex optimisation that has been developed
in the last decades in the context of automatic control (Boyd et al., 1994).
The interest of this method is that it turns the problem into a convex one,
in a very direct and simple way which is easily understandable even for the
non-experts of the specific optimisation techniques involved. For this reason,
this paper has also an introductory or tutorial part which allows a better
understanding of the fundamentals.

As it will be explained later on, the reformulation of the problem required
by the technique is done at the cost of a loss of precision, but on the other
hand, the convex formulation does not require any initial guess, and it does
not feature the risk of yielding local optima. The proposed technique clearly
brings advantages with respect to classical indirect or direct approach to the
solution of optimal control problems.

The paper is organised as follows. Section 2 introduces and formulates the
problem. Section 3 and Section 4 contain a short tutorial for explaining the
ideas behind Sum Of Squares (SOS) and Linear Matrix Inequalities (LMIs)
techniques, which we think improve the readability of this paper, but they can
be skipped by those who are already familiar. Section 5 contains the baseline
algorithm that is the main result of this article, whereas Section 6 introduces
a few variants on it. Section 7 shows a set of application to spacecraft in
close relative motion and finally Section 8 draws the conclusions.

Notation

We denote by N the set of non-negative integers, by R the set of real
numbers and by R™ ™ the set of real n x m matrices. R,,[x] is the set of
real-valued polynomials of degree m in the entries of x, A" indicates the
transpose of a matrix A; the notation A > 0 (resp. A < 0) indicates that all
the eigenvalues of the symmetric matrix A are positive (resp. negative) or

equal to zero. The symbol (Z) indicates the binomial coefficient, for which

(1) =

we have



For the reader’s convenience, all the symbols of this paper with exception of
those used in the examples are listed at the end in the Appendix.

2. Problem formulation

We consider linear dynamic equations describing the motion of one or
more point masses, of the kind

B(t) = f(2(t)) +u(t) (1)

where ¢ is the time variable, z(t)= [z,(t), ..., 7,,(t)]T € R™ the position vec-
tor (with n € N), u(t)= [u1(t), ..., u,(t)]" € R™ a vector of control actions
and f(z(t)) = [f1(z(t)), ..., fu(z(t))]" a vector-valued linear function coming
from the physics of the problem. The typical fuel-optimal problem consists
in finding a trajectory x*(t) which brings the state from an initial posi-
tion zp and velocity vy at time ¢ = 0, to a final position x; and veloc-
ity vy at a fixed time t;, minimising the time integral of a one-norm of
u*(t) = &*(t) — f(2*(t)). This can be formulated formally as follows.

Problem 1 (Fuel-optimal control). Given (1), t; > 0, Umaes,i > 0, Zo,
Vo, Tf, Uf, find a continuous and derivable function x*(t) : [0,t7] — R" such
that

J Z |uf(t)| dt is minimised (2)

under x*(0) = xy, *(0) = vy, x*(ty) = xy, T*(ty) = vy, [uF(t)] < Umazis

with uf(t) = Z¥(t) — fi(z*(1)).

Notice that by setting one of the t,,4,,; as very small or close to zero, one
can take into account situations where not all the directions of the space are
directly actuated, i.e. the cases in which u;(t) = 0 for a few (not all) values
of 1.

The methods discussed in this paper cannot deal directly with Problem 1,
but rather with a relaxation of it. By “relaxing a problem”, we mean replacing
the original problem with a second one that converges to the first under
certain hypotheses. The advantage of doing so is that the second problem is
amenable to a new approach, and it is formulated as follows.



Problem 2 (Relaxed fuel-optimal control). Given (1), ty > 0, Upqaz; >
0, o, vo, ¢, vf, N € N, d € N, find a piecewise-polynomial vector-valued
function z*(t) : [0,t7] — R™ defined as

2¥(t) = piy(t) for (j — Dty/N <t < jt;/N,i=1,..,n (3)

with p; ;(t) € Raalt], such that

t
J :NfZ%J is minimised (4)
i,J
under
1. LIZ‘*(O) = Xy, JI*(O) = Vo
2. pij(gty/N) = pijs1(its/N), pij(its/N) = Dijr1(jty/N) forj=1,..,N—
1,2=1,...,n

3. a*(ty) = xy, 2*(ty) = vy,
4o =iy S uf(t) < v, for (j —1ty/N <t <jty/N
5. 0 <7 < Umazi, fori=1..,n,j=1,...,N,

again with uf(t) = ¥ (t) — fi(z*(t)).

