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Abstract. A challenge faced by dictionary learning and non-negative ma-
trix factorization is to efficiently model, in a context of feature learning,
temporal patterns for data presenting sequential (two-dimensional) struc-
ture such as spectrograms. In this paper, we address this issue through
tensor factorization. For this purpose, we make clear the connection be-
tween dictionary learning and tensor factorization when several examples
are available. From this connection, we derive a novel (supervised) learn-
ing problem which induces emergence of temporal patterns in the learned
dictionary. Obtained features are compared in a classification framework
with those obtained by NMF and achieve promising results.

1 Introduction

Dictionary learning has been a key technique in a wide variety of applications
in computer vision and signal processing for learning sparse representations of
input data. Typical applications are image denoising [1] or signal classification
[2]. When data at hand have specific non-negative structures that are impor-
tant to preserve, dictionary learning leads to the so-called non-negative matrix
factorization (NMF) problem whose objective is to decompose a matrix S into
W and H, with minimal divergence between S and WH. Typical divergence
measures are the Euclidean, the Kullback-Leibler and the Itakura-Saito ones [3].

One of the application domain of NMF is audio analysis in which signals are
frequently represented as spectrogram i.e. a matrix of time-frequency energy.
A major drawback of the widely used Euclidean NMF in this context is that
the temporal structure of the TFR is not properly handled. Indeed, such a
NMF considers column vectors of the matrix to decompose independently of
each other. Several approaches have been considered in order to alleviate such
a drawback. For instance, convolutive NMF can discover temporal patterns
that occur in the TFR. However, that method is also known to poorly handle
variability of patterns [4]. Another approach consists in stacking temporally
adjacent frames of S in order to build a set of vectors capturing large-scale
temporal information and then in applying NMF on these stacked vectors. While
frame stacking poses problem related to algorithmic complexity due to matrix
size augmentation, it sometimes helps achieving very good results for audio
signal classification [5]. Reformulating NMF as a tensor decomposition has also
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been suggested, and discarded without strong justification by Van Hamme as
a solution for capturing (temporal) structure in matrix factorization [4]. Our
objective in this paper, is to restore faith in tensor factorization for dictionary
learning with temporal structure. While tensor-based dictionary learning has
already been investigated [1, 6], our work extends the current state-of-the-art
by allowing overcompleteness and by leveraging supervised information such as
labels in the factorization.

Our contributions are the following: (i) we clarify the connection between
dictionary learning, NMF and tensor factorization in a context of supervised
representation learning for classification. (ii) We provide insights on why tensor-
based dictionary learning TDL is able to learn temporal structures and propose
an algorithm for solving the TDL problem. (iii) Experimental results on toy and
real-world datasets show that the features learned by our TDL are competitive
with those obtained from NMF followed by pooling.

2 Learning Tensor-based Dictionaries

2.1 Tensors and multilinear algebra basics

A tensor is a multidimensional array defined on the tensor product of vec-
tor spaces, the number of those spaces being the order. A N-order tensor
X ∈ RI1×..×IN (typed in boldface Euler script letters) contains elements de-
noted by Xi1,..,iN , {In}1≤n≤N being the dimensions of the vector spaces whose
product defines X. Matricization reorders these elements into a matrix by re-
arranging the tensor fibers, fibers being defined by fixing every index but one.
The mode-n matricization of X arranges the mode-n fibers to be the columns of
the resulting matrix X(n) ∈ RIn×(

∏
k 6=n Ik). The mode-n product of X with a

matrix B ∈ RJn×In denoted X×nB yields a tensor Y ∈ RI1×..×Jn×..×IN defined
by: Y(n) = BX(n). Analogous to the matrix Frobenius norm, we can define a
tensor Frobenius norm by: ‖X‖2F =

∑
i1,..,iN

X2
i1,..,iN

. This analogy can also
be applied to the `1 norm ‖X‖1 =

∑
i1,..,iN

|Xi1,..,iN |.
The two most commonly used decompositions of tensors are the Tucker and

the Parafac decompositions [7]. Given X ∈ RI1×...×IN , classical Tucker de-
composition looks for the approximation: X ≈ G ×1 A(1) × .... ×N A(N), with
G ∈ RJ1×.....×JN being the core tensor and the matrices A(n) ∈ RIn×Jn the
loading factors with Jn ≤ In(because the general purpose of Tucker is data com-
pression). The canonical (a.k.a. Parafac) decomposition can be seen as a special
case of Tucker decomposition with Ji = Jj, ∀i, j and G diagonal.

