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Abstract

The aim of this paper is to describe globally the behavior and preferences of het-

erogeneous agents. Our starting point is the global wealth of the economy, with a

given repartition of the wealth among investors, which is not necessarily Pareto opti-

mal. We propose a construction of an aggregate forward utility, market consistent, that

aggregates the marginal utility of the heterogeneous agents. This construction is based

on the aggregation of the pricing kernels of each investor. As an application we ana-

lyze the impact of the heterogeneity and of the global wealth market on the yield curve.

Keywords: Utility aggregation, heterogeneous preferences, market-consistent pro-

gressive utility, yield curve.

MSC 2010: 60H15, 91B16, 91B69.

1 Introduction

Most of general equilibrium macroeconomic models are simpli�ed by assuming that

consumers and/or �rms could be described as a representative agent. That is agents

may di�er and act di�erently, but at equilibrium the sum of their choices is mathemat-

ically equivalent to the decision of one individual or many identical individuals. The

way that preferences of multiple agents aggregate at equilibrium is a di�cult task, and
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even if each individual preference is modeled by a simple function, it is unlikely that

the aggregate utility could be reduced into a simple expression (unless all agents are

identical). Heterogeneity of investors is an unavoidable feature that should be taken

into account.

The literature on equilibrium risk sharing in complete markets with heterogeneous

risk preferences starts with the seminal paper by Dumas [Dum89], with two agents with

heterogeneous risk preferences. Chan and Kogan [CK02] consider an extension of the

Wang [Wan96] model, with a continuum of agents with heterogeneous risk aversions.

Yan [Yan10] and Jouini et al. [JN10] stress the impact of relative wealth �uctuations

on the equilibrium characteristics. Cvitanic, Jouini et al. [CJMN11] were the �rst to

propose an equilibrium model dealing with three types of heterogeneity: investors may

di�er in their beliefs, in their level of risk aversion and in their time-preference rate.

They identify the channels through which heterogeneity impacts the di�erent equilib-

rium characteristics. In their model, the aggregate parameters can be written as a risk

tolerance weighted average of the individual parameters.

In the meantime, the existence of an equilibrium is not always satis�ed and equilib-

rium are often stated and studied in a complete market setting. One key point for the

existence of equilibrium is that agents agree on the same state price density process

(also called pricing kernel), which is the same for all agents. However, if no equilibrium

exists, is it still possible to propose a representative utility aggregating the preferences

of all investors in the economy?

In this paper, we start from the weaker hypothesis of non arbitrage, and we con-

sider an incomplete market, with given exogenous market parameters. Our aim is to

propose a way of describing globally the behavior of heterogeneous agents investing

in this market, heterogeneous by their preferences, their weights or sizes. To do this

we construct a stochastic utility process corresponding to the aggregate wealth of the

economy and to the aggregate pricing kernels. We do not deal with agents interactions,

nor equilibrium, neither Pareto optimality: the repartition of the wealth among market

investors is given. The global wealth of the whole economy is naturally de�ned by the

aggregation of the wealth of all individuals. The problem consists then in deriving a

utility process for which this global wealth is optimal. This is related to a calibration

approach, and to do this the progressive framework is well adapted (see [KHM17a]).

Besides, the progressive approach has also many advantages. First of all, it allows

to model the change of the preferences of the investors along time. Indeed, in a dy-

namic and stochastic environment, the standard notion of utility function is not �exible

enough to help us to make good choices in the long run. The utility criterion must be

adaptative and adjusted to the information �ow. Musiela and Zariphopoulou were the
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�rst to suggest to use instead of the classic criterion the concept of progressive dynamic

utility, that gives an adaptive way to model possible changes over the time of individ-

ual preferences of an agent. Characterization of market-consistent progressive utility

has been then studied in a general setting in El Karoui and Mrad [KM13, KM16b].

Secondly, the theoretical study of progressive utility emphasizes the dependency of the

optimal processes with respect to their initial conditions. This dependency and some

non linearity e�ects are illustrated in the example of the valuation of the discount rates.

In the economic modeling, interest rates are determined endogenously at equilibrium,

mainly in an economy composed of identical investors (see for example the well known

Vasicek [Vas77] or Cox Ingersoll Ross [CIR85] models). In our framework, the market

is incomplete and in place of the traditional (complete) pricing rule, we price the zero-

coupon bonds using the indi�erence pricing rule, based on the marginal indi�erence

pricing. A numerical example is proposed based on an extension of the Vasicek model

of the yield curve.

The paper is organized as follow. First we de�ne in Section 2 the investment universe

and we recall the framework and the main properties of market consistent progressive

utilities, and the characterization of a consistent utility from its optimal primal and

dual processes. Section 3 states the main results about preferences aggregation: from

the characteristics of the investors, we construct an aggregate consistent progressive

utility process, by aggregating the wealth of each investors and their pricing kernels. To

illustrate this theory, we give the example of aggregating power utilities. In particular

we show that aggregating power utilities does not lead to a power utility, except if all

investors share the same risk aversion. Thus taking a power utility for the representative

agent, as it is done in many economic papers, assumes actually a very strong hypothesis

of homogeneity of the di�erent investors in the economy. Section 4 studies the impact

of the heterogeneity of investors, that induces dependency and non-linearity in the

valuation of �nancial assets. The particular example developed here consists in the

valuation of discount rates and the impact of the global wealth on this rates. Some

numerics illustrate the impact of the di�erent parameters on the yield curve. Technical

regularity conditions are postponed in the Appendix.

2 Investment universe and Consistent progressive utility.

2.1 The investment universe

Let us consider an incomplete Itô market, de�ned on a �ltered probability space

(Ω, (Ft),P) (satisfying usual condition of completion and right continuity) driven by
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a n-standard Brownian motion W . As usual, the market is characterized by some

exogenous progressive processes: the short rate (rt) and a n-dimensional risk premium

(ηt), satisfying the integrability condition
∫ T

0 (rs + |ηs|2)ds < ∞ for any T . The agent

may invest in this �nancial market. To be short, we give the mathematical de�nition of

the class of admissible strategies1 (κt), without specifying the risky assets. The incom-

pleteness of the market is expressed by restrictions on the risky portfolios κt constrained

to live in a given progressive vector space Rt. To �x the idea, if the incompleteness

follows only from the fact that the number of assets is less than the dimension n of the

Brownian motion, then typically Rt = σt(Rn). For an Itô market, good references are

Karatzas, Lehoczky, Shreve [KLS87] or the book of Karatzas and Shreve [KS01], and

in a more general context Kramkov, Schachermayer [KS03].

To avoid technicalities, we assume throughout the paper that all the processes satisfy

the necessary (progressive) measurability and integrability conditions such that the

following formal manipulations and statements are meaningful. The following short

notations will be used extensively. Let R be a vector subspace of Rn. For any x ∈ Rn,
xR is the orthogonal projection of the vector x onto R and x⊥ is the orthogonal pro-

jection onto R⊥.

De�nition 2.1 (Admissible portfolio). (i) The self-�nancing dynamics of a wealth

process with risky portfolio κ, starting from the initial wealth x > 0, is given by

dXκ
t = Xκ

t [rtdt+ κt(dWt + ηtdt)], κt ∈ Rt, and Xκ
0 = x (2.1)

where κ is a progressive n-dimensional vector measuring the volatility vector of the

wealth Xκ, such that
∫ T

0 ‖κt‖
2dt <∞, a.s..

(ii) A self-�nancing strategy (κt) is admissible if the portfolio κ lives in a given pro-

gressive family of vector spaces (Rt) a.s..
(iii) The set of the wealth processes with admissible (κt) (called admissible wealth pro-

cesses) starting from the initial wealth x is denoted by X (x), and X when the initial

wealth is not speci�ed.

The existence of a risk premium η formulates the absence of arbitrage opportunity.

Since from (2.1), the impact of the risk premium on the wealth dynamics only appears

through the term κt.ηt for κt ∈ Rt, there is a "minimal" risk premium (ηRt ), the

projection of ηt on the space Rt (κt.ηt = κt.η
R
t ), to which we refer in the sequel. In the

following de�nition, we are interested in the class of the so-called state price density

processes Y ν (taking into account the discount factor) which are also called the pricing

kernels.

1κt = σtπt with π being the fraction of wealth invested in the risky assets, and σ being the volatility

process.
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De�nition 2.2 (State price density process). A positive Itô semimartingale Y ν is called

an admissible state price density process if for any admissible wealth process Xκ ∈X ,

Xκ
t Y

ν
t is a local martingale. (2.2)

The simplest example of such process is the market state price process Y 0 (ν = 0, Y 0
0 =

1). In particular (Xκ
t Y

0
t ) is a local martingale, whose volatility (κt−ηRt ) belongs to Rt.

The martingale property (2.2) can be then expressed in terms of the ratio (Lνt = Y ν
t /Y

0
t )

as (Xκ
t Y

0
t L

ν
t ) is a local martingale or equivalently (Lνt ) is a local exponential martingale

whose volatility belongs to R⊥t .

Corollary 2.3. Denote Y (y) the convex family of all admissible state density processes

Y ν(y) issued from y, and Y the set of all Y (y). Any Y ν(y) is the product of the market

state price process Y 0 by an exponential martingale Lν(y) whose volatility ν belongs to

R⊥. . The di�erential decomposition of these three processes is
dY 0

t = Y 0
t [−rt dt− ηRt .dWt], Y 0

0 = 1

dLνt = Lνt [νt.dWt], νt ∈ R⊥t Lν0 = y

dY ν
t = Y ν

t [−rtdt+ (νt − ηRt ).dWt], ν ∈ R⊥t Y ν
0 = y.