The quantity J in (4) is the upper bound to the fuel consumption, to
be minimised. The minimisation has been shifted from the absolute value
of u, a non-convex function, to the sum of a set of decision variables ; ;,
which is convex; this is a standard trick for yielding convex optimisation
problems, as explained for example in (Boyd and Vandenberghe, 2004). The
time interval [0,¢f] is divided into NN intervals, where each function z(t) is
assumed to be of a different polynomial form p; ;(¢) with respect to time,
with degree 2d (the factor 2 simplifies the notation later on). The first and
the third constraints set the initial and final values of the function x*(t)
and its derivative. The second constraint forces z*(t) to be continuous and
derivable (i.e. its derivative is continuous). The fourth constraint states that
the control action w; is bounded in modulus by ;; in each interval where
xf(t) = pi;(t); the fifth constraint states that ;; is bounded too by the
maximum control action ., ;. The optimal control action u*(t) is retrieved
from the optimal trajectory x*(¢) by inversion of (1) (as commonly done in
inverse dynamics techniques).

Notice that for N — oo, the polynomial approximation of * can converge
to any continuous derivable function, and the sum in (4) converges to a tight
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upper bound for the integral in (4) of Problem 1. In this sense, Problem 2
converges to Problem 1 for N — oo.

As it will be shown in Section 5, Problem 2 can be formulated as a Sum
Of Squares (SOS) problem, which can be turned into an optimisation under
linear matrix inequality (LMI) constraints. LMI optimisations are convex
problems, which means that the global optimal solution can be found effi-
ciently by an appropriate solver, without any risk of finding local optima and
without the need of providing an initial guess.

The next two sections provide some background for the reader who is
unfamiliar with SOS and LMIs. They can be skipped by the experts.

3. Sum Of Squares

The basic idea of the Sum Of Squares (SOS) (Parrilo, 2003) technique is
very simple: one can prove that a polynomial is non-negative (positive or
zero) for any values of its variables if it can be written as the sum of square
terms.

Example 1 (Polynomial as sum of squares). Prove that pe(v) = x3 —
20129 — 221 + 2:1:% +3 =0 for all xy,xs.
Solution: peg () = (z1 — 19 — 1)% + (29 — 1)% + 12,

The problem of finding a lower bound for the minimum value of a poly-
nomial can be also cast as an SOS problem, i.e. the lower bound o of the
minimum value of a polynomial p(z) (such as p(z) > o Vz) is obtained by
solving the following optimisation problem

maximize o such as p(z) — o is SOS. (5)

Example 2 (Lower bound of a polynomial). Find the biggest value of
o for which pes(z) = 0.

Solution: pe,1(z) — o = (v — 29 — 1)? + (29 — 1)* + 12 — o; the mazimum
o allowed is 1, in fact for o > 1 and 1 = 2,29 = 1, pes1(x) — 0 becomes
negative.

One last interesting class of problems consist in assessing whether a poly-
nomial is positive for values of its variables in a given interval or satisfying a
set of constraints. Such problems can be cast into SOS form by using a simple
property known as S-procedure in the automatic control literature (or also



known as Positivstellensatz in the context of the theory of polynomials). The
S-procedure allows restricting a variable-dependent inequality to the subset
of variables satisfying another inequality.

Lemma 1 (S-procedure).

flz) —79(x) =0 Va,7>0

U (6)
f@) =0 forxe{z|g(x) =0}

Example 3 (Lower bound for bounded variables). Find the biggest o
for which pego(x) = =23 + 211 > 0, with ||z|| < 1.

Solution: pege(r) —0 = —23 + 221 —0 =0 for 1 — 23 > 0 is implied by (S-
procedure) —x2+2x1—0 —71(1—2%) = 0 with 7, = 0. We notice that if we pick
71 =2, we have —x? +2x,—0—7(1—2%) = 23+ 20, -2—0 = (2, +1)?-3—0
which 1s SOS for o < —=3. So —3 s the lower bound of the polynomial in the
mterval —1 <z < 1.

These three examples can be convincing about the fact that SOS can
deliver results, but on the other hand, it is indeed not always obvious how to
find an SOS decomposition of a complex multivariate polynomial, if it exists.
Moreover, the result might be affected by “conservatism”, i.e. it might be that
the polynomial is indeed always positive but no SOS formulation exists (or,
if it exists, we cannot find it), or the lower bound might be underestimated.

