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Abstract

This paper is devoted to the investigation, via homogenisation theory, of the dynamic be-

haviour of multiple scale porous media. Both the phenomenon and the structure of the

multi-porous medium introduce distinct characteristic lengths from which scale ratios may

be defined. The influence of the relationships between all scale ratios is highlighted through

the analysis of interscale couplings. The derived macroscopic descriptions are presented in

the case of high permeability contrasts and then for very high permeability contrasts.

1 Introduction

The continuous representation of a given heterogeneous medium makes sense only when there

is a separation of scales or when a property of local invariance is verified. This actually imposes

the two following requirements: i) The material must be sufficiently regular so that a Repre-

sentative Elementary Volume can be defined; ii) The phenomenon must vary with respect to a

characteristic length which is widely greater than the REV’s size. If both conditions are fulfilled,

then homogenisation methods allow the definition of the equivalent continuous medium from

the characteristics of the REV and the interactions occurring between the REV constituents.

Upscaling issues are usually - implicitly or explicitly - investigated on the basis of two scale

media. The structure of these media is thus quite simple and is characterised by a single scale

ratio.

The purpose of this work is to examine heterogeneous media of higher complexity that contain

one or several intermediate or mesoscopic scales between the microscopic and the macroscopic

scales. When the hierarchical heterogeneous medium is a porous medium, it is referred as a

dual-porosity or a multi-porous medium (Figure 1). When the microscopic and the mesoscopic
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Figure 1: Two examples of dual-porosity media. Left: Porous medium that consists of porous

grains. Right: Porous medium with high contrasts between constituent permeabilities

sizes are distinct, the physics at both scales may strongly differ. A great variety of interscale

couplings and of macroscopic behaviours can then be observed. This was investigated for in-

stance for petroleum engineering applications by phenomenological approaches (Barenblatt et

al. 1960) or via homogenisation (Royer and Auriault 1994).

In this paper, interscale couplings are investigated in the context of acoustics of multi-porous

media saturated by air. The interest of this example is two-fold:

i) The simplicity of the physics allows to clearly examine the possible interscale couplings and

their consequences upon the associated macroscopic behaviour.

ii) Artificial porous media are frequently used for reducing ambient noise, (Allard, 1993). Ac-

cording to the applications, the size of the constituents may range from 10cm to 10µm . This

allows to suggest the use of artificial multi-porous media in order to increase the level of noise

absorption.

This lecture is organised in five sections. In Section 2, the homogenisation method for mul-

tiple scale media is briefly presented. Section 3 is devoted to the investigation of acoustics in

a single-porosity medium. The purpose of Section 4 is to examine the various possible dual-

porosity situations. These situations are determined from the main features of acoustics in

single-porosity media. Finally, section 5 focuses on the interpretation of the derived interscale

couplings.

2 Homogenisation Applied to Multi-Scale Media

The homogenisation method as it is presented in (Sanchez-Palencia, 1980) is mainly devoted to

two-scale upscaling. Anyhow, this approach that allows rigorous upscaling from the microscopic

scale to the macroscopic scale can also be applied when several successive upscaling processes

are required (Bensoussan et al., 1978), e.g. from the microscopic scale (lµ) to the mesoscopic

scale (lm) and then to the macroscopic scale (L) (Auriault and Boutin, 1993, 1994). The three

well distinct characteristic lengths lµ, lm and L are associated with the REV at the microscopic
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scale, (REV )µ, the REV at the meso-scale, (REV )m, and the phenomenon, respectively. From

these three characteristic lengths, three space variables, x, y, z may be defined for describing

the three scales. Let define the two following scale ratios:

ε =
lm
L
<< 1; εm =

lµ
lm

<< 1.

With respect to these scale ratios the space variables are such that:

y = ε−1x; z = ε−1
m y.

In dynamics, L is either the wavelength or related to the medium dimension, if this latter is

lower than the wavelength (Boutin and Auriault, 1990). Thus, for a given medium, the actual

”physical” ε varies in a wide range of values, whereas εm depends only upon the material and

is therefore a constant.

As a result of the separation of scales, each medium behaves as a continuum at the upper level.

