

Taux de déformation du Miocène à l'Holocène sur le piémont sud du Tian Shan, Chine

Amandine SARTÉGOU Centre de recherches pétrographiques et géochimiques, Nancy

Dimitri Saint-Carlier, Benjamin Lauer, Mathilde Baron, Julien Charreau, Jérôme Lavé, Pierre-Henri Blard, Stéphane Dominguez (Géosciences Montpellier), Nicolas Puchol, Dr. Shengli Wang (Nanjing University ,China), Dr. Xin Wang [Zhejiang University, China]

Introduction : pourquoi étudier le Tian Shan ?

Deux modèles distincts pour la collision Inde/Asie :

> Modèle d'extrusion continentale => cinématique de faille rapide

> Modèle visqueux => cinématique de faille lente

Peltzer et Tapponnier (1988)

Introduction : pourquoi étudier le Tian Shan ?

Introduction : le piedmont de Kuche

Pourquoi et comment?

> Il existe de nombreuses techniques pour quantifier la déformation crustale à l'échelle co-sismique ou sur plusieurs Ma. Au-delà du million d'année \rightarrow enjeu.

Sédiments syn-tectoniques sur la zone d'étude : enregistrement de la déformation sur le long terme

Difficultés :

- Identifier les strates de croissance (*growth strata*) sur les profils sismiques
- Interprétation quantitative

Principe de l'approche : datation des sédiments syn-tectoniques

1 – Modélisation du plissement

CRPG

Principe de l'approche : datations des sédiments syn-tectoniques

S SUPERIORALE SUPERIORALE SUPERIORALE Nancy C R P G

2 - Datations

Magnétostratigraphie (partie septentrionale)

Principe de l'approche : obtention des taux de raccourcissement

Le pli de Quilitage : coupe de Kuche

Échantillonnage : coupe de la rivière Kuche

Résultats des datations cosmogéniques – coupe Kuche

- Décélération du taux de sédimentation moyen depuis environ 4,3 Ma
 - => Forçage tectonique ?
 - => Lacune de dépôt ?

16

• En attente de résultats supplémentaires pour trancher quant à la corrélation entre les deux méthodes

Le pli de Quilitage : coupe de Yaha

GÉOLOGI

Méthode : principe du modèle numérique

Résultats sur la coupe de Kuche

Résultats sur la coupe de Yaha

15

Synthèse sur deux structures actives du piedmont sud

- Vitesses plus conséquentes d'ouest en est sur le pli de Yakeng (travail de thèse de Dimitri Saint-Carlier)
- Tendance inverse sur le pli de Quilitage

Discussion : répartition de la déformation sur un transect nord-sud

Modifiée d'après Yang *et a*l., 2008

Conclusions et perspectives

- Taux de sédimentation proches de 1,3 mm/an sur les 4-5 derniers Ma pour la coupe de Kuche.
- Coupe de Kuche : raccourcissement enregistré par le pli de Quilitage de 2 mm/an sur la période 5-1 Ma, et de 5 mm/an à partir de 1 Ma
- Coupe de Yaha : raccourcissement de 1,2 mm/an pour celle de Yaha.
- Modélisation en cours sur la coupe orientale d'Erbatai
- En attente des données GPS pour la coupe de Kuche.
- Accommodation plus forte d'ouest en est pour le pli de Yakeng et tendance inverse pour celui de Quilitage.
- Contrainte des vitesses de progradation sur la formation quaternaire de Xiyu (section de Yaha) en cours. Vitesse de progradation permet de remonter jusqu'à la vitesse tectonique \rightarrow nouvelles contraintes sur la formation des strates syn-tectoniques.

Les datations par âges d'enfouissement

CRPG

Portée, limites et incertitudes

• Propriétés du couple ¹⁰Be-²⁶Al :

- > Datation sur une période de 100 ka à 5,5 Ma (Granger & Muzikar, 2001)
- Sont produits et retenus dans le même minéral (quartz), ubiquiste
- > Le ratio de production (6,75) est indépendant de l'altitude et de la latitude

Limites géochimiques :

- Contamination par ¹⁰Be cosmogénique atmosphérique
- Limite temporelle : cosmonucléides radioactifs
- Âges limites dépendent de la concentration des nucléides et de la précision analytique des mesures
- Préparation et analyses longues, dangereuses (et coûteuses)

• Limites géologiques :

- > Temps de ré-exposition du claste étudié n'est pas connu
- ➢ Enfouissement pas assez profond → production de nucléides dépasse la décroissance

Préparation des échantillons

• Concassage, broyage, tamisage, tri magnétique

Attaques acides : 1/3 HCl, 2/3 H₂ SIF₆ puis mélange (HF - HNO₃) à 1% et enfin attaques séquentielles à l'HF 40%

• Chimie

Préparation et mesures

• Cathodage

Carrousel d'analyses et cathodes

• Mesures à Aix-en-Provence sur le spectromètre de masse ASTER

Traitement des résultats

 La concentration en ¹⁰Be ou ²⁶Al d'un échantillon est obtenue via la mesure des rapports (¹⁰Be/⁹Be)_{échantillon} ou (²⁶Al/²⁷Al)_{échantillon}

CRPG

24 24

•
$${}^{9}\text{Be} = \frac{\text{m}_{\text{spike}} \times \text{C}_{\text{spike}} \times \text{N}_{\text{A}}}{\text{M}_{9}}$$

• D'où ¹⁰Be =
$$\left[\left(\frac{{}^{10}Be}{{}^{9}Be}\right)_{\text{échantillon}} - \left(\frac{{}^{10}Be}{{}^{9}Be}\right)_{\text{blanc}}\right] \times \frac{{}^{9}Be}{{}^{m}_{quartz}}$$

• Incertitude
$$\sigma_{10} = \sqrt{\left(\frac{\sigma_{ana}}{100}\right)^2 + \sigma_{BK} \times \left[\frac{\left(\frac{10_{Be}}{9_{Be}}\right)_{blanc} \div \left(\frac{10_{Be}}{9_{Be}}\right)_{échantillon}}{100}\right]^2}$$

• Finalement
$$t = \frac{1}{\lambda_{10} - \lambda_{26}} ln \frac{R(t)}{Ri}$$
 y $\sigma_t = \frac{1}{\lambda_{10} - \lambda_{26}} \times \frac{\sigma_{R(t)}}{R(t)}$. $R = rapport$

Relations failles/plis

(Burbank & Anderson, 2011)

Résultats de la paramétrisation

Y

Deuxième approche : quantification de la vitesse de progradation

ÉVOLUTION SPATIOTEMPORELLE DES BASSINS D'AVANT-PAYS

TECTONIQUE ET PROGRADATION DE LA FORMATION DE XIYU

SECTION DE YAKENG

D'après Puchol et al., in prep.