The good news is that the search for an SOS decomposition can be done
numerically, and even better, the optimisation problems which stem from
such a search turn out to be convex. In fact, we can prove that an SOS
formulation of a polynomial can be found through an optimisation under
Linear Matrix Inequality (LMI) (Boyd et al., 1994) constraints, a convex
problem well known in the automatic control literature.

4. Linear matrix inequalities and sum of squares

The optimisation problems under LMI constraints in which we are inter-
ested can be formalised as

minimise g(v) under F(v) > 0 (7)



where v is a vector of unknowns, ¢ is a scalar function and F' a symmetric
matrix valued function, both affine in v; the expression A > 0 (A < 0)
indicates that the symmetric matrix A is positive (negative) semi-definite, i.e.
its eigenvalues are positive (negative) or equal to 0. Such problems are convex
and can be solved efficiently; a very popular approach relies on using Matlab-
based solvers, typically SeDuMi (Sturm, 1999) with the help of the Yalmip
(Lotberg, 2004) user-friendly interface. Notice that equality constraints of
the kind h(v) = 0, with h affine in v, can be taken into account as well by a
simple change of base for the space of the unknowns.

The key point here is that SOS problems can be turned into LMI problems.
First of all, we notice that for a polynomial py,(z) of degree 2m, we can
always find a “quadratic” formulation of the kind p,, (2) = x(z)" Px(z), with
x(x) a vector containing all the possible monomials in the z variables from
degree 0 to degree m; P is a square symmetric matrix, which is not uniquely
defined thanks to the fact that products of different couples of entries in x(x)
can yield the same result. So in general P = P(u) = Py + >, ptiQi, with
1 € R* a vector of so-called “slack variables” which can assume any value,
as they multiply constant matrix terms @; simplifying to 0. The following
example clarifies this notion.

Example 4 (Slack variables). Ezpress the polynomial pe.3(r) = 5xi +
43 + 221 + 3 as x(z1) " P(u)x(z1).

Solution: considering that the polynomial is of degree 4, we need x at least
of degree 2, i.e. x(x1) = [1 x; 22]". Noticing that x1 -2, =1-23 = 22-1, we
can then write

21 5 0 pu+2][a?
pem3(x): xq 0 _2,U1 1 T (8)
1 W1+ 2 1 3 1

with py a slack variable (1 =1 in this case).

Once the quadratic formulation has been found, it is enough to find
one value p* of the slack variables p for which the matrix P(p*) > 0
for proving that the polynomial is SOS. In fact, first of all, if we have
pu(x) = x(x)"P(p*)x(z), with P(u*) > 0, it is obvious that p,(z) = 0
for all x and so for all x; at the same time, if P(1*) > 0 it means that there
exists a matrix square root S such as STS = P(u*), so if we define § = S,

then p,(z) = 070, i.e. the sum of the squares of the entries of the column
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vector A. In this way, an SOS problem becomes the problem of finding a u
for which P(p) > 0, which is called an LMI feasibility problem (as it is not
really an optimisation, no function is minimised). Adding additional con-
straints with the S-procedure does not change the type of problem, it just
adds the additional unknowns (or “decision variables”) 7. Adding an objec-
tive function to minimise (e.g. the lower bound times —1) turns the problem
into a true optimisation under LMI constraints, as shown in the following
last example.

Example 5 (SOS as LMI). Estimate the lower bound o for pe.s(z), with
1] > 1.

Solution: adding the S-procedure term —7; (1 — %), with 7, = 0, we have that
pem3(x) —0=20 fO’f‘

5 0 w20
0 —2u1+7'1 1 0

[+ 2 1 5—g-7 0f=" 9)
0 0 0 Ti

with py, 7, o unknown. This time we code the problem into Matlab with the
help of Yalmip:

>» ml = sdpvar(1);
» t1 = sdpvar(1);
» s = sdpvar(1);
>» P = [5,0,m1+2,0; 0,t1-2*m1,1,0; mi+2,1,3-s-t1,0;, 0,0,0,t1];

» lmi = (P >= 0);

and we solve it with SeDuMi, minimising —o (which means, mazimising o ):
>» optimize(lmi, -s, sdpsettings(’solver’,’sedumi’));

>» walue(s)

The solver finds the result of o = 2.7653, consistent with the plot of peys(z)
in the [—1,1] interval. (Fig. 1). The convezity of the problem ensures that
this global optimal value is obtained for one unique value of all the decision
variables, which can be found efficiently by the solver.