Therefore, each quantity qm defined at the meso-scale is looked for in the form of an asymptotic

expansion in powers of ε, with respect to the macrovariable x and to the mesovariable y, only:

qm(x, y) =
∑

εjqjm(x, y) where qjm/q
0
m = O(1). (1)

On the other hand, any quantity qµ defined at the microscale is developed in powers of both ε

and εm, using the three space variables x, y and z:

qµ(x, y, z) =
∑

εjmε
iqj,iµ (x, y, z) where qj,iµ /q

0
m = O(1). (2)

With this homogenisation technique, the existence of the REV is replaced by the assumption of

periodicity at the corresponding scale, which also entails the periodicity of the physical quanti-

ties. Thus, the functions qjm are periodic with respect to the variable y and the functions qµ are

periodic with respect to y and z.

As a consequence of the separation of scales, the boundary conditions over the micro-meso

boundary are expressed at the mesoscopic level, i.e. they relate quantities of the meso-domain

to homogenised quantities of the micro-domain.

Finally, whatever is the number of scales, the homogenisation process consists of two steps:

i) To perform a physical analysis of the phenomenon and to rescale the equations by using pow-

ers of ε (or εm) for expressing the order of magnitude of the dimensionless terms.

ii) To incorporate the asymptotic expansions into the rescaled equations and to identify the

terms of identical power in εjmε
i, and to solve the boundary-value problems obtained at the

successive orders.

The purpose of the next sections is to apply this method for modelling acoustics of porous media

saturated by air. The first step is explained in details and then the results obtained from the

second step are presented.
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3 Adiabatic Acoustics of a Single-Porosity Medium Saturated

by Gas

3.1 Noise Absorbing Porous Media

Dry porous media, i.e. porous media saturated by air, present interesting acoustic properties for

reducing the level of ambient noise. Inside buildings, such media are now very frequently used as

wall lining. On the outside, the design of anti-noise walls, for instance, takes advantage of these

properties to reduce sound intensity in the vicinity of railways or motorways. The materials

used for this purpose are often coarse, made of granular aggregates and have a pore size ranging

from few millimetres to few centimetres. Another example is that of porous road surfacing used

in road engineering. These materials, which present a large intrinsic permeability (10−9m2) are

known for decreasing traffic noise from 20 to 10 dB (Bar and Delanne, 1993).

The phenomenon of sound absorption is due to the fact that when an acoustic wave arrives on

a pervious surface, air is pushed within the pores. Therefore, only a partial reflection of the

wave occurs, and the transmitted wave is damped. The description of these phenomena requires

the physical analysis of gas flow within the pores. The reader is referred to (Allard, 1993) for a

detailed presentation of these aspects.

3.2 Local Assumptions and Macroscopic Description

In this study, the four following main assumptions are made:

i) As a result of the low pressure level, the porous skeleton is assumed to be perfectly rigid;

ii) Air is assumed to be a viscous fluid and its flow in the pores is governed by Navier-Stokes

equation;

iii) Since acoustic motions are very small, convection or advection effects are negligible, and the

non-linear terms are ignored.

iv) For simplicity, heat exchanges are neglected and as a result the perturbations in the gas are

assumed to be adiabatic. The treatment of thermal effects, (Boutin et al., 1998) is presented in

Appendix A.

Under harmonic pulsations the local linearised governing equations are given below; v is the

velocity, p is the pressure variation, µ is the gas viscosity and γ its specific heat ratio, p and

ρ are the pressure and the density at the equilibrium, respectively. The term eiωt will be omitted.

In the gas (Ω)

Compressibility iωp/(γP e) + div(v) = 0 (3)

Navier-Stokes equation − grad(p) + µ∆(v) = ρeiωv (4)

At the gas-solid interface (Γ)
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No-slip condition v = 0 (5)

Under wave propagation the pressure and the volume variation oscillate according to the wave-

length (the macroscopic size) whereas the velocity varies at the pore scale. Then, using the

macroscopic length as the reference length, only Navier-Stokes equation needs to be rescaled

and when rescaled it is written as:

−grad(p) + µε2∆(v) = ρeiωv (6)

This leads to the problem of dynamic flow through a porous medium [Biot, 1956], [Auriault,

1980]. The macroscopic behaviour is described by the following equations where P is the pressure

- which is homogeneous in the pores - and V the average velocity (φ is the porosity) :

Compressibility div(V ) + iωφP/γpe = 0 (7)

Dynamic Darcy’s law V = −K∗grad(P ) (8)

3.3 Dynamic Permeability K∗

The acoustic characteristics of the system are related to the properties of the dynamic perme-

ability K*. These properties are described in details for example in (Auriault et al, 1985) for a

medium saturated by a liquid.