(2.3)

Interesting discussions on the links between the state price density processes and the

admissible market numeraire 1/Y 0
t , also called GOP (growth optimal portfolio) can be

found in Geman, El Karoui, Rochet [KGR95], in Heath, Platen book [PH06], and in

Filipovic, Platen [FP09]. Besides, the state price density processes are also called "pric-

ing kernels" since they are useful for evaluating contingent claims under the historical

probability measure P. Not surprisingly, we will focus on them in the application of

Section 4 about the valuation of zero-coupon bond and the modeling of the yield curve.

2.2 Consistent progressive utility and their characteristics

The preferences of the agents investing in the �nancial market are modeled by consistent

progressive utility. The sub-cone of admissible wealth processes X , describing the

�nancial landscape, is considered in this forward setting as a family of test processes. As

in statistical learning, the utility criteria are dynamically adjusted to this given family

of test processes, also called the learning set. The time-coherence is then obtained from

a dynamic decision criterion adjusted progressively over the time to this set X .

More precisely, a progressive utility U is de�ned as a family of càdlàg adapted pro-

cesses (U(t, x), x ∈ R+) such that P.a.s., for every t ≥ 0, the functions x ∈ R+ 7→
U(t, x, ω) are standard utility functions. As usual, a utility function u is a strictly

concave, strictly increasing, and non-negative function de�ned on R+, with continu-

ous marginal utility the derivative ux, satisfying the Inada conditions lim
x 7→∞

ux(x) = 0
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and lim
x 7→0

ux(x) = ∞. The risk aversion coe�cient RA(u) is measured by the ratio

RA(u)(x) = −uxx(x)/ux(x) and the relative risk aversion by Rr
A(u)(x) = xRA(u)(x).

The asymptotic elasticity EA(u)(x) = lim sup
x 7→∞

xux(x)/u(x) is a key parameter in the

optimization problem (see Kramkov [KS99]). As usual, the dual problem is based on the

Fenchel-Legendre convex conjugate transformation ũ(y) of a utility function u, where ũ

satis�es ũ(y) = supx>0

(
u(x)− yx). In particular, ũ(y) ≥ u(x)− yx and the maximum

is attained at ux(x) = y. Under Inada conditions, ũ is twice continuously di�eren-

tiable, strictly convex, strictly decreasing, with ũ(0+) = u(+∞), ũ(+∞) = u(0+), a.s..

Moreover, the marginal utility ux is the inverse of the opposite of the marginal con-

jugate utility ũy; that is u
−1
x (y) = −ũy(y); ũ(y) = u

(
− ũ(y)

)
+ ũy(y) y, and u(x) =

ũ
(
ux(x)

)
+ xux(x).

Throughout the paper, we adopt the convention of small letters for deterministic utili-

ties and capital letters for stochastic utilities.

2.2.1 Characteristics of the consistent progressive utility

The progressive utilities are adjusted to the learning set X . The satisfaction provided

by a test process Xκ ∈X is measured by the dynamic criterion (U(t,Xκ
t )). Since X is

a learning set, there is no satisfaction to invest in the set X , in other words in mean the

future is less preferable than the present. From the mathematical point of view, this is

equivalent to the supermartingale property of the dynamic preference process (U(t,Xκ
t )).

Moreover, to ensure that the stochastic utility (U(t, x)) is optimally adjusted, we make

the additional assumption that the previous supermartingale constraint is binded by

some optimal process κ∗ whose preference criterion (U(t,Xκ∗
t )) is a martingale.

De�nition 2.4 (Consistent progressive utility). Let U be a progressive utility with

learning set X .

(i) The utility U is said to be X -consistent, if for any admissible test process Xκ ∈X ,

the preference process (U(t,Xκ
t )) is a non-negative supermartingale.

(ii) The consistent utility U is said to be X -strongly consistent if there exists an

optimal process X∗ := Xκ∗ ∈ X , with κ∗t ∈ Rt, binding the constraint, in the sense

that the optimal preference process (U(t,X∗t )) is a martingale.

The value function (U(t, x)) of the classical optimization problem is an example of

strongly X -consistent utility, de�ned from its terminal condition U(TH , x) = u(x) (see

[KHM17a] for a general discussion between the forward and the backward viewpoints

of utility functions).

The consistency property of the progressive utility U has a natural equivalent for dual

progressive utility, as stated in the following proposition (see [KM13] for the proof).
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Proposition 2.5. U is a consistent progressive utility with the class X if and only

if its Fenchel transform Ũ is consistent with the class Y in the sense that Ũ(t, Yt) is

a submartingale for any Y ∈ Y, and there exists some Y ∗ ∈ Y (called dual optimal

process) such that Ũ(t, Y ∗t ) is a martingale. Moreover, the two optimal processes are

related by the main identity Ux(t,X∗t (x)) = Y ∗t (ux(x)).

Rogers provides in [Rog03] a uni�ed (and very simple) approach to get very quickly

a simple heuristic of the main identity Ux(t,X∗t (x)) = Y ∗t (ux(x)), that will be at the

cornerstone of this paper.

Local characteristics of consistent forward utility

The "global" supermartingale property implied by the consistency condition may be

transfered into local conditions on the di�erential characteristics of the utility process

U. El Karoui and Mrad [KM13] obtained a non linear HJB-SPDE under the gen-

eral assumption that the utility random �eld U is a "regular" Itô random �eld with

di�erential decomposition,

dU(t, x) = β(t, x)dt+ γ(t, x).dWt, (2.4)

where β(t, x) is the drift random �eld and γ(t, x) is the multivariate di�usion random

�eld. The regularity assumption recalled in the Appendix, allows in particular to use

the Itô-Ventzel formula and to show that the marginal utility (Ux(t, x)) is also an Itô

random �eld with local characteristics (βx(t, x), γx(t, x)). We give the main result about

the consistency characterization through a HJB contraint:

Theorem 2.6 (Consistency). Let U be a "regular utility" system and (β, γ) its local

characteristics. The utility random �eld U is strongly consistent with the family of test

processes X = {Xκ, |κ ∈ R} if and only if (a) and (b) holds :

(i) a) The drift random �eld β satis�es the HJB-constraint, dP× dt.a.s.
β(t, x) = −Ux(t, x)rtx− 1

2 supσ∈R

{
Uxx(t, x)

(
‖σt‖2 + 2σt.

(Ux(t,x)ηRt +γx(t,x)
Uxx(t,x)

))}
.

= −Ux(t, x)xrt + 1
2Uxx(t,x)‖Ux(t, x)ηRt + γRx (t, x))‖2.

= −Ux(t, x)xrt + 1
2Uxx(t, x)‖σ∗(t, x))‖2.

(2.5)

The quantity γRx (t,x)
Ux(t,x) can be interpreted as an "utility risk premium".

b) The stochastic di�erential equation SDER(σ∗) dX∗t = rtX
∗
t dt+ σ∗(t,X∗t )(dWt + ηRt dt),

σ∗(t, x) = − Ux(t,x)
Uxx(t,x)

(
ηRt + γRx (t,x)

Ux(t,x)

)
= xκ∗(t, x)

(2.6)

admits a strong solution X∗, which is an optimal portfolio in the preference sense.
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(ii) In addition, the positive process Ux(t,X∗t (x)) is the optimal dual state price

process Y ∗t (ux(x)), solution of the SDE⊥(ϑ∗,⊥) issued from y = ux(x) dY ∗t = −rtY ∗t dt+
(
ϑ∗,⊥(t, Y ∗t )− ηRt Y ∗t

)
.dWt,

ϑ∗,⊥(t, y) = γ⊥x (t, U−1
x (t, y)) = yν∗,⊥(t, y).

(2.7)

The regularity assumptions on U recalled in the Appendix imply that the coe�cients

of the SDEs (2.6) and (2.7) are regular enough to ensure that X∗ and Y ∗ are monotonic

(increasing) with respect to their respective initial condition x and y with range [0,∞]

(see [KM13]).

2.2.2 Consistent power utility and separability

Power utilities with constant relative risk aversion θ ∈]0, 1[, u(θ)(x) = x1−θ

1−θ are the

standard framework in the economic literature, useful for its simplicity and the easy

interpretation of the parameters. In particular, the parameter θ is the relative risk

aversion coe�cient Rr
A(u(θ))(x) = −xu(θ)

xx (x)/u
(θ)
x (x) = θ.

Consistent progressive power utilities U (θ)(t, x) are the product of their initial condi-

tion u(θ)(x) by a coe�cient Z
(θ)
t . Despite their stochastic structure, their relative risk

aversion coe�cients are still constants, Rr
A(U (θ))(t, x) = Rr

A(u)(x) = θ.

The role of the stochastic process Z
(θ)
t is to guarantee the market consistency of dy-

namics power utility. Since u
(θ)
x (1) = 1, the process Z

(θ)
t , we have Z

(θ)
t = U

(θ)
x (t, 1).

Since U (θ) = Z(θ)
. u(θ), its local characteristics (β(θ), γ(θ)) are proportional to u(θ),

with β(θ)(t, x) = µ
(θ)
t u(θ)(x) and γ(θ)(t, x) = Z

(θ)
t δ

(θ)
t u(θ)(x),

(
µ

(θ)
t , Z

(θ)
t δ

(θ)
t

)
being the

stochastic parameters of the semimartingale Z(θ). Theorem 2.6 characterizes the opti-

mal processes of power progressive utilities.