5. Fuel-optimal problems as sum of squares optimisation

After reading the previous sections, the reader should be aware that any
optimisation where the cost function is linear in the unknowns, under in-
equality constraints concerning polynomials (whose coefficients are also lin-
ear in the unknowns) can be cast into an SOS/LMI form. The polynomial
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Figure 1: Plot of peg3(x) and its lower bound (dashed).

constraints can be specialised for ¢ belonging to an interval by the use of
the S-procedure (Lemma 1). The coefficient 7 used in the S-procedure can
also be a positive polynomial 7(z), still leading to an LMI formulation of the
problem. Looking at Problem 2, it is apparent that the cost function is linear
in the unknowns +; ;, and that all the constraints are of the kind allowed in
an SOS problem. The piecewise-polynomial function =z (¢) in (3) has to be
formulated by assuming

pi(t) = £(6) Pigg(t) (10)

with £(t) = [1, ¢, ...t%4]T € R4"L. We are in the case of univariate polynomials
(in t), for which the number of slack matrices ¢ is given by (see Parrilo, 2003):

L=%((d;1)2+<d;1)>_(1—2kd2d)=d22—d' 1)

The steps that need to be taken to reformulate Problem 2 as a convex
optimisation are expressed intuitively in the list that follows (the rigorous
expressions are reported just afterwards).

e Express the optimal trajectory x* as a piecewise polynomial function
of time ¢t of unknown coefficients (to be determined); this function is
made of N polynomial segments of degree 2d.

e Enforce the constraints in the optimal trajectory, i.e. initial position,
final position, continuity, derivability. This results in linear relation
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between the unknown coefficients, which are equivalent to the removal
of some of the unknowns.

e The optimal control action u* can be retrieved by inverting (1); this is
a piecewise polynomial function too, whose coefficients depend linearly
on the coefficients of x*.

e Set an upper bound for each |uf|, for each segment of the piecewise
polynomial function; this can be done, for each polynomial segment
of index j, turning the inequality |u| < 7;; (nonconvex) into —v;; <
uf <7, (convex).

e Set the upper bound for each v;;, i.e. v < Umaz,-

e By using the SOS technique and the S-procedure, the inequalities —v;; <

uy < 7j, for each time interval are turned equivalently into a set of
LMIs.

e Minimising the sum of all the 7;; under the constraints found above
allows finding the optimal solution through a convex optimisation prob-
lem.

All of this leads to Problem 3, summarised here.

Problem 3 (Relaxed fuel-optimal control, convex formulation). Given
(1), ty > 0, Umazi > 0, xo, vo, x5, vy, N € N, d € N, find a value for the
following unknowns:

e P, = PZT] e R+ for j =1, ... N,i=1,...,n;

o Q=0 e R for j =1 N, i=1,..n k=12
o ik forg=1.. N, i=1..n k=12 101=1, .,

e vij, forj=1,..,N,i=1,..,n;

under

L. £(0)TP1£(0) = (z0)s, f(O)TPZ-'Jf(O) = (vo)i, fori = 1,..,n (initial
conditions, equality constraints);

2. &(jty/N) (P =P je1)€0ts/N) = 0, E(jty/N) (P =Pl )€ty /N) =
0, forj=1,.,N—=1,i=1,...n (continuity and derivability, equality
constraints);
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3. &(ty) ' Pin€(ty) = (xp)i, £(ty) " PInE(ty) = (vy)is fori=1,...n (final
conditions, equality constraints);

4.1.1. UZ’J + H’}/@j + Z;=1 ,U/i,jJ,lQl — EZ’J’J = 0, fOT 1= 1, .., n, j = 1, ,N
(linear matriz inequalities)
41.2. =U;; +Iv;; + 22:1 Wij21Qi —Zij2 >0, fori=1,...,n,5=1.,N
(linear matriz inequalities)
4.2.1. E(t) T x€(t) € Rog o[t], forj =1,..,N,i=1,...,n, k =1,2 (equality
constraints)
422, Qi x>0, forj=1,..,N,i=1,..,n, k=1,2 (linear matriz inequal-
ities)
5.1. 7%, =0, forj=1,..,N,i=1,...n (scalar inequalities)
5.2. Vij < Umazyis for j=1,..,N,i=1,..,n (scalar inequalities)
such that ;
J =Nf2%,j is minimised (12)
2
with
o P such that £(t)T P €(t) = F(E(H) TP (1)),

i dt
e Uiy such that £(t)TU, () = 4 ()T PE(t) — file (1)),
o T such that £(t)"TE(t) = 1,

o =ik such that £(t) "2, xE(t) =
§0) k(1) (1 — 2Nty — (25 — 1))%),

e Q) forl=1,..,t such that £E(t)TQi€(t) = 0 (slack matrices).