At low frequencies, viscous effects are predominant and K∗ tends towards k/µ = O(φl2), where

k is the intrinsic permeability. We therefore retrieve the classical Darcy’s law. k is related to

the flow resistivity, σ, which, in acoustics, is usually defined by: σ = µ/k.

At high frequencies, inertial effects are dominant and then K∗ tends towards a pure imaginary

value: K∗(∞) = O(φµ/iωρeτ). Hence, at high frequencies, the dynamic Darcy’s law tends

towards a classical dynamic equation in which air density is corrected by the tortuosity τ , which

highlights the influence of the ”added” mass (τ is generally O(1)).

Low and high frequency domains are delimited by the characteristic pulsation ωc which is such

that both viscous and inertial effects are of the same order of magnitude: ωc = O(µφ/kρe).

In summary, two domains may be distinguished:

The viscous domain The inertial domain

ω < ωc; K∗ = O(k/µ) ω > ωc; K∗ = O(φµ/iωρeτ)

The dynamic permeability may also be related to the effective density, which, in acoustics, is

commonly defined by:

ρ∗eff = µφ/K∗

Analytical expressions can be derived for very simple duct geometries (Biot, 1956). For any

pore geometry, an expression for ρ∗eff is proposed in (Allard et al., 1993), which gives the

correct asymptotic behaviour at low and high frequencies and that includes viscous layer effects:

ρ∗eff
∼= τρe[1 + (1 + iω∗/F 2)1/2/iω∗] with ω∗ = ω/ωc,
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where F is a shape ratio ranging from
√

2 (for cylindrical pores) to 4, with respect to the pore

geometry (Ping Sheng and Min-Yao Zhou, 1988).

3.4 Wave Propagation

The wave propagation equation is derived from equations (7) and (8), by eliminating the velocity

v:

K∗∆(P )− iωφP/γP e = 0 (9)

This macroscopic behaviour can be compared to Biot’s theory. However, since the solid is rigid,

the single acoustic wave is of P2 type (Biot, 1956). The complex valued velocity C(ω) may

directly be deduced from equation (9). In the isotropic case we get:

C2 = −γP eK∗ω/iφµ = C2
aiK

∗ω∗,

where Ca is the sound velocity and is defined by:

Ca = (γP e/ρe)1/2

Also from the wave propagation equation, it can be shown that the wave characteristic length

is such that:

(λ/2π)2 = K∗γP e/iωφ.

At low frequencies (ω < ωc), we get C ∼= Ca
√
iω∗, which shows that the waves are diffusive with

a diffusion skin depth λv/2π = O(γP ek/ωφµ)1/2.

At high frequencies (ω > ωc), the acoustic celerity is reduced by the tortuosity and can be

approximated by C ∼= Ca[1/
√
τ + O(1/

√
iω∗ )]. Therefore, the waves are propagative and

attenuated with a wavelength λi/2π = O(Ca/ω).

4 Interscale Couplings in a Dual-Porosity Medium

4.1 Analysis of a Dual-Porosity Medium

Let now consider a dual-porosity medium. At the meso-scale, the REV, (REV )m consists of a

pore network (Ωm) of dynamic permeability K∗m, and of a microporous domain (Ωs), which is

characterised by (REV )µ and by the dynamic permeability K∗µ, which is due to the micropores

(Ωµ). Figure 2 shows the acoustic characteristics of both media when considered separately.

The low frequency behaviours of both media are very different:

Since lµ << lm, we have:

kµ/km = O((lµ/lm)2) = ε2
m << 1.

Moreover,

ωcm/ωcµ = kµ/km = ε2
m << 1.
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Figure 2: Acoustic characteristic of two single-porosity media of intrinsic permeability km (bold

line), kµ(dashed line), km >> kµ. Log-log scale representation of approximate values. Left:

Dynamic permeability versus pulsation. V and I stand for the viscous and the Inertial domains,

respectively. Right: Wavelength versus pulsation. D and P stand for the Diffusive and the

propagative domains, respectively.

In contrast, the high frequency behaviours of both media are very similar:

(K∗µ/φµ)/(K∗m/φm) = O(τm/τµ) = O(1).

Therefore, a priori three regimes of interscale couplings should be observed (Olny, 1999).