Proposition 2.7. Let
(
U (θ)(t, x) = Z

(θ)
t u(θ)(x)

)
be a power consistent progressive

utility, (Z
(θ)
t ) being a positive semimartingale with parameters

(
µ

(θ)
t , Z

(θ)
t δ

(θ)
t

)
.

(i) The optimal processes X
(∗,θ)
t (x) and Y

(∗,θ)
t (y) are linear with respect to their initial

conditions, X(∗,θ)(x) = xX̄(∗,θ) and Y (∗,θ)(x) = yȲ (∗,θ), with dynamics dX̄
(∗,θ)
t = X̄

(∗,θ)
t

[
rt + 1

θ (ηRt + δ
(θ),R
t ).(dWt + ηRt dt)

]
,

dȲ
(∗,θ)
t = Ȳ

(∗,θ)
t

[
− rtdt+ (δ

(θ),⊥
t − ηRt ).dWt

]
.

(2.8)

The coe�cient δ
(θ),R
t describes how the stochasticity of the utility in�uences the invest-

ment strategy κ
(∗,θ)
t = 1

θ (ηRt + δ
(θ),R
t ).

(ii) The drift of the process (Z
(θ)
t ) is not free, since the consistency condition (equivalent

to the HJB constraint) implies that

− Z
(θ)
t =

[
X̄

(∗,θ)
t

]θ
Ȳ

(∗,θ)
t , and
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− µ
(θ)
t = −(1− θ)Z(θ)

t

(
rt + 1

2θ‖η
R
t + δ

(θ),R
t ‖2

)
.

The consistent power utilities are completely speci�ed by the volatility (δ
(θ)
t ) of the dy-

namics coe�cient Z
(θ)
t .

Proof. (i) By Equation (2.6), the volatility of the optimal processX
(∗,θ)
t (x) is linear with

respect to the initial wealth x, σ(∗,θ)(t, x) = x
θ (ηRt +δ

(θ),R
t ). Since the drift is also linear,

the optimal process is linear with respect to the initial wealth, X(∗,θ)(x) = xX̄(∗,θ)

where the dynamics of X̄(∗,θ) is given by Equation (2.8). The dual process Y
(∗,θ)
t (y) is

also linear with respect to y, and by Equation (2.7), ϑ(∗,θ)(t, y) = y δ
(θ),⊥
t . Then, the

dynamic of (Ȳ
(∗,θ)
t ) is given by Equation (2.8).

(ii) By the optimality relation, U
(θ)
x (t,X(∗,θ)(t, x)) = ux(x)Y

(∗,θ)
t . This property is

equivalent to the HJB constraint on the drift β(θ)(t, x) = µ
(θ)
t u(θ)(x) of the power

utility. A consequence is that Z
(θ)
t =

[
X̄

(∗,θ)
t

]θ
Ȳ

(∗,θ)
t . The linearity of the di�erent

processes yields

dZ
(θ)
t = Z

(θ)
t

[
−
(
(1− θ)rt +

1− θ
2θ
‖ηRt + δ

(θ),R
t ‖2

)
dt+ δ

(θ)
t .dWt

]
.

The drift of Z(θ) depends only of the market parameters (rt, η
R
t ) and its volatility

δ
(θ)
t .

Remark 2.1. Power utilities have also the remarkable property to be the only consis-

tent separable progressive utilities U(t, x) = Zt u(x). The HJB equation (2.5) leads to a

contradiction as soon as the functions φ1 = xux/u and φ2 = xuxx/ux are not constant,

since the HJB constraint on the drift β(t, x) implies that the time function ρZt satis�es

ρZt = −φ1(x) rt + φ1(x)/φ2(x)‖ηRt + δZ,Rt ‖2 for any x. An exception is given by the

case where δZ,Rt = −ηRt and rt = 0. In this case, Zt is an exponential martingale with

volatility ηRt multiplied by an orthogonal exponential martingale with volatility δZ,⊥t .

2.3 Reverse Problem

One remarkable feature proved in [KM13] is that properties given in Theorem 2.6

are in fact necessary and su�cient conditions to reconstruct a consistent progres-

sive utility from two optimal processes X∗ et Y ∗, when theses processes are mono-

tonic with respect to their initial condition. This construction relies on the identity

Ux(t,X∗t (x)) = Y ∗t (ux(x)), using monotonicity and regularity of optimal random �elds,

and some integrability condition near zero of the initial utility.

Let us consider two increasing monotonic processes X∗. (x) ∈X (x) and Y ∗. (y) ∈ Y (y),

strong regular solutions of the two SDEs{
dX∗t = rtX

∗
t dt+ σ∗(t,X∗t )(dWt + ηRt )dt, X∗0 = x,

dY ∗t = −rtY ∗t dt+
(
ϑ∗,⊥(t, Y ∗t )− ηRt Y ∗t

)
.dWt, Y ∗0 = y.

(2.9)

March 1, 2018 9/31



The dynamics of X∗ ∈ X is uniquely determined by its di�usion coe�cient σ∗ ∈ R;
the corresponding SDE is denoted SDER(σ∗). Similarly the dynamics of Y ∗ ∈ Y is

uniquely determined by its di�usion coe�cient ϑ∗,⊥ ∈ R⊥; the corresponding SDE is

denoted SDE⊥(ϑ∗,⊥).

We now give su�cient conditions on the coe�cients σ∗(t, x) and ϑ∗,⊥(t, y) which en-

sure on the one hand the monotonicity of the solutions of Equations (2.9) and the

semimartingale decomposition of the random �eld X ∗ the inverse �ow of X∗; and on

the other hand that the random �eld V de�ned by V (t, x) := Y ∗t
(
ux
(
X ∗(t, x)

))
is the

derivative of a progressive utility U. The su�cient regularity conditions we state below

are proved in [KM13].

2.3.1 Technical results

In this presentation we clearly favor the SDE point of view for the processes X∗ and

Y ∗. This allows us to use the existing results in SDE's theory and provide su�cient

regularity conditions (K0,1
b ∩K

3,δ
loc)

2 on the coe�cients to ensure the existence of regular

SDE solutions. Global Lipschitz condition (K0,1
b ) is enough to obtain strong and mono-

tonic solutions whereas the regularity is ensured by the local conditions (Km,δloc ). But

this point of view is not necessary as soon as one starts from non-explosive monotonic

solutions X∗ and Y ∗. We �rst recall the present version of some results in [KM13].

Proposition 2.8 (Regularity). Let us consider the two stochastic equations SDER(σ∗)

and SDE⊥(ϑ∗,⊥) de�ned in (2.9) and assume

σ∗ ∈ K0,1
b ∩ K

3,δ
loc, and ϑ∗,⊥ ∈ K0,1

b ∩ K
2,δ
loc for some δ ∈ (0, 1]. (2.10)

(i) Then, the di�erential equations SDE⊥(ϑ∗,⊥) and SDER(σ∗) admit two regular mono-

tonic solutions Y ∗ and X∗ with di�erent regularity.

− The solution Y ∗ belongs to K2,ε
loc, and its di�usion local characteristic ψ(., y) :=

ϑ∗,⊥(., Y ∗. (y)) is in K2,ε
loc for all ε ∈ [0, δ[.

− The solution X∗ belongs to K3,ε
loc and its di�usion local characteristics φ(., x) :=

σ∗(., X∗. (x)) is in K3,ε
loc for all ε ∈ [0, δ[.

(ii) The range of the maps x 7→ X∗(x) and y 7→ Y ∗(y) is ]0,+∞[. The inverse X ∗ of
X∗ is a semimartingale, unique monotonic solution of the stochastic PDE,{

dX ∗(t, x) = −X ∗x (t, x)
[
σ∗(t, x).(dWt + ηRt dt) + rt xdt] + L̂∗t,x(X )dt

L̂∗t,x := 1
2∂x(‖σ∗(t, x)‖2∂x).

(2.11)

2See the Appendix for the de�nition of this classes of regularity.
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For integrability reasons, we need to control the speed of convergence of X∗ and Y ∗

at 0 and ∞. The following results are standard under Lipschitz conditions, satis�ed in

our setting, see [Kun97].

Corollary 2.9. The asymptotic behaviors of X∗ and Y ∗ are similar and well-controlled

in time. The short notation max(ZT (z)) = sup0≤t≤T Z(t, z) is used in the sequel. More

precisely, if Z is one of the two processes X∗ and Y ∗, for any T almost surely, for any

ε ∈ (0, 1), uniformly on [0, T ], the asymptotic limits in ∞ or 0 are, limz→+∞
(
z−(1+ε) max(ZT (z))

)
= 0 and limz→+∞

(
z−ε max(ZT (z))

)
=∞,

limz→0

(
z−ε max(ZT (z))

)
= 0 and limz→0

(
z−(1+ε) max(ZT (z))

)
=∞.

(2.12)

Sometimes, it is more interesting to consider SDE's solutions as random �elds X∗(t, x)

or Y ∗(t, y) with local characteristics φ∗(t, x) = σ∗(t,X∗t (x)) or ψ∗(t, y) = ϑ∗,⊥(t, Y ∗t (y)).

With the random �elds point of view, non negativity and monotonicity are not so easy

to prove.