The optimal solution sought is given by

z¥(t) =) PE®R) for (j—1)t;/N <t < jty/Nyi=1,..,n. (13)

Notice that the terms F/; and U ; are just linear recombinations of the
unknowns in the matrices P ;, so linear matrix constraints containing them
are linear also in the original unknowns. The constraints in Problem 3 are
directly related to those in Problem 2.
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The term J in (12) is the integral of the sum of all the upper bounds (v; ;)
of fuel consumption in each interval. It gives an upper bound for the global
propellant consumption, which has to be minimised.

Constraints 1 to 3 are obvious.

Constraint 4 of Problem 2 is split in two inequalities: 4.1.1 assures that
u;(t) = —v;; in the interval, whereas 4.1.2 assures that u;(t) < 7;;. The
terms Z; ; 5, are the S-procedure terms for the interval bounds of the polyno-
mials. First notice that (1— (2¢N/t; — (25 —1))?) is positive if and only if ¢ is
in the j*™ time interval; Z; ; 1. is obtained multiplying this expression with the
positive multiplier £(¢) 7€ ;x£(¢). Notice that a slack term >}_, pijx.Q: is
present in 4.1.1 and in 4.1.2. To better see how 4.1.1 and 4.1.2 work, it is suffi-
cient to multiply them on both sides by £(t); looking for example at 4.1.1, we
have that £(¢)"U; ;£(¢) is basically u; in the 5™ interval; £(¢) "T; ;€() = vij;
()T D, pij2u@i€(t) = 0 by definition of Q;, and £(t) "=, ; ££(t) is positive
when ((1— (2¢N/t; — (25 —1))?) is positive, i.e. when ¢ is in the ;™ interval.,
This boils down to forcing u; +7; j to be positive when ¢ is in the ;™ interval,
which implies w; > —~; ;. A similar reasoning leads 4.1.2 to imply u; < 7, ;
in the j' interval.

Constraint 4.2.2 assures the positivity of the polynomial multipliers, once
constraint 4.2.1 has assured that their degree is two less than the maxi-
mum which can be expressed by the quadratic formulation (i.e. 2d). This
makes sure that no terms of order greater than 2d appear when multiplying
£(t) " ; £&(t) with the (quadratic) constraint on the time, making sure that
the terms =; ; exist.

Constraints 5.1 and 5.2 translate constraint 5 of Problem 2 (they are scalar
inequalities, which are a special case of linear matrix inequalities).

The optimal trajectory in (13) is obtained by combining the optimal
trajectory in each time interval, remembering that P;; is the matrix for-
mulation of its polynomial expression as explained in Section 4 or in (10).
From the optimal trajectory, one can recover the optimal control action as

uf (1) = #(0) — fila" (1),

Remark 1 (on the conservatism of Problem 3). As said, the SOS for-
mulation of an optimisation problem is conservative, in the sense that a
certain degree of effectiveness or precision is lost when a positive polyno-
maal s approzimated by an SOS polynomial. In the univariate case though,
which is the case here, all positive polynomials are SOS (Lasserre, 2009,
page 22), so no loss of precision is due to the SOS formulation itself when
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going from Problem 2 (SOS) to Problem 3 (LMIs). On the other hand, the
S-procedure (Lemma 1) is in most cases conservative, but Markov-Lukacs’s
thorem (Genin et al., 2000) states that there is no conservatism in our special
case here, with univariate polynomials in t and multipliers of degree 2d — 2.
So the passage from SOS to LMI is exact, i.e. Problem 3 s equivalent to
Problem 2 (we do not go into the details here as we think that it would be
out of the scope of the paper). The only approximations are in the relaz-
ation from Problem 1 to Problem 2, which becomes more and more precise
with increasing N and d. In practice it can be pointed out that no significant
problems arise even at low d (e.g. d = 2), for a sufficient value of N.