Low frequency Intermediate frequency High frequency

ω < ωcm ωcm < ω < ωcµ ω > ωcµ

K∗m = O(km/µ) K∗m = O(km/µ) K∗m = O(φm/iωρ
eτm)

K∗µ = O(kµ/µ) K∗µ = O(φµ/iωρ
eτµ) K∗µ = O(φµ/iωρ

eτµ)

The nature of the interscale couplings is furthermore influenced by the order of magnitude of the

permeability contrast with respect to ε. The two following cases will be successively considered:

i) The generic situation, i.e. identical scale ratios between the three scales: εm = ε. This situa-

tion corresponds to a high permeability contrast: kµ/km = O((lµ/lm)2) = ε2.

ii) The case of a very high permeability contrast, kµ/km = O((lµ/lm)2) = ε4, which means

that εm = ε2.

The separation of scales and the relationship between both scale ratios provides a guideline for

identifying the physics at both scales for whatever the situation under consideration is.

The perturbations at the meso-scale can be significant but the orders of magnitude of the

different terms remain the same as in a single porosity medium. Therefore, the order of magni-

tude of the characteristic macroscopic length λ is such that (λ/2π) = O((γP eK∗/ωφ)1/2), with:

K∗/φ = O(K∗m/φm). This also means that the rescaled equation (3) remains valid for any other
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situation that will be considered.

The microporous domain, that is embedded within the mesopores, behaves as a single-porosity

medium which is submitted, at its boundary, to harmonic meso-homogeneous conditions. Thus,

the characteristic size of the oscillations in this domain is given by (λµ/2π) = O((γP eK∗µ/ωφµ)1/2).

4.2 High Permeability Contrast (εm = ε)

An important issue is the determination of the order of magnitude of the fluid velocity in the

micropores, vµ, relatively to the order of magnitude of the velocity in the mesopores, vm. The fact

that both scale ratios are of the same order (εm = ε), implies that the thickness of the diffusion

skin in the microporous domain, λvm/2π, is larger than or of the same order as the characteristic

dimension of the microporous regions dm = O(lm). In effect, situations for which λvm/2π << lm

are not homogenisable since they can occur only for a frequency range of (λ/2π) = O(lm), which

corresponds to a diffraction regime. Now, as a result of the pressure continuity over the meso-

micro boundary, the pressure is of the same order in both media: pµ = O(pm). As a consequence

of the compressibility equation, we get:

div(vm) = O(div(vµ)) ,hence vm/(λ/2π) = O(vµ/(λm/2π)),

from which we deduce

vµ/vm = O((K∗m/K
∗
µ)1/2).

This leads to distinguish two distinct cases, for which the rescaled form of Navier-Stokes equation

in the micropores (using vm and λ as reference values) will be different:

Low and Intermediate frequencies High frequencies

vµ/vm = O(ε) vµ/vm = O(1)

−grad(pµ) + µε2∆(vµ) = ρeiωvµ −grad(pµ) + µε4∆(vµ) = ρeiωvµ

4.3 Very High Permeability Contrasts (εm = ε2)

When εm = ε2, according to the value of dm, the depth of the diffusion skin in the microporous

domains λvm/2π, can be - in the intermediate frequency range - of one order lower than dm for

avoiding the diffraction regime.

Then, there is no pressure variation in the microporous with the exception of the very thin diffu-

sion skin at its boundary. Therefore, the velocity ratio is of one order lower than O(
√
K∗m/K

∗
µ )

and we get the following rescaled Navier-Stokes equation at intermediate frequencies:

vµ/vm = O(ε3) − grad(pµ) + µε2∆(vµ) = ρeiωvµ

4.4 Comments on the Thermal Effects

The above analysis is based upon the comparison of the dynamic permeabilities K∗m and K∗µ,

which are fully independent of thermal effects (see Appendix A). Therefore, the reasoning

remains valid even in presence of non-adiabatic perturbations in the gas.
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5 Acoustics of Double and Multi-Porous Media

5.1 The Macroscopic Descriptions

Applying the homogenization procedure described in section 2 leads to the following macroscopic

descriptions with respect to the frequency range and to the the permeability contrast (Boutin

et al., 1998), (Olny, 1999). Here again the perturbations are assumed to be adiabatic. The

description that account for thermal effects is given in Appendix B.

High permeability contrast: εm = ε

Frequency Compressibility Dynamic Darcy’s law

Low div(V ) + iω(φm + (1− φm)φµ)P/γP e = 0 V = −K∗m · grad(P )

Intermediate div(V ) + iω [φm + (1− φm)φµ(1−Π∗)] · P/γP e = 0 V = −K∗m · grad(P )

High div(V ) + iω(φm + (1− φm)φµ)P/γP e = 0 V = −L∗m · grad(P )

Very high permeability contrast: εm = ε2

Frequency Compressibility Dynamic Darcy’s law

Intermediate div(V ) + iωφmP/γP
e = 0 V = −K∗m · grad(P )

The interscale couplings in theses four cases can be summarised in the following manner:

At high frequencies (ω > ωcµ), the physics is the same at both levels and then there is a full

interscale flux coupling. The macroscopic dynamic Darcy’s law (L∗) accounts for the presence

of the micropores.