Corollary 2.10. Let (X∗t (x)) and (Y ∗t (y)) be two monotonic random �elds,{
dX∗t (x) = rtX

∗
t (x)dt+ φ∗(t, x)(dWt + ηRt ), X∗0 (x) = x, φ∗(t, x) ∈ R

dY ∗t (y) = −rtY ∗t (y)dt+
(
ψ∗(t, y)− ηRt Y ∗t (y)

)
.dWt, Y ∗0 (y) = y, ψ∗(t, y) ∈ R⊥

(2.13)

and assume that φ∗ ∈ K3,δ
loc, and ψ

∗ ∈ K2,δ
loc for δ ∈ (0, 1]. Then, the random �elds X∗

and Y ∗ have the same properties as the processes of Proposition 2.8.

Proof. Using Theorem 5.1 in the Appendix, one deduces that X∗(x) ∈ K3,ε
loc and

Y ∗(y) ∈ K2,ε
loc. Then one show exactly as in [KM13] that the inverse �ow X ∗ is a

regular semimartingale.

2.3.2 Main result concerning the reverse problem

Let us consider two random �elds, X∗ and Y ∗, solution of the two SDEs (2.9) with

coe�cients satisfying the assumptions (2.10) of Proposition 2.8. Their properties are

recalled in Proposition 2.8 and in Corollary 2.9. As denoted previously X ∗ is the inverse
process of X∗ and u is the initial utility.

The main result on the construction of consistent forward utility is obtained in two

stages: the �rst concerns the properties of the decreasing random �eld (Ux(t, x) =

Y ∗t (ux(X ∗t (x)))) and of its primitive as semimartingales; the second concerns the X -

consistency of this forward utility and the optimality of the process X∗.
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Theorem 2.11 (Utility Characterization). Let us assume that the given initial util-

ity u is of class C3 and ux(x) ∼ x−ζ (ζ < 1) in the neighborhood of x = 0. Under

the assumptions and notations of Proposition 2.8, (X∗t (x)) and (Y ∗t (y)) are the unique

monotonic solutions of the SDEs (2.9). Then

(i) The random �eld de�ned by V ∗(t, x) = Y ∗t (ux(X ∗t (x))) is a semimartingale, in-

tegrable in the neighborhood of x = 0, which is the derivative of a progressive utility

U(t, x) (V ∗(t, x) = Ux(t, x)) with regular local characteristics (β(t, x), γ(t, x)) with
γRx (t, x) = −σ∗(t, x)V ∗x (t, x)− V ∗(t, x)ηRt

γ⊥x (t, x) = ϑ∗,⊥(t, V ∗(t, x))

β(t, x) = −V ∗(t, x)x rt + 1
2V
∗
x (t, x)‖σ∗(t, x)‖2.

(2.14)

(ii) By Theorem 2.6, U is strongly consistent with the class X , that is for any X ∈X ,

U(t,Xt) is a supermartingale and martingale for X∗t .

This result is proved in [KM13] in a SDE point of view, therefore we do not reproduce it

here. A similar proof, this time in a random �eld point of view, is given in the context

of aggregation in Theorem 3.3.

The system (2.14) can be inverted to express the characteristics of optimal processes

in terms of progressive utility characteristics.

Corollary 2.12. Since X∗ and Y ∗ are optimal, their characteristics (φ∗(t, x)) and

(ψ∗(t, y)) are explicit functionals of the progressive utility U and its derivatives as well

as of its volatility vectors γx along the optimal wealth process. So,

φ∗(t, x) =
∂x[γR(t,X∗t (x)) + U(t,X∗t (x))ηRt

]
∂x[Ux(t,X∗t (x)))]

and ψ∗(t, ux(x)) = γ⊥x (t,X∗t (x)). (2.15)

3 Aggregating multi-agents preferences

Consider a group of agents who invest in the �nancial market according to their own

preferences. In the following, our aim is to characterize a representative agent and his

representative preference for this group. The main question is: is it possible to describe

globally the behavior of all the agents by a single utility stochastic process? How could

we de�ne an aggregate utility taking into account the preferences and the sizes/weights

of each agent? If all agents have the same characteristics/behaviors, then the answer is

obvious. Otherwise, we classify the agents into classes with characteristics represented

by the pair (Uθ,m(dθ)): a consistent progressive utility and a weight.

This framework can be applied at di�erent granularity levels. For example, one may

aggregate each agent individually, that is (Uθ,m(dθ)) corresponds to the characteristics

of one single agent. Or one can aggregate di�erent class of agents having the same

March 1, 2018 12/31



preferences and the same strategy inside the class (for example θ may be interpreted as

the risk aversion parameter of the class and m(dθ) the proportion of this class among

the whole). One may also aggregate di�erent classes of agents who are in the same

sector but who do not necessarily share the same characteristics, and whose individual

characteristics are not always observable, so that one can not proceed by aggregation

of each agent individually. One alternative is then to rely on a representative utility

Uθ of the sector, that is computed beforehand, using eventually di�erent aggregation

rules. Then the only information at disposal to aggregate the di�erent sectors consists

in this representative utility Uθ of each sector and m(dθ) the relative size/weight of

the sector in the whole economy.

3.1 Aggregation of the marginal utilities

3.1.1 Aggregation of the initial utilities

The global initial wealth x of the economy is the sum of the individual wealths: for each

θ, the θ-agent/class starts (at time 0) with a proportion αθ of the initial global wealth

x so that x =
∫
αθx m(dθ). At time 0, the individual preferences uθ are "dilated" into

the utilities 1
αθ
uθ(αθx), and the global utility is the function u(x),

u(x) =

∫
1

αθ
uθ(αθx) m(dθ),

∫
αθm(dθ) = 1. (3.1)

Technical remark. The measure m(dθ) can be a discrete �nite measure, in this case

di�erentiability under the integral sign is straightforward. One may also consider measures

with density with respect to the Lebesgue measure. Then to ensure the 3 times-di�erentiability

under the integral sign, locally-domination conditions are necessary: we assume that for any

interval I ⊂ R∗+ there exist integrable functions φIk(x, θ) such that |∂kxuθ(x)| ≤ φIk(x, θ), ∀x ∈ I
and for k = 1, 2, 3. In all cases, we can pass to the limits and show lim

x→+∞
ux(x) = 0 and

lim
x→0

ux(x) = +∞. Note that for k = 1, since uθx is by de�nition decreasing, it follows that for

any x0 ∈ R∗+, 0 ≤ uθx(x) ≤ uθx(x0),∀x ≥ x0, thus it su�ces to take φ
[x0,+∞[
k (θ) = uθx(x0) and

assume that it is θ-integrable.

Then, from (3.1), the marginal utility ux of the global utility is the sum of the marginal

utilities, in the sense that

ux(x) =

∫
uθx(αθx) m(dθ). (3.2)

The same kind of representation holds also for the inverse function of ux, −ũy, using
the correspondence between the derivatives of the utility and its dual

y =

∫
yθ(y) m(dθ), yθ(y) = uθx(−αθũy(y)), (3.3)
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which leads to the remarkable feature that for any θ, ũy(y) = 1
αθ
ũθy(y

θ(y)); this relation

is the dual version of the αθ-repartition of the initial wealth, x = 1
αθ

(αθx).

Observe that the relative risk aversion coe�cient Rr
A(u) is a "probabilistic" mixture of

the di�erent risk aversion coe�cients,

Rr
A(u)(x) =

−xuxx(x)

ux(x)
=

∫
Rr

A(uθ)(αθx)
uθx(αθx)∫

uθx(αθx) m(dθ)
m(dθ)

bounded if the family of individual risk aversion coe�cients Rr
A(uθ)(αθx) is uniformly

bounded in θ.

3.1.2 Aggregation of the optimal processes

Up to the time t, the individuals invest optimally in a portfolio X∗,θ(αθx) with pref-

erences characterized by their consistent progressive utility Uθ. It is then natural to

de�ne the global wealth in the economy at any time t, (X∗t ), as the weighted sum of

the individual wealths (X∗,θt ),

X∗t (x) :=

∫
X∗,θt (αθx)m(dθ). (3.4)

Motivated by the construction of the initial utility and of its derivative ux(x) =∫
uθx(αθx) m(dθ) =

∫
yθ(ux(x)) m(dθ), a natural choice is to de�ne Y ∗t (ux(x)) as a

mixture of individual state price processes, which is still an admissible state price pro-

cess issued from ux(x)

Y ∗t (ux(x)) :=

∫
Y ∗,θt (uθx(αθx))m(dθ) =

∫
Y ∗,θt (yθ(ux(x)))m(dθ). (3.5)

Now, the problem is formulated as a reverse problem (Section 2.3) based on the increas-

ing aggregate processes, X∗t (x) and Y ∗t (y). The last di�culty is to study the regularity

of those aggregate processes X∗t (x) and Y ∗t (y) from the regularity of the individual

processes X∗,θt (x) and Y ∗,θt (y). Notice that the aggregation of processes is easier when

they are considered as random �elds rather as solutions of SDEs. Also, we use the

representation of optimal processes given in Corollary 2.10 for the processes X∗,θ, Y ∗,θ,{
dX∗,θt (x) = rtX

∗,θ
t (x)dt+ φ∗,θ(t, x)(dWt + ηRt ), X∗,θ0 (x) = x, φ∗(t, x) ∈ R

dY ∗,θt (y) = −rtY ∗,θt (y)dt+
(
ψ∗,θ(t, y)− ηRt Y

∗,θ
t (y)

)
.dWt, Y ∗,θ0 (y) = y, ψ∗(t, y) ∈ R⊥.