Remark 2 (computational complexity). The computational cost of an
LMTI optimisation in terms of number of Floating Point Operations (FLOPs)
depends on the specific solver used; we can estimate in general that it is
proportional to the third power of the number of scalar unknowns (Gahinet
et al., 1994). Such a number can be quickly computed. Looking at Problem 3,
there are

e (2d + 1)Nn unknowns in the P,; matrices;

o (d* + d)Nn unknowns in the Q; jx matrices;
o (d* — d)Nn unknowns in the y; ;x, variables;
e Nn unknowns in the v; ; variables,

where ¢ is given by (11) as a function of d. Notice that P', U;; and =, j
do not contribute to the number of the unknowns as their entries are just
linear combination of the variables listed above. Notice also that the equality
constraints (initial, final condition, continuity and derivability) remove 2(N +
1)n unknowns. This leads to the following grand total for the number of
unknowns

Nunk = (2d*> +2d — 1)Nn — 2n. (14)

The number of unknown grows linearly with respect to N and n, once d is
fized. In general, LMI solvers can deal with a few thousands of unknowns
without problems. Notice also that in most cases, it is convenient to operate
a change in the time variable, replacing t with t' = 2tN /t; — (25 — 1) in each
time interval. This normalises the time within each interval, improving the
precision of the numerical solution.
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In the application section at the end of this paper (Section 7), the number
of unknowns is reported as well as the time necessary to solve the optimisation
with a standard quad-core personal computer with a 2.67 GHz processor and
8 GB of random access memory.

6. Additional features

Problem 3 can be upgraded in order to include additional features. The
most relevant possibilities are listed here.

6.1. Extra state constraints

In each of the N intervals into which the polynomial function is divided,
one can enforce any number of additional state constraints of the kind

Lz = c(t) for (j(k) — 1)t;/N <t < j(k)t;/N (15)

where j(k) tells in which interval j the k-th constraint is located, and with
Ly = [Li1, . Lin]" € R and ¢ (t) = £(t) "Cr&(t) € Rag[t] (a polynomial in
t, it can be chosen as a constant). The constraint is obtained by declaring
the extra unknowns

o A, = Ag e REUADXEHD) for k=1, ..., kmas
® 7l for k = 1, ...,kfmaa;, [ = 1a ceey L

Defining ITj, such that &(¢) "T1.E(¢) = £(¢) TARE(H)T(1 — (2tN/t; — (25 — 1))?)
(notice that II; and Ay are analogous to =Z; ;x and €2; ; ), the constraints to
be added to Problem 3 are

0.1 Z?:l Lkﬂ'f)i,j - Cy + Z;=1 7]ka1 — 1l > 0 for k = 1,..., kpmaz (linear
matrix inequalities)

6.2 £(t)TARE(t) € Rog o[t] for k =1, ..., kpae (equality constraints)

6.3 Ap >0 for k =1,..., kpas (linear matrix inequalities).

Each state constraint of this kind limits the accessible zone for the trajec-
tory to time-varying half-spaces. Constraints of a similar kind, which force
a state at a specific time instant to belong to an half-space are also possi-
ble, and they are easily implemented with a simple scalar inequality (with
no extra unknowns). The constraints can be combined together to obtain
relevant meaningful constraints, like for example imposing safety distance
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constraints. The fourth application example in Section 7 shows how these
kind of constraints can be exploited.

The ability to deal with inequality state constraints on the entire tra-
jectory makes the approach especially suitable for the case of spacecraft in
close relative motion. In those cases, the typical constraints can arise form
collision avoidance as well as approach geometry in the case of docking.

6.2. Linear time-varying dynamics

Problem 3 can be also adjusted to account for linear time-varying dynam-
ics, i.e. if (1) is replaced by

B(t) = f(a@),t) + u(l) (16)

where f depends explicitly from the time; if f is linear with respect to the
state z(t) and polynomial with respect to ¢, the optimisation problem can still
be cast into an SOS form. The only care to be taken is that the expression
of f(x(t),t) is of degree smaller than the maximum degree 2d with respect to
t (this might require constraining z(t) to be of a degree lower than 2d). The
fifth application example in Section 7 shows a case of time-varying dynamics.

7. Application examples

This section contains a set of academic examples which show the effec-
tiveness of the approach. The examples, although normalised and involving
dimensionless quantities, are based on the real engineering problems which
arise in spacecraft control. Problem 3 (including its variants) has been coded
in Matlab and used to find solutions. In the context of this work, an Ad-
Hoc SOS package has been used for the SOS-to-LMI conversion (the same
one used in Ben-Talha et al., 2017), but several SOS toolboxes for Matlab
are available for users, free of charge (as SOSTOOLS, see Papachristodoulou
et al., 2013).