At intermediate and low frequencies (ω < ωcµ), the coupling is lower so that the dynamic

macroscopic Darcy’s law is that given by the mesopores only (K∗). The coupling appears on the

macroscopic effective compressibility, which takes into account the micropores gas flux coming

from the pressure diffusion in micropores. This effect, characterised by the new complex valued

and frequency dependent diffusion function Π∗, is examined in details hereafter.

5.2 Pressure Diffusion at the Meso-scale

The evidence of pressure diffusion at the mesoscale is obtained in three steps. The flows within

the micropores and the pores are successively analysed and finally the coupling flux between

both scales is derived.
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5.2.1 In the Micropores

The first significant orders for the average flow (V 1
µ ) through the micropores (Ωµ) lead to a

classical steady-sate Darcy’s law:

V 1
µ = −(kµ/µ)grad(P 0

µ)

Now, incorporating the compressibility equation over the microporous period (Ωs) yields the

mass balance equation in this domain:

divy(V
1
µ ) + iωφP 0

µ/γP
e = 0

given by:

divy(−(kµ/µ) · grad(P 0
µ)) + iωφµP

0
µ/γP

e = 0

5.2.2 In the pores

The resolution procedure for the flow is classical and yields:

V 0
m = −(K∗m) · grad(P 0

m) with P 0
m = P 0

m(x)

Now, the mass balance obtained over the pore volume Ωm gives:

divx(V 0
m)+ < divy(V

1
µ ) >Ω +iωφmP

0
m/γP

e = 0

In order to determine the additional term due to V 1
µ , we must go back to the micropore scale.

The actual pressure distribution in the whole micropore domain (Ωs) is defined by the following

boundary-value problem:

divy(−(kµ/µ) · grad(P 0
µ)) + iωφµP

0
µ/γP

e = 0

with

P 0
µ = P 0

m(x) over the pore-micropore interface.

Using the pressure difference P ′ = P 0
µ − P 0

m, this problem can be rewritten in the following

equivalent form:

divy(−(kµ/µ) · grad(P ′)) + iωφµ(P ′ + P 0
m)/γP e = 0

with

P ′ = 0 over the pore-micropore interface.

It turns out that the pressure difference is governed by a diffusion equation with a forcing term.

Note that this boundary value problem looks like the heat transfer problem encountered for the

temperature field (see Appendix A). We deduce that the pressure fields in the micropores and

in the pores are related by:

P ′ = −πP 0
m so that:P 0

µ = (1− π)P 0
m
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where the function π(y) is complex, depends on the local variable y and on the pulsation Ω. From

the average mass balance equation on the whole micropores (Ωs) and the boundary condition

at the pore-micropore interface we deduces that:

< div(V 1
µ ) >Ωs= iωφµ(1− φm)(1−Π∗)P 0

m/γP
e

where

Π∗ =< π >Ωs

5.3 The Diffusion Function Π∗

The difference between the macroscopic mass balance for the dual-porosity model and the single

porosity model consists in replacing the porosity by new complex valued term. This latter

corresponds to the influence of air that saturates all the micropores of the grains. It highlights a

coupling effect between pore and micropore air fluxes, which is due to the diffusion of the pore

pressure in the micropores. This phenomenon is expressed by the complex valued function Π∗,

which depends on the dimensionless pulsation ω/ωd. The characteristic pulsation is such that,

when ω = ωd, the thickness of the diffusion skin λvm/2π is equal to the grain size, dm. Let define

the length Λd as the ratio of the grain volume to the surface. A a good estimation of ωd is given

by :

ωd = kmP
e/µφµ(Λd)

2

Three possibilities may exist according to the frequency and the dimension dm of the microporous

domain. The classification from low to intermediate frequency is deduced from the comparison

of the diffusion skin λvm/2π with dm:

λvm/2π >> dm: The transient diffusion effects are negligible. Therefore, the micropore pressure

is homogeneously diffused through the micropores with the same level as in the pores. The total

gas volume contributes to the compressibility and the coupling appears in the macroscopic mass

balance which includes both meso and microporosity (φm + (1 − φm)φµ). Note that since the

dynamic Darcy’s law affects the pore volume only the description does not reduce to a single

porosity.