Any linear combination of portfolios X∗,θt (αθx) is an admissible portfolio issued from

the linear combination of their initial wealth αθx. The same property is still true for

continuous combination (under some integrability conditions). Then, the aggregate

wealth process X∗. (x) =
∫
X∗,θ. (αθx)m(dθ) is an admissible portfolio in X (x) and{

dX∗t (x) = rtX
∗
t (x)dt+ φ∗(t, x).(dWt + ηRt dt)

φ∗(t, x) :=
∫
φ∗,θ(t, αθx))m(dθ).

(3.6)
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By similar arguments, the aggregate dual process Y ∗ is an admissible one, with more

complex dynamics, because of its dependence in ux(x){
dY ∗t (ux(x)) = −rtY ∗t (ux(x))dt+

(
ψ∗(t, ux(x))− Y ∗t (ux(x))ηRt

)
.dWt.

ψ∗(t, ux(x)) :=
∫
ψ∗,θ(t, yθx(ux(x)))m(dθ).

Since for any θ, X∗,θ and Y ∗,θ are optimal, their characteristics are given in terms of

the volatility vectors γθ of Uθ, which yields
φ∗(t, x) =

∫ ( U θx
U θxx

(γθ,Rx
U θx

+ ηRt
))

(t,X∗,θt (αθx))m(dθ)

ψ∗(t, ux(x)) =

∫
γθ,⊥x (t,X∗,θt (αθx))m(dθ).

3.2 The aggregate utility

The goal from now is to show the existence of dynamic utility U generating X∗ and

Y ∗ as optimal processes. As in the previous section, if U exists, then necessarily the

master identity Ux(t,X∗t (x)) = Y ∗t (ux(x)) has to be satis�ed. The problem has a simple

solution in the case of power utilities.

3.2.1 Aggregating power utilities

We come back to the standard example of power utilities and their aggregation, detailed

in Paragraph 2.2.2. We assume in this subsection that not only the initial utility

functions but all the progressive utilities to be aggregated are power utilities with

di�erent risk aversion coe�cient.

By de�nition the initial utility is a mixture of dilated power utilities

u(x) =

∫
1

α(θ)

(α(θ)x)1−θ

1− θ
m(dθ),

which is no longer a power utility. More generally, all utility processes U(θ) are power

utilities with constant relative risk aversion coe�cient θ (0 < θ < 1). As recalled in

Paragraph 2.2.2, U (θ)(t, x) = Z
(θ)
t

x1−θ

1−θ for some process Z(θ) and the optimal primal

and dual processes are linear with respect to their initial conditions.

X
∗,(θ)
t (x) = xX̄

∗,(θ)
t , Y

∗,(θ)
t (y) = yȲ

∗,(θ)
t , Z

(θ)
t = Ȳ

∗,(θ)
t (X̄

∗,(θ)
t )θ.

The characterization of the aggregate optimal processes is easy to obtain from the

de�nition, X∗t (x) = xX̄∗t , X̄∗t =
∫
α(θ)X̄

∗,(θ)
t m(dθ)

Y ∗t (ux(x)) =
∫

(α(θ)x)−θȲ
∗,(θ)
t m(dθ), ux(x) =

∫
(α(θ)x)−θm(dθ).

(3.7)
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Remark that whereas the aggregate wealth X∗ is a linear process with respect to its

initial value x, this not true anymore for the aggregate state price density process Y ∗.

The construction of a progressive utility with optimal processes (xX̄∗t , Y
∗
t (y)), based on

the main identity Ux(t, x) = Y ∗t (ux( x
X̄∗t

)), yields easily to the following characterization.

Proposition 3.1. The marginal utility Ux(t, x) is the deterministic aggregation of the

power marginal progressive utilities with random repartition of the optimal wealth,

Ux(t, x) =

∫
Ȳ
∗,(θ)
t

(α(θ)x

X̄∗t

)−θ
m(dθ) =

∫
U (θ)
x

(
t,
α(θ)X̄

∗,(θ)
t

X̄∗t
x
)
m(dθ). (3.8)

The ratio Ā
(θ)
t =

α(θ)X̄
∗,(θ)
t

X̄∗t
is the stochastic ratio of the optimal wealths at time t.

As for the Pareto utility in [ILMM13], agreggating power utilities provides a family

of consistent progressive utilities which is more �exible, while bene�ting from some

interesting features of power utilities (such as tractability).

Aggregating general consistent utilities is not as straightforward as for power utilities,

and it involves the "reverse problem" techniques detailed previously in Section 2.3.

3.2.2 The general case

The general case will be considered as a reverse problem. Following the results in

Section 2.3, some preliminary technical results are needed.

Lemma 3.2. The optimal processes X∗,θ and Y ∗,θ are assumed to satisfy the regularity

conditions of Theorem 2.11, with the same δ for each θ and with Lipschitz constants

CX,θ and CY,θ satisfying
∫
CX,θm(dθ),

∫
CY,θm(dθ) < ∞. We also assume that for

any interval I ⊂ R∗+ there exist integrable functions φIk(x, θ) such that |∂kxuθ(x)| ≤
φIk(x, θ), ∀x ∈ I and for k = 1, 2, 3. Then,

(i) There exists a constant K, such that for any θ and any x, y > 0, E(X∗,θt (x)) ≤
CX,θKtx and E(Y ∗,θt (y)) ≤ CY,θKty. Consequently, the integrals (3.4) and (3.5) are

well de�ned.

(ii) The monotonic random �elds X∗, de�ned by (3.6), is ∈ K3,ε
loc for any ε ∈ [0, δ[ and

its inverse �ow X ∗ is a semimartingale. Moreover Y ∗ ∈ K2,ε
loc for any ε ∈ [0, δ[.

(iii) As uθx is of class C2(0,∞), ux ∈ C2(0,∞) and the marginal utility process Ux(t, x) =

Y ∗t (ux(X ∗t (x))) is a K2,ε
loc semimartingale for any ε ∈ [0, δ[.

Proof. (i) is a standard result, obtained from Burkholder-Davis-Gundy and the Jensen

inequalities, see [Kun97], Lemmas 4.5.3 and 4.5.5.

(ii) Combining Assumptions of this result with Theorem 5.3 leads to X∗,θ ∈ K3,ε
loc and

Y ∗,θ ∈ K2,ε
loc for any ε ∈ [0, δ[. So σ∗,θ(t,X∗,θ(x)) ∈ K3,ε

loc and ϑ∗,θ(t, Y ∗,θ(y)) ∈ K2,ε
loc.
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It follows that φ∗(t, x)(= σ∗(t,X∗t (x))) and ψ∗(t, y) (= ϑ∗(t, Y ∗t (y)) are respectively

in K3,ε
loc and K2,ε

loc. We then conclude as in Corollary 2.10. Statement (iii) becomes

obvious.

These regularity results allow us to consider the problem of consistency of the aggregate

utility as a reverse problem as in Theorem 2.11.

Theorem 3.3. Under Assumptions of Lemma 3.2, U de�ned by

U(t, x) =
∫ ∫ x

0 U
θ
x(t,X∗,θt (αθX ∗t (z)))dz m(dθ) is a consistent semimartingale progres-

sive utility. The optimal primal and dual processes are (X∗t (x)) and
(
Y ∗t (ux(x)) =

Ux(t,X∗t (x))
)
and
γRx (t, x) = −Ux(t, x)ηRt − Uxx(t, x)φ∗(t,X ∗(t, x)).

γ⊥x (t, x) = ψ∗(t, ux(X ∗(t, x))).

β(t, x) = −rtxUx(t, x) +
1

2
Uxx(t, x)||φ∗(t,X ∗(t, x))||2.

(3.9)

Since φ∗(t, x) = σ∗(t,X∗t (x)) and ψ∗(t, y) = ϑ∗(t, Y ∗t (y)), it is easy to check the equiv-

alence between the systems (3.9) and (2.14).

Proof. It is a consequence of Theorem 2.11, since X∗ and Y ∗ satis�es respectively the

SDE (2.6) and (2.7) and the regularity conditions are satis�ed. We produce here the

proof in this context of aggregation; the proof being still valid in the general setting of

Theorem 2.11. It relies on the identity Y ∗t (ux(x)) = Ux(t,X∗t (x)).

By statement (iii) of previous Lemma, the random �eld Ux is su�ciently regular to

apply Itô Ventzel's formula to compute the dynamics of Ux(t,X∗t (x)):

dUx(t,X∗t (x)) =
(
βx(t,X∗t (x)) +

1

2
Uxxx(t,X∗t (x))||φ∗(t, x)||2

)
+ Uxx(t,X∗t (x))(rtX

∗
t (x) + φ∗(t, x))ηRt ) + γxx(t,X∗t (x))φ∗(t, x)

)
dt

+
(
γx(t,X∗t (x)) + Uxx(t,X∗t (x))φ∗(t, x)

)
dWt.