7.1. Second order integrator

As a first example, we test a standard benchmark case for which the
solution is known and it can be computed analytically. Namely, we consider
the double integrator, or a spacecraft in deep space with linear motion. The
dynamic equation is the following scalar one:

I=u (17)
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with t; = 100, z(0) = 0, x(tf) = 10000, £(0) = 2(tf) = 0, Umazr1 = 10.
The solution of the fuel-optimal problem is the well known bang-off-bang
solution, in which u is set to the positive maximum for a certain time, then
set to 0, then set to the negative maximum until the spacecraft reaches the
destination. We solve Problem 3 for N = 10, d = 2 (the number of unknowns
is 108). The solver (SeDuMi) takes 0.5830 s to find the solution, which is
shown in Figure 2. The result approximates exactly what expected, the

bang-off-bang solution. The upper bound for the propellant consumption is
J = 228.57.

10000 15
8000 10
6000 5
X 4000 50
2000 -5
0 -10
-2000 -15

0 50 100 0 50 100

t t

Figure 2: First application example (double integrator, or spacecraft in deep space), N =
10.

A more accurate solution is found for N = 100 (the number of unknowns
is 1098), with a still acceptable solver time of 3.6142 s (see Figure 3). The
upper bound for the propellant consumption is now J = 225.45. The exact
bang-off-bang solution for this problem requires a propellant consumption of
225.4033 (maximum acceleration for 11.270166 s, coasting, then maximum
deceleration for the same amount of time). It can be seen that with N
increasing the solver tends to arrive at this solution.

7.2. Clohessy- Wiltshire equations, out-of-plane dynamic

We consider the proximity dynamics of a spacecraft in orbit, according to
the the Clohessy-Wiltshire equations (Clohessy and Wiltshire, 1960), in the
z direction:

F=—wlz+u (18)
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Figure 3: First application example (double integrator, or spacecraft in deep space), N =
100.

w = 0.0314, t; = 200, 2(0) = 0, z(tf) = 200, 2(0) = 2(tf) = 0, Umaz1 = 0.5.
For N = 100, d = 2, the number of unknowns is 1098, the solver time
is 9.7057 s and the upper bound for the propellant consumption is J =
3.1438. See Figure 4 for the results, again a bang-off-bang optimal strategy
is automatically found by the solver.

7.3. Clohessy- Wiltshire equations, in-plane dynamic

We consider now the same Clohessy-Wiltshire model for the x/y direction:
e — 2 2 .

{ i 3w T+ 205 + Uy (19)
U= —2wT + u,

with w = 0.0314, t; = 100, g = yo = 0, zy = 0, yr = 1000, v9 = vy = 0.
N =50, d = 2, Upmaz1 = Umaz,2 = 100. This optimisation describes a classical
rendez-vous problem in given time. The solver time is 12.2629 s, J = 3.1438
see Figure 5 for the results.

7.4. Space station approach

We consider now a more complex example, representing an approach to
a berthing box of a space station (Fehse, 2003). We consider, for w = 0.1,
that the chaser has 2(0) = 0, y(0) = —1000 and null initial velocity, and has
to reach the target (z(ty) = y(ty) = 0) at ¢ty = 500 by approaching it from a
corridor of £15° in the negative x direction. Additional safety constraints are
added, for ¢t < 300 the chaser must keep a distance of 200 to the station in the
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Figure 4: Second application example: Clohessy-Wiltshire equations, out-of-plane dynam-
ics.
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Figure 5: Third application example: Clohessy-Wiltshire equations, in-plane dynamics.

y direction, and for 300 < t < 350 the chaser must have the same distance
to the station in the x direction. The constraints are added as explained in
Section 6. For N = 40 and d = 3, the number of unknowns is 2556, the
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solver time is 23.5913 s and J = 15.7191. The solution is shown in Figure 6
and Figure 7 (final approach). The strategy of the manoeuvre is indeed non
trivial as the spacecraft moves away from the station first, in order to be able
to approach it from the bottom later on.

200 , o mwwsion] o5
of T ]
0 .
-200 02} ]
-200 |
-400 + -400 [
015}
>
=
-600 1 > -600t S
>
-800 | 01t
-800
-1000
-1000 | 005}
-1200 |
-1200
-1400 ‘ ‘ o ‘
0 200 400 -200 200 0 200 400

t X t

Figure 6: Fourth application example: approach to space station in berthing box direction.