λvm/2π = O(dm): The pressure is diffused through the micropores, out of phase with the pore

pressure. The coupling appears in the macroscopic compressibility which becomes complex

(φm + (1− φm)φµ(1−Π∗)/γP e.

λvm/2π << O(dm): Diffusion affects air only in the vicinity of the pore walls so that the pressure

does not vary in the micropores. Then the effective compressibility reduces to the compressibil-

ity given by the pores. In this case the macroscopic description is totally ignoring the presence

of the microporous domain.

To conclude, at the macroscopic scale, a new dissipation effect appears in the frequency range
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where the influence of diffusion is maximum i.e. for pulsation close to ωd.

Obviously, for a given dual-porosity medium, a particular analysis based on the value of km, kµ,

lm, dm must be performed to identify which of these four cases can actually be observed in the

various frequency ranges.

In the case of multiple porosity this analysis is also applicable for each level. A great number of

situations can be encountered according to the characteristics of each porous domain.

6 Conclusions

In this work, various macroscopic descriptions of sound propagation through a rigid porous

medium saturated by air are derived using homogenisation theory. The results presented are

valid as long as the wavelength is large in comparison with the pore size.

The first part of the paper deals with single porosity materials for which thermal exchanges

are neglected. The thermal effects are included in the descriptions given in Appendix A. The

derived descriptions are the same as those already obtained via phenomenological approaches

(Allard, 1993), (Attenborough, 1983). Air flow is governed by a dynamic Darcy’s law where

both viscous and inertial effects act, and the effective compressibility is influenced by thermal

exchanges.

In the second part, we focus on dual porosity media, i.e. media in which the grains of the

skeleton are microporous. Let us notice that the results could also be applied to granular media

that consist of grains of very different sizes.

The macroscopic descriptions are obtained by neglecting heat transfer effects (thermal transfers

are included in the description given in Appendix B). It is shown that the physics in the

micropores and in the pores are very different. Due to the low micropore permeability and to air

compressibility, the pressure is inhomogeneously diffused in the micropores. This phenomenon

implies increased acoustic attenuation for pulsation of the order of magnitude of ωd . These

results prove that the introduction of a microporosity could be used designing new porous

materials that would provide enhanced absorption properties in a given frequency range.

The presence of multiple scales can significantly modify the macroscopic behaviour. Moreover

the nature of the equivalent continuous medium cannot be obtained with a two-scale upscaling

procedure. The several descriptions are related to the diversity of the interscale couplings. Such

results are mainly due to the fact that the phenomenon presents an intrinsic length (the viscous

layer), and therefore the physics - which is governed by the ratio of this length to the pore size

- is different at the different scales.

More generally for any physical problem which involves an intrinsic length at the local scale

(depth of diffusion layer, wavelength,...), the presence of multiple scales should modify the nature

of the macroscopic description. Such possibility is rather frequent when studying harmonic

dynamics or transient regimes.
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A Acoustics of Single-Porosity Media with Thermal Effects

A.1 Introduction

The adiabatic analysis is valid for large pores. For a more general description, and in particular

for smaller pores, thermal effects must be accounted for. In this aim, we may incorporate the

equation of heat conduction together with the air state equation:

div(κ.grad(T )) = iω(ρecpT − P )

with

P = P e(ρ/ρe + T/T e) (A1)

where T e is the equilibrium temperature, κ and cp the thermal air conductivity and the spe-

cific heat per mass. Since the air thermal impedance is much smaller than the solid thermal

impedance it will be assumed hereafter that the skeleton remains under isothermal conditions

and that thermal effects are significant only in the pores. As a consequence, the thermal con-

dition on solid-gaz boundary may be expressed as : T = 0. The relative variations of pressure,

temperature and density are of the same order of magnitude. Therefore the air state equation

(A1) is already scaled and O(ρecpT ) = O(P ). Since thermal exchange are assumed to occur

at the pore scale, conduction and transient terms in Fourier equation are of the same order of

magnitude, which expresses the fact that the thickness of the thermal layer is of the order of the

pore size, i.e., O(ωρecpT ) = O(κT/l2). Then using the macroscopic length as reference length,

Fourier’s equation is rescaled in the form :

ε2div(κ.grad(T )) = iω(ρecpT − P ) (A2)