(i) By identi�cation of the di�usion term with the one of

dY ∗t (ux(x)) = −rtY ∗t (ux(x))dt+
(
φ∗(t, ux(x))− Y ∗t (ux(x))ηRt

)
dWt

and by the fact that ψ∗(t, ux(x)) =
∫
ϑ∗,θ(t, Y ∗,θt (uθx(αθx))m(dθ) and ϑ∗,θ(t, Y ∗,θt (uθx(x)) =

γθ,⊥x (t,X∗,θt (x)) it follows that

γx(t, x) + Uxx(t, x)φ∗(t,X ∗(t, x)) = ψ∗(t, ux(X ∗(t, x)))− Ux(t, x)ηRt

or equivalently by projecting on R and R⊥,
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
γRx (t, x) = −Ux(t, x)ηRt − Uxx(t, x)φ∗(t,X ∗(t, x))

γ⊥x (t, x) = ψ∗(t, ux(X ∗(t, x))) =

∫
γθ,⊥x (t,X∗,θt (αθX ∗t (x)))m(dθ).

(ii) Identifying the drift term, it is also easy to prove thatU satis�es the HJB constraint

(2.5). Indeed, using the characterization of σ∗,

γxx(t, x)φ∗(t,X ∗(t, x)) = γRxx(t, x)φ∗(t,X ∗(t, x))

= ∂x
(
Uxx(t, x)φ∗(t,X ∗(t, x)) + Ux(t, x)ηRt

)
φ∗(t,X ∗(t, x)).

It follows, after arranging the terms and identifying with the drift term of dY ∗,θt (y)

βx(t, x) = ∂x
(
− rtxUx(t, x) +

1

2
Uxx(t, x)||φ∗(t,X ∗(t, x))||2

)
and integrating with respect to x gives the HJB constraint.

3.3 Particular case of a Pareto optimal allocation of the

initial wealth

In this work, given the wealth of each class xθ, we get the global wealth of the economy

as x =
∫
xθm(dθ). In other words, the αθ are imposed and given by αθ := xθ/x.

In the literature, the approach is rather the opposite: given the global wealth of the

economy x, the problem is to �nd the fair allocation of the wealth x between the

di�erent classes such that the allocation is Pareto optimal, that is there are no possible

alternative allocations whose realization would cause every class to gain. The Pareto

optimal allocation is determined by the initial wealths x∗,θ with
∫
x∗,θm(dθ) = x such

that u(x) =
∫
u(x∗,θ)m(dθ) = sup{

∫
u(xθ)m(dθ)|xθ ≥ 0 and

∫
xθm(dθ) = x}. One

important consequence of Pareto optimality is that the optimal pricing kernel Y ∗,θ is

the same for all agents. See for example the paper of Bank and Kramkov [BK15] that

aggregates utilities parameterized by Pareto weights, for a �nite number of investors,

or Mrad [KM16a] for a continuum of agents and a general mixture framework. In this

work, the initial repartition of the wealth is assumed to be given a priori, without

reference to any "optimal allocation". The αθ are �xed (at time 0) and correspond

to the proportion of the total wealth hold by the θ-class. Therefore the aggregate

utility U and the aggregate pricing kernel Y ∗ are not standard, but they are natural

candidate for aggregating di�erent points of view of several agents, in a context without

an equilibrium. It thus allows a richer class of pricing kernel that will add �exibility to

capture some �nancial features, such that the impact of the wealth on the valuation of

�nancial assets.

We choose to illustrate this methodology in measuring its impact on the yield curve.
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4 Application to the yield curve

Numerous economic issues involve the optimization of the aggregate utility of the econ-

omy. Besides, among these economic literature involving utility optimization, many

papers focus on long term issues. Therefore the use of stochastic utility is particularly

relevant in such modeling frameworks with long horizon. Besides, since the theoretical

study of progressive utility emphasizes the dependency of the processes with respect to

their initial conditions, this framework is also well adapted to study the dependency

and the non-linearity of macroeconomic processes with respect to the initial value of

economic indexes.

One particular example developed here consists in the valuation of long term interest

rates. Modeling accurately long term interest rates is a crucial challenge in many �nan-

cial topics, such as the �nancing of ecological project, or the pricing of longevity-linked

securities or any other investment with long term impact. In the economic setting,

the interest are determined endogenously at equilibrium, from the equilibrium opti-

mal pricing kernel (see for example Vasicek [Vas77], Cox Ingersoll Ross [CIR85], Björk

[Bjo12] and Piazzesi [Pia10]). The �nancial setting only assumes no arbitrage and with

an exogenous short term interest rate, in a framework of incomplete market.

4.1 Yield curve in incomplete market

In the context of the high illiquidity of the bond market for longer maturities, the

�nancial evaluation we consider is the marginal utility indi�erence pricing of zero-

coupon bond. The link with the economic discount rate given by the Ramsey rule (in

an equilibrium setting) is studied in El Karoui et al. [KHM14, KHM17b].

4.1.1 Utility indi�erence pricing

Themarginal utility indi�erence pricing at time t is not based on the "universal "market

state price density Y 0 (as in complete market), but on the optimal state price density

Y ∗. (y) of the progressive dual utility Ũ of U (Proposition 2.5). With this new point of

view, the price of some derivative ξT is not given by π0
0(ξT ) = E(Y 0

T ξT ), (Y 0
0 = 1), as

in a complete market but by π∗0(ξT )(y) = 1
yE(Y ∗T (y) ξT ), making the price depending

on the global wealth x of the economy via the correspondence ux(x) = y. The pricing

rule π0
0, that is independent of the wealth, will be called market pricing rule.

Dynamic marginal utility indifference pricing By de�nition, any state price

density (Y ∗t (y)) can be written as Y ∗t (y) = Y 0
t L
∗
t (y). All the dependencies on the wealth

x (or y = ux(x)) is supported by the exponential martingale L∗t (y), normalized by its

value at time 0, and denoted L∗0,t(y) := 1
yL
∗
t (y).
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The marginal utility pricing rule becomes the "market pricing" of some modi�ed pay-

o� π∗0(ξT )(y) = π0
0(L∗0,T (y)ξT ). The extension of the pricing rules to any date in the

future is straightforward, using the conditional expectation, and the relative state price

density Y ∗t,T (y) :=
Y ∗T (y)

Y ∗t (y) , so that

π0
t (ξT ) = E(Y 0

t,T ξT |Ft) and π∗t (ξT )(y) = E(Y ∗t,T (y) ξT |Ft) = π0
t (L
∗
t,T (y)ξT ).

Wealth sensitivity analysis By Corollary 2.2, the volatility of L∗0,t(y) is the regular

volatility random �eld υ∗,⊥t (y) := ν∗,⊥(t, Y ∗t (y)) = (Y ∗t (y))−1ϑ∗,θt (Y ∗t (y)) and

ln(L∗0,t(y)) =

∫ t

0
υ∗,⊥s (y).dWs −

1

2
‖υ∗,⊥s (y)‖2ds.

Its sensitivity in y is given by

∂yL
∗
0,t(y)

L∗0,t(y)
=

∫ t

0
∂yυ

∗,⊥
s (y).(dWs−υ∗,⊥s (y)ds) =

∫ t

0
∂yυ

∗,⊥
s (y).(dWs+ (ηRs −υ∗,⊥s (y))ds).

The second equality uses the orthogonality of the vectors υ∗,⊥s (y) and ηRs .

The remarkable property is that
∂yL∗0,t(y)

L∗0,t(y) is a martingale under the probability mea-

sure with density martingale Λ∗0,t(y) = exp(
∫ t

0 rsds)Y
∗

0,t(y) whose volatility is the Y ∗-

volatility (−υ∗,⊥s (y) + ηRs ) .

Marginal utility Bond curve Applying the previous theory to the zero-coupon

bond, that delivers one unit of cash at maturity T , we get the market bond price

B0
t (T ), as well as the indi�erence bond price B∗t (T, y) that depends on x by the initial

relation y = ux(x)

B0
t (T ) := E

(
Y 0
t,T |Ft

)
, and B∗t (T, y) := E

(
Y ∗t,T (y)|Ft

)
= E

(
Y 0
t,TL

∗
t,T (y)|Ft

)
. (4.1)

a) The sensitivity of the zero-coupon bonds with respect to their maturity is interpreted

in any yield market as a forward rate, that is the instantaneous short rate for an

operation starting in the future at time T . Then, we make the distinction between

market or indi�erence forward rate

f0
t (T ) := −∂T lnB0

t (T ), respectively, f∗t (T, y) := −∂T lnB∗t (T, y).

The yield curve at current date t is the function,

δ → R∗t (δ, y) := 1
δ

∫ t+δ
t f∗t (u, y)du = −1

δ lnB∗t (t+ δ).

b) The sensitivity of the bonds with respect to the initial wealth at the current date t

is

∂yB
∗
t (T, y) = π0

t (∂yL
∗
t,T (y)) = E(Y ∗t,T (y) ξt,T (y)|Ft) (4.2)
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where − ξt,T (y) =
∫ T
t ∂yυ

∗,⊥
s (y).(dWs + (ηRs − υ

∗,⊥
s (y))ds). As it is often useful for

�nancial interpretations (see Geman, El Karoui and Rochet [GEKR95]), relation (4.2)

can be reinterpreted by using a change of probability measure, associated to a numeraire

change,

∂yB
∗
t (T, y) = EQ∗,T

(y)

(
e−

∫ T
t rsds ξt,T (y) | Ft

)
where Q∗,T(y) is the probability measure with density Λ∗0,T (y) and under which dW ∗,Ts =

dWs + (ηRs − υ
∗,⊥
s (y))ds is a martingale. Sometimes this probability measure is called

indi�erence forward neutral probability.