7.5. Example 5: rendez-vous on elliptical orbit

We now consider the in-plane equations of close-motion for an elliptical
orbit . . . )
{ i = (2k0%2 4+ 0%)x — Oy — 2075 (20)
i = (—kolP2 + 6y + Oz + 0i
where x is the displacement with respect to the reference position in the radial
direction (positive towards the center), y the displacement in the orthogonal
planar direction, 6 is the true anomaly and kg is a constant (for details see
Yamanaka and Ankersen, 2002). These equations are linear time-varying due
to the time-dependence of #; this can be taken into account as explained in
Section 6.

As an example, we have chosen an orbit with eccentricity 0.3; the orbit is
normalised so that its period is 7' = 80, and the starting time corresponds to
the position at the pericenter. We consider a rendez-vous problem with an
initial position with a —100 offset in the y direction, and the final position
is at the origin for ¢; = 100. Choosing N = 30, the coefficients of all the
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Figure 7: Fourth application example: detail of the final approach.

terms in (20) can be modeled as piecewise-linear function of the time with
standard astrodynamics computations.

Taking d = 3, the number of unknowns is 1916, the solver time is 11.3731 s
and J = 5.2397. The results are shown in Figure 8, the solution is non-trivial
with three bangs. Notice that the second thrust arc is in proximity of the
second passage at the pericenter, which correspond to the maximum efficiency
zone for the thrusting.

8. Conclusions

This paper has demonstrated the applicability of the Sum Of Squares
(SOS) approach for a set of fuel-optimal control problems under linear dy-
namics, with potential application to trajectory design for spacecraft in close
relative motion. The approach is made possible by a simplification or relax-
ation of the fuel-optimal problem, but on the other hand the SOS formulation
turns the problem into a convex optimisation problem, which can be solved
efficiently by existing LMI solvers with guarantee of convergence to the global
optimum. Moreover, the proposed framework allows the inclusion of inequal-
ity state constraints on the trajectory as well as on the control. The SOS
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Figure 8: Fifth application example: rendez-vous on an elliptical orbit.

method of this paper can then either be used alone, or to provide an excellent
first guess for non-convex numerical optimisation methods. Future research
will focus on extending the approach to nonlinear dynamics.

Appendix

We report here, for extra clarity, a list of all the symbols concerning Prob-
lem 2 and Problem 3.

Symbol Explanation

time

starting time

final time

number of dimensions

position vector, z(t) = [z1(t), ..., z(t)]"
starting position vector

final position vector

velocity vector, @(t) = [21(t), ..., Zn(t)]"
starting velocity vector

final velocity vector

dynamics function, f(x) = [fi(z), ..., fo(2)]"
control input vector, u(t) = [ui(t), ..., u,(t)]"

22



Umaz bounds on control vector, Umae = [U1maz(t); -y Unmaz(t)]"
x*(t) optimal trajectory

u*(t) optimal control action
N number of time intervals
pij(t) polynomial approximating x}(¢) in the j* time interval
d half-degree of polynomials p; ;(t)
Vi j bound on wu;(t) on the j* time interval
£(t) vector of monomials of ¢, £(t) = [1, ¢, ..., t4]T
P;; matrix representation of p; ;(t), i.e. p;;(t) = £(t)" P ;£(t)
Qijk positive multiplier (equivalent to the “7(t)”) for S-procedure
i Gkl slack term taking into account non-uniqueness of P, ;
I matrix representation of p; ;(t), i.e. p;;(t) = &(t) " P/ ;&(t)
Ui ; matrix representation of u; in the j' time interval,
Le. u;(t) = £(¢)"U; j£(¢) in such interval
I polynomial matrix representation of 1, i.e. £(t)TIE(t) =1
Zijk S-procedure terms for limiting inequalities to j*® time interval,
e, £(6)TZuE(t) = £(0) Qusat(®)T (1 — CENJt; — (2 — 1))?)
L number of slack matrices for non-uniqueness of P, ;
Q@ slack matrices for non-uniqueness of P, j, i.e.
E)TQiE(t) =0 (for I =1,...,1)
Ak positive multiplier (equivalent to the “7(¢)”) for S-procedure
Y slack term taking into account non-uniqueness of F; ;
I, S-procedure terms for limiting inequalities to j*" time interval,

Le. £(1) TILE() = ()T AE(1) (1 — (26N /t; — (25 — 1))?).
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