A.2 Macroscopic compressibility

The set of local dimensionless equations is the same as in section 3, but for the compressibility

equation, which is replaced by the state equation (A1) and Fourier equation (A2). Therefore,

concerning the flow, the dynamic Darcy law (8) remains valid. However the temperature T

appears as an additional unknown, which, like the other unknowns, is looked for in the form of

an asymptotic expansion in power of ε. The following heat transfer problem in the periodic cell

problem arises:

divy(κgrady(T
0))− iωρecpT 0 = −iωP 0 (A3)

with

T 0 = 0 (A4)
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at the gas-solid boundary. The solution can be written in the following form (Auriault, 1983)

and (Boutin and Auriault, 1993]):

T 0 = T e(1− 1/γ)gP 0/P e

and therefore

ρ0 = ρe[1− (1− 1/γ)g]P 0/P e

where g is a complex valued function, which depends on the local variable y and on the pulsation.

The macroscopic mass balance is altered. We get now, using the notation P instead of P 0:

div(V ) + iωΦ[1− (1− 1/γ)G∗]P/γP e = 0 (A5)

where

G∗ =< γ >Ω

Equations (8), and (A3) give the macroscopic behaviour which depend on the tensor K∗ - the

same as in the adiabatic case - and on the function G∗.

A.3 Features of function G∗

The complex valued function G∗ describes the frequency dependence of the thermal exchanges

and the term Φ[1−(1−1/γ)G∗]/γP e gives the macroscopic effective complex valued compressibil-

ity. It depends on the dimensionless pulsation ω/ωt. The pulsation ωt is such that, when ω = ωt,

the thickness of the thermal skin is equal the pore size. At low frequencies, transient thermal

effects are negligible. Thus, considering the isothermal condition for the solid, the temperature

variation tends towards zero. Then, G(0) = 0, and the effective compressibility tends towards

the isothermal compressibility (Φ/P e). At high frequencies, conduction effects are negligible

except in close proximity to the solid. The perturbations occur in an adiabatic way in air. Then

G(∞) = 1, and the compressibility tends towards the adiabatic value (Φ/γP e). At medium

frequencies, i.e. for pulsation of the order of ωt, there is a phase shift between temperature and

pressure, and hence between density and pressure. Consequently, the effective compressibility

is complex. Introducing the length Λt defined as the ratio of the of the volume of the pores to

their surface (Champoux and Allard, 1991), a good estimation of ωt is given by :

ωt = κ/ρecp(Λt)
2

For spherical or cylindrical pores, G∗ can be expressed analytically (Attenborough, 1983), (Au-

riault, 1983). For other geometries, the following expression gives the correct asymptotic be-

haviour at low and large frequencies (including the thermal layer effects) (Allard et al, 1993):

G∗ ∼= [1 + (F ′2 + iωt∗)1/2/iωt∗]−1

with ω∗t = ω/ωt. Where F ′ is a shape ratio of the pore structure (F ′ = 2 for cylindrical pores

and F ′ = 5/3 for spherical pores).
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A.4 Wave propagation

The wave equation is obtained from (8) and (A4) by eliminating V :

K ∗∆(P )− iωΦ[1− (1− 1/γ)G∗]P/γP e = 0

The velocity of harmonic waves is given, for isotropic cases, by :

C2 = −γP eK∗ω/iΦ[1− (1− 1/γ)G∗]

Note that the macroscopic description includes two dissipative effects, one due to the viscos-

ity, the other one due to thermal exchanges. However, the thermal dissipation is lower than the

viscous dissipation and has a more limited range of frequencies. From the preceding analysis,

these effects are maximum for pulsation close to ωt. It is important to note that whereas viscous

and thermal layer thickness are of the same order in air, the characteristic frequencies associated

with viscous and thermal dissipation can be very different. As a matter of fact, the permeability

essentially depends on the small ducts in the media, while thermal effects involve all the pores.

In consequence we have the inequalities: k < (Λt)
2 and ωt < ωc.

This approach is in agreement with the phenomenological approaches of (Attenborough, 1983)

and (Allard et al., 1993).

B Acoustics of Dual-Porosity Media with Thermal Effects

The descriptions given in section 5 may be improved by considering thermal exchanges. As

in the case of single porosity, thermal effects do not act on the description of the flow, but

only modify mass balances. Therefore, the results obtained in the treatment of Navier-Stokes

equations in section 5 are still valid here.