4.1.2 Yield curve in aggregate economy

We come back to the framework of an economy with multi-agents having access to the

same market, and so having the same market price density Y 0. They have their own

progressive utilities Uθ, and then their own marginal utility pricing rules driven by

their own optimal state price density Y ∗,θt (y) = Y 0
t L
∗,θ
t (y).

Then, each agent gives a di�erent "marginal utility price" for the zero-coupon bonds,

B∗,θt (T, y) = E
(
Y ∗,θt,T (y)|Ft

)
. In particular, the bond curves today B∗,θ0 (T, yθ) are di�er-

ent and a priori depend on the individual wealth yθ of the agent; but a large part of

the curve is explained by the common market curve B0
0(T ).

Aggregate yield curves In the aggregate economy, the initial marginal utility is

de�ned as a mixture of the individual marginal utilities, ux(x) =
∫
uθx(αθx) m(dθ).

Similarly, the optimal state price density Y ∗t (y) is a mixture of the individual optimal

state prices de�ned as Y ∗t (y) =
∫
Y ∗,θt (yθ)m(dθ) where yθ(ux(x)) = uθx(αθx).

Thanks to Equation (4.1), the bond curve B∗t (T, y) in the aggregate market satis�es

Y ∗t (y)B∗t (T, y) = E
(
Y ∗T (y)|Ft

)
=

∫
E
(
Y ∗,θT (yθ)|Ft

)
m(dθ) =

∫
B∗,θt (T, y)Y ∗,θt (yθ)m(dθ).

The aggregate bond curve is a mixture of di�erent bond curves with respect to the non

normalized densities Y ∗,θt (yθ), whose integral is by de�nition Y ∗t (y).

It is easy to take the derivative in maturity in the previous equality, and to use in-

tensively that ∂T B
∗
t (T, y) = −f∗t (T, y)B∗t (T, y) where f∗t (T, y) is the instantaneous

forward rate in the aggregate market. Thus we obtain that

f∗t (T, y)Y ∗t (y)B∗t (T, y) =

∫
f∗,θt (T, y)(Y ∗,θt (yθ)B∗,θt (T, y))m(dθ).

The remarkable feature of these two decompositions is that the non normalized mixing

processes may be chosen to be martingales:

− It is obvious in the case of spot forward rates where the mixing processes are

Y ∗,θt (yθ)B∗,θt (T, yθ) which are by de�nition the exponential martingales determin-

ing the volatility of the bond.
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− For the mixing of the bonds, the non normalized coe�cients Y ∗,θt (yθ) = Y 0
t L
∗,θ
t (yθ)

(having the common factor Y 0
t ) can be replaced by the martingales L∗,θt (yθ) with-

out change after renormalization.

All these results are gathered in the next proposition:

Proposition 4.1. In an aggregate economy,

(i) The marginal utility bond curve B∗t (T, y) is a normalized mixture of individual bond

curves, based on the martingales L∗,θt ,

B∗t (T, y) =

∫
B∗,θt (T, yθ)

L∗,θt (yθ)m(dθ)∫
L∗,θt (yθ)m(dθ)

. (4.3)

(ii) The marginal utility spot forward rates f∗t (T, y) is a normalized mixture of individual

spot forward rates curve based on the martingales Y ∗,θt (yθ)B∗,θt (T, yθ)

f∗t (T, y) =

∫
f∗,θt (T, yθ)

B∗,θt (T, yθ)L∗,θt (yθ)∫
B∗,θt (T, yθ)L∗,θt (yθ)m(dθ)

m(dθ). (4.4)

Indi�erence Bonds pricing for power utilities We come back to the frame-

work of aggregate power utilities, that will be used in the forthcoming numerical appli-

cation in Section 4.2. We consider N agents with consistent power utilities character-

ized by their relative risk aversion parameters θ1 < · · · < θN , as studied in Paragraph

2.2.2. Then, their optimal state prices Y ∗,θt (y) are linear in y with coe�cient Ȳ ∗,θt , and

the individual price of zero-coupon bonds with maturity T does not depend on y and

more generally, B̄∗,θt (T ) = E
(
Ȳ ∗,θt,T |Ft

)
. The aggregate indi�erence zero-coupon price

B̄∗0(T, y), computed at time 0 for simplicity, is given by

B̄∗0(T, y) =

∑N
i=1 y

θi(y)B̄∗,θi0 (T )

y
=

∑N
i=1(αix)−θiB̄∗,θi0 (T )∑N

i=1(αix)−θi

with y =
∑N

i=1 y
θi(y) = ux(x) and for power utilities, yθi(y) = uθix (αix) = (αix)−θi .

Asymptotic behavior Using the linearity of the optimal state prices Y ∗,θt (yθi) in

yθi and the form of the marginal initial power utilities uθix , the asymptotic behavior

of the aggregate zero-coupon price, for y around 0 (respectively ∞), is straightforward

and relies on the convergence of the random measure
∑N
i=1 y

θi (y) δθi
y towards a dirac

measure that charges the agent with the smallest (respectively the largest) risk aversion

θi. Indeed, scaling the initial wealth x with a factor λ ∈ R+, leads to the following

asymptotics (for λ→ 0 or ∞)

lim
y→0

B∗0(T, y) = Bθ1
0 (T ) and lim

y→+∞
B∗0(T, y) = BθN

0 (T ).

This means that, when the wealth tends to in�nity, the aggregate zero-coupon price

converges to the one priced by the less risk averse agent, whereas when the wealth tends
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to zero, it converges to the one priced by the more risk averse agent. This is a similar

result as the ones stated in Cvitanic, Jouini et al. [CJMN11].

4.2 Numerical Results

The numerical illustration is developed in the simple model of an economy where three

agents invest in an incomplete market with two independent Brownian motions: the

market is characterized by the market state price density Y 0 with a constant market

risk premium (η, 0) and a stochastic interest rate. The volatility vector of admissible

portfolios only depends on the �rst component κt = (κ1
t , 0); the optimal dual orthogonal

volatility (0, υ∗,θ) is also assumed to be constant in time and independent of y, where

θ ∈]0, 1[ is the relative risk aversion parameter characterizing the agent starting with a

power utility:

Y ∗,θt (y) = ye−
∫ t
0 rsds e−ηW

1
t +υ∗,θW 2

t −
1
2

(η2+(υ∗,θ)2) t. (4.5)

We also need to specify a model for the spot rate common for all agents. The simplest

and currently used in �nancial market is the Vasicek model [Vas77].

Vasicek model for the spot rate rt: We assume a Vasicek model for the spot

rate rt,

drt = a(b− rt)dt+ σ1dW
1
t + σ2dW

2
t ,

which is a Gaussian Ornstein-Uhlenbeck process given by

rt = r0 + be−at +

∫ t

0
e−a(t−s)(σ1dW

1
t + σ2dW

2
t ).

The market zero-coupon bond is given from the market state price density Y 0
t , by

B0
t (T ) = E

(
Y 0
t,T | Ft

)
. From Gaussian standard calculus, it is well-known that the

market yield curve R0
t (δ) = −1

δ lnB0
t (t+ δ) has the following form

R0
t (δ) = R0

∞ − (R0
∞ − rt)

(1−e−aδ)
aδ + s2,r

a2
(1−e−aδ)2

4aδ

where R0
∞ = b− 1

2

[
s2,r

a2
+ 2σ1ηa

]
and s2,r = (σ1)2 + (σ2)2.

Indifference Yield Curve In this example, the indi�erence yield curve is obtained

by multiplication of the market price density (Y 0
t ) by the exponential martingale L∗,θt =

exp
(
υ∗,θW 2

t − 1
2(υ∗,θ)2 t

)
which depends on the Brownian motion W 2 only.

The bonds are obtained as previously, using the probability measure Q⊥,θ = L∗,θT .P in

place of P. Under Q⊥,θ,W 1 is still a Brownian motion butW 2 becomesW 2
t = W 2,⊥,θ

t +

υ∗,θt where W 2,⊥,θ is a Q⊥,θ-Brownian motion. The spot rate rt remains an Ornstein-

Uhlenbeck process under Q⊥,θ, only the level b is modi�ed into b⊥,θ = b+ 1
aσ2υ

∗,θ. This
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modi�cation has an impact on the in�nite rate, that becomes R∗,θ∞ = R0
∞ + 1

aσ2υ
∗,θ.

The new yield curve is now:{
R∗,θt (δ) = R∗,θ∞ − (R∗,θ∞ − rt) (1−e−aδ)

aδ + s2,r

a2
(1−e−aδ)2

4aδ

R∗,θt (δ) = R0
t (δ)− σ2υ

∗,θ(1−e−aδ−aδ
a2δ

)
.

The same kind of equation holds for the di�erent forward rates. In particular the spread

between the indi�erence curve and the market curve is given by:

f∗,θt (T )− f0
t (T ) = −σ2υ

∗,θ(1− e−a(T−t)

a

)
.

Agreggate bond curve For the aggregate bond curve, we consider the aggregation

of three agents with power utility and risk aversion parameter (θi) and with a given

initial repartition of the wealth (αi) (see Section 3.2.1). In this case, the zero-coupon

bond is evaluated as

B∗t (T, x, α) =

∑3
i=1(αix)−θiB∗,θit (T )

ux(x)
(4.6)

where x and α stand here to remind that the aggregate price depends on the initial

wealth and on the initial choice of the parameters (αi).