B.1 Macroscopic compressibility

In the pores and in the micropores, the governing equations for heat transfer are the same as in

Appendix A, but variables are now indexed by p or m. Because of the contrast in conductivity,

it is assumed here again, that the solid remains in isothermal conditions. In comparison with

the single porosity case, the description of thermal exchanges in the pores is unchanged, i.e., the

thermal skin is of the order of the pore size. As a consequence, the scaled equations (A1), (A2)

remain the same. Now, due to the separation of scales, the micropore size is one order lower

than the thermal skin and the continuity of heat flux at the grain boundary implies that:

κTµ/lµ = κTm/lm

which shows that: Tµ = εTm.

This analysis leads to quasi-static exchanges at the microscopic scale. However, in order to treat

the largest frequency domain as possible, we will keep the transient terms at the micropore scale.
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These estimations yield the following scaled equations in the micropores, where L and Tp are

used as reference quantities:

Pµ = P e(ρµ/ρ
e + ε−1Tµ/T

e) (B1)

ε3div(κ.grad(Tµ)) = iω(ρecpTµ − εPµ) (B2)

with the boundary conditions

Tµ = 0 at the gas-solid boundary

Tµ = Tm at the pores -micropores boundary.

Firstly, the influence of thermal effects is derived by establishing the mass balance at both scales,

and then by determining the inter-scale coupling term. At the first significant orders, the two

following transient heat transfer problems must be solved:

In the micropores:

divz(κ.gradz(T
1
µ))− iωρecpT 1

µ = −iωP 0
µ

with

T 1
µ = 0 at the gas-solid boundary.

In the pores:

divy(κ.grady(T
0
m))− iωρecpT 0

m = −iωP 0
m

with

Tm = 0at the pores-micropores boundary.

Both problems are similar to that defined for the single porosity problem and the solutions are:

T 0
m = T e(1− 1/γ)gmP

0
m/P

e and therefore ρ0
m = ρe[1− (1− 1/γ)gm]P 0

m/P
e

T 0
µ = T e(1− 1/γ)gµP

0
µ/P

e and ρ0
µ = ρe[1− (1− 1/γ)gµ]P 0

µ/P
e

where gm and gµ are complex valued functions, which depends on the pulsation and on the local

variable y and z respectively. This leads to the average density variations:

< ρ0
m >= ρe[1− (1− 1/γ)G∗m]P 0

m/P
e and < ρ0

µ >= ρe[1− (1− 1γ)G∗µ]P 0
µ/P

e

where G∗m =< gm >Ω and G∗µ =< gm >Ωµ .

These complex valued functions G∗m and G∗µ play exactly the same role as the function G∗ in the

single porosity case and same comments (transposed to the micropores for G∗µ) are valid. The

descriptions of the flow in the pores and in the micropores remain unchanged by the thermal

effects. But, the mass balances for the micropores and pores respectively become:

divy(V
1
µ ) + iωΦµ[1− (1− 1/γ)G∗µ]P 0

µ/γP
e = 0 (B3)

divx(V 0
m)+ < divy(v

1
m) >Ω +iωΦm[1− (1− 1/γ)G∗m]P 0

m/γP
e = 0

Let us now determine the interscale coupling term < divy(v
1
m) >Ω. The mass balance (B3),

Darcy’s law in the micropores, and the boundary condition P 0
µ = P 0

m, constitute a boundary

value problem in Ωs. This problem looks like the pressure diffusion problem encountered in sec-

tion 5. However, due to the thermal non-equilibrium in the micropores, the diffusion coefficient
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is now complex and frequency dependent. Nevertheless the solution can still be expressed on

the form:

P 0
µ = (1− ψ)P 0

m (B4)

where Ψ is a complex function depending on y and on the pulsation. As for < divy(v
1
m) >Ω, it is

derived using flux continuity at the pores-micropore interface and integrating the mass balance

(B3) over the whole microporous domain while considering expression (B4):

< divy(v
1
m) >Ω= iω[1− (1− 1/γ)G∗µ][1−Ψ]P 0

m/γP
e

where Ψ =< ψ >sΩ.

Finally, the macroscopic mass balance is (using P instead of P 0
m) :

div(V ) + iωΦm[1− (1− 1/γ)G∗m] + (1− Φm)Φµ[1− (1− 1/γ)G∗µ][1−Ψ]P/γP e = 0

Adding thermal effects modify the inter-scale coupling term. Both thermal and pressure diffusion

effects are now involved at the micropore scale, which is particularly highlighted through the

function Ψ in which both phenomena are mixed. The behaviours of functions Ψ and Π∗ are

different because of the complex valued diffusion coefficient.
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