The ratio
B∗t (T,x,α)

B0
t (T )

is particularly simple, using the notation ζ2(T−t) = σ2

(1−e−a(T−t)−a(T−t)
a2

)
B∗t (T, x, α)

B0
t (T )

=

∑3
i=1(αix)−θi exp(−ζ2(T − t)υ∗,θi)

ux(x)
=

∑3
i=1 exp(−θi ln(αix)− ζ2(T − t)υ∗,θi)

ux(x)
.

Simulations The following simulations are provided taking υ∗,θ = θυ∗ for some

given constant υ∗. For any θ, the individual yield curve δ 7→ R∗,θ0 (δ) does not depend on

the wealth and is a Vasicek curve with in�nite rate R∗,θ0 (δ) = R0
0(δ)−σ2θυ

∗(1−e−aδ−aδ
a2δ

)
.

In the �gures we choose the following numerical values for the parameters

r0 = 5%, a = 1, b = 0.2, σ1 = 20%, σ2 = 15%, η = 20%, υ∗ = 80%.

It provides a standard increasing yield curve, but Vasicek model can also achieve others

forms of curve (not monotonic and with bumps) for other parameters values.

In Figure 1 we draw the individual yield curve R∗,θ0 (δ) of each class (Vasicek yield

curves), for di�erent values of θ.

March 1, 2018 24/31



Figure 1: Individual yield curve R∗,θ0 (δ) for di�erent values of θ

From now on, we will represent only the spreads between the di�erent rate curves and

the market yield curve R0
0(δ), namely R∗,θ0 (δ)−R0

0(δ). Figure 2 represents the spread of

the individual curve for three di�erent values of θ as well as the spread of the aggregate

curve. The spread of the aggregate curve depends on x and the αi, we choose here

x = 10, α1 = 1/8, α2 = 1/2, α3 = 3/8 (unless other numerical values are speci�ed).

Figure 2: Individual and aggregate yield curve spread

Figure 3 (respectively Figure 4) illustrates the sensitivity of the aggregate yield curve

on the initial wealth x available on the market (respectively on the initial proportion

parameters αθ).
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Figure 3: Aggregate yield curve spread depending of the wealth x

Figure 4: Aggregate yield curve spread depending on the initial proportion parameters α
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5 Appendix

Itô-Ventzel's formula In this paper we used the Itô-Ventzel formula that gives

the decomposition of the compound random �eld G(t,Xt) for G(t, x) = G(0, x) +∫ t
0 φ(s, x)ds +

∫ t
0 ψ(s, x).dWs regular enough (see Theorem 5.1 below) and for any Itô

semimartingale X. This decomposition is the sum of three terms: the �rst one is the

"di�erential in t" ofG, the second one is the classic Itô's formula (without di�erentiation

in time) and the third one is the in�nitesimal covariation between the martingale part

of Gx and the martingale part of X, all these terms being taken in Xt.

dG(t,Xt) =
(
φ(t,Xt) dt+ ψ(t,Xt).dWt

)
(5.1)

+
(
Gx(t,Xt)dXt +

1

2
Gxx(t,Xt)d < X,X >t

)
+
(
< ψx(t,Xt)dWt, dXt >

)
.

When G has only �nite variation, the formula is reduced to a classic Itô's formula, since

in this case ψ(t, x) ≡ 0, φ(t,Xt) = ∂tGt(t,Xt).

Di�erent spaces of regular random �elds We give here the regularity condi-

tions needed in Theorem 2.11 to characterize a consistent progressive utility from its

optimal processes. These regularity conditions are related to the SDEs' coe�cients..

Let (φ, ψ) be continuous Rk-valued progressive random �elds and let m be a non-

negative integer, and δ a number in (0, 1]. We need to control the asymptotic behavior

in 0 and∞ of φ and ψ, and the regularity of their Hölder derivatives (when they exist).

More precisely, let φ ∈ Cm,δ(]0,+∞[) be (m, δ)-times3 continuously di�erentiable in x

for any t, a.s.

For any subset K ⊂]0,+∞[, we de�ne the family of random (Hölder) K-semi-norms
‖φ‖m:K(t, ω) = supx∈K

‖φ(t,x,ω)‖
x +

∑
1≤j≤m supx∈K ‖∂

j
xφ(t, x, ω)‖

‖ψ‖m,δ:K(t, ω) = ‖ψ‖m:K(t, ω) + sup
x,y∈K

‖∂mx ψ(t, x, ω)− ∂mx ψ(t, y, ω)‖
|x− y|δ

.
(5.2)

When K is all the domain ]0,+∞[, we simply write ‖.‖m(t, ω), or ‖.‖m,δ(t, ω).

Calligraphic notation recalls that these semi-norms are random.

a) Km,δloc (resp. Km,δloc ) denotes the set of all Cm,δ-random �elds such that for any compact

K ⊂]0,+∞[, and any T ,
∫ T

0 ‖φ‖m,δ:K(t, ω)dt <∞, (resp.
∫ T

0 ‖ψ‖
2
m,δ:K(t, ω)dt <∞ ).

b) When these di�erent norms are well-de�ned on the whole space ]0,+∞[, we use the

notations Kmb ,K
m
b or Km,δb ,Km,δb .

3That is φ is m-times continuously di�erentiable with φ(m) being δ-Hölder
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Di�erentiability of Itô random �elds We discuss the regularity of an Itô semi-

martingale random �eld

G(t, x) = G(0, x) +

∫ t

0
φ(s, x)ds+

∫ t

0
ψ(s, x).dWs (5.3)

in connection with the regularity of its local characteristics (φ, ψ). An Itô random �eld

G is said to be a Km,δloc -semimartingale, whenever G(0, x) is of class Cm,δ, BG(t, x) =∫ t
0 φ(s, x)ds is of class Km,δloc , and MG(t, x) =

∫ t
0 ψ(s, x).dWs is of class Km,δloc . As in

Kunita [Kun97], we are concerned with the regularity of G (the regularity of its local

characteristics (φ, ψ) being given) and conversely with the regularity of (φ, ψ) (the

regularity of G being given). Theorem 3.1.2, Theorem 3.1.3 and Theorem 3.3.3 in

[Kun97] give the di�erential rules (term by term) of the dynamics of an Itô random

�eld and the minimal condition to apply Itô-Ventzel's formula.

Theorem 5.1 (Di�erential Rules). Let δ ∈ (0, 1] and G be an Itô semimartingale ran-

dom �eld with local characteristics (φ, ψ), G(t, x) = G(0, x)+
∫ t

0 φ(s, x)ds+
∫ t

0 ψ(s, x).dWs

(i) If G is a Km,δloc -semimartingale for some m ≥ 0, its local characteristics (φ, ψ) are

of class Km,εloc ×K
m,ε
loc for any ε < δ, and conversely.

(ii) Conversely, if the local characteristics (φ, ψ) are of class Km,δloc ×K
m,δ
loc , then F is a

Km,εloc -semimartingale for any ε < δ.

(iii) For m ≥ 1, the derivative random �eld Gx is an Itô random �eld with local char-

acteristics (φx, ψx), and for m ≥ 2 the Itô-Ventzel formula is applicable.

(iv) Moreover, if G is a K1,δ
loc ∩ C

2-semimartingale, for any Itô process X, G(., X.) is

a continuous Itô semimartingale satisfying the Itô-Ventzel formula (5.1).

Di�erentiability of SDEs solutions It is well known on the SDE's theory that

is su�cient (but not necessary) to take a coe�cients (µ, σ) ∈ K0,1
b ,K0,1

b to ensure the

existence of monotonic global (non-explosive) solution of SDE(µ, σ) with range [0,∞)

and a good behavior near to zero and in�nity (see the discussion in [KM13] or Kunita's

book [Kun97]). Otherwise, local regularity on SDEs coe�cients appears as a kind of

minimal assumption to ensure the regularity of a global solution if there exists.

De�nition 5.2. A SDE(µ, σ) is said to be of class Sm,δ if
a) the coe�cients (µ, σ) are in the spaces (Km,δloc ,K

m,δ
loc )

b) the maximal solution X is non explosive.

Classical examples of Sm,δ SDEs are given by SDE(µ, σ) when (µ, σ) are in the spaces

(Kmb ,K
m
b ), or even in (K0

b ,K
0
b) ∩ (Km,δloc ,K

m,δ
loc ).

Theorem 5.3 (Flows property of SDE). We consider the SDE(µ, σ)

dXt = µ(t,Xt)dt+ σ(t,Xt).dWt, X0 = x. (5.4)
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Let m ≥ 1, δ ∈ (0, 1] and ε < δ.

(i) Assume uniformly Lipschitz coe�cients, that is (µ, σ) ∈ K0,1
b × K

0,1
b . Then, (5.4)

admits a unique strong solution X which is strictly monotonic satisfying X(0) = 0 and

X(+∞) := lim
x→+∞

X(x) = +∞.

(ii) Assume µ ∈ Km,δb and σ ∈ Km,δb .

a) Then the solution X = (Xt(x), x > 0) is a Km,εloc semimartingale the derivatives Xx

and 1/Xx are Km−1,ε
loc -semimartingales. Its inverse X−1 is also of class Cm.

b) The local characteristics of X, λX(t, x) = µ(t,Xt(x)) and θX(t, x) = σ(t,Xt(x))

have only local properties and belong to Km,εloc ×K
m,ε
loc .
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