2.2 From NMF to Tensor decomposition

Given a set of L signals represented as spectrograms {Si}
L
i=1 ∈ RF×T

+ and an
integer K, fixing the number of dictionary elements, a classical formulation of



the dictionary learning via NMF is the following optimization problem:

minW∈RF×K
+ ,Hi∈RK×T

+

L∑
i=1

‖Si − WHi‖2F + λ1‖W‖2F + λ
L∑

i=1

‖Hi‖1. (1)

The matrix W ∈ RF×K
+ contains the dictionary elements as columns and such

dictionary is overcomplete if K ≥ F. The second term downweighs each dic-
tionary atom norm and the third one is used to make the activation matrices
Hi ∈ RK×T

+ sparse (thus enabling to learn in an overcomplete setting)
Let’s now consider a third order tensor S ∈ RL×F×T

+ whose horizontal slices

{Si,:,:}
L
i=1 are the spectrograms {Si}

L
i=1. The problem (1) can be rewritten as:

minW∈RF×K
+ ,H∈RL×K×T

+
‖S−H×2 W‖2F + λ1‖W‖2F + λ‖H‖1, (2)

with the horizontal slices of H being the matrices {Hi}
L
i=1. The equivalence

between the two problems arises from mode-2 matricization (‖S(2)−WH(2)‖2F).
As matricization depends on an ordering convention, it highlights that any set
of dictionary atoms {W:,k}

K
k=1 is invariant to a shuffle of the columns of Si, i.e.

any temporal information contained in the samples are ignored in the dictionary.
In order to code temporal patterns of frequency atoms shared by the samples,

for example onset/offset or piecewise-constant temporal patterns, one should in-
troduce a matrix W(t) containing Kt temporal dictionary atoms to complement
the Kf frequency atoms of W(f). The model should approximate each spectro-

gram as a linear combination of the Kf × Kt basis elements
{

W
(f)
:,p (W

(t)
:,q )
>
}

,

allowing overcompleteness when F × T ≤ Kf × Kt. This leads to the following
optimization problem for TDL:

minW(f),W(t),H‖S−H×2 W(f)×3 W(t)‖2F+λf1‖W(f)‖2F+λt1‖W(t)‖2F+λ‖H‖1
(3)

s.t W(f) ∈ RF×Kf
+ ,W(t) ∈ RT×Kt

+ ,H ∈ RL×Kf×Kt
+ .

This is the so-called Tucker-2 decomposition [7], with penalty terms inherited
from the dictionary learning problem. The intuition behind this learning problem
is that owing to the norm residual minimization and non-negativity constraints,
temporal structures of high-energy shared across samples will emerge from W(t).
The disposal of W(f) and W(t) is justified by the definition of S, whose 2nd

and 3rd modes represent frequency and time. It is also worth to notice that the
tensor H size increases with Kf and Kt.

2.3 Classification framework

As our main objective is to classify a set of spectograms according to a set of
labels, we exploit supervision in the tensor factorization problem by adding a
novel loss term :

minW(f),W(t),H,B(f),B(t)‖S−H×2 W(f)×3 W(t)‖2F+λf1‖W(f)‖2F+λt1‖W(t)‖2F
(4)



+λ‖H‖1 + λc‖C−H×2 B(f) ×3 B(t)‖2F + λf2‖B(f)‖2F + λt2‖B(t)‖2F,

s.t W(f) ∈ RF×Kf
+ ,W(t) ∈ RT×Kt

+ ,H ∈ RL×Kf×Kt
+ ,B(f) ∈ RKf×Kf

+ ,B(t) ∈ RKt×Kt
+ ,

As in [2], the role of B(f) and B(t) is to make the activation coefficients aligned
with the label information brought by the tensor C built similarly to the matricial
formulation presented in [2]. Numerous dictionary learning algorithms based on
tensor decomposition have already been presented [1, 6]. However, no proposed
approaches can be applied straightforwardly to our problem formalization. The
TDL problem as presented above is solved by alternate minimization of the
convex problems resulting from fixing all factors but one. The update of H

is done via the resolution of a non-negative least squares. Since the update of
W(f),W(t),B(f),B(t) can be large-scale problems (for Kf, Kt large), we have
chosen a projected gradient method, which is known for its efficiency in solving
large scale convex minimization problems subject to linear constraints [8]. After
the dictionaries inference, we recompute activation coefficients by projecting each
spectrogram on the obtained dictionaries independently of the class information
regularization and feed their vectorization to a classifier.

3 Numerical experiments

These experiments aim at illustrating that our tensor-based approach is able
to learn temporal structures in time-frequency representations, while a typical
NMF followed by a global pooling may fail in capturing these structures. As
such, we have compared the features obtained from TDL and from supervised
(label information is used) NMF [2] with max and average pooling in multi-class
classification problems. For both approaches, the number of spectral atoms in
the decompositions is fixed to the same value and resulting feature vectors are
fed to a SVM classifier with Gaussian kernel. For all problems, hyperparameters,
including SVM ones, have been selected through cross-validation on the training
set. The initialization is performed for the NMF problem by drawing uniform
numbers on [0, 1] and for TDL, by solving NMF of the matricized forms of S

and C. Details for reproducibility are available upon request.

Fig. 1: Examples of spectrogram tem-
plate for each of the class. On the
left and right, we respectively have low-
frequency and high-frequency signals
with different temporal scales.

Synthetic data set: This data set is com-
posed of 400 examples equally split into 8
classes. Each signal is a sum of two local-
ized sinusoids of different temporal scales
on which a uniform noise is added. We
transform each signal into a spectrogram, re-
sized (for computational reasons) into a non-
negative matrix of size 25 × 25. Examples
of TFR templates for all classes are given
in Figure 1. The performance of all the al-
gorithms have been evaluated through their
mean average precision. Learning curves of



Fig. 2: (left) Learning curves of all algorithms. NMF vec, mean and max respectively refer
to features derived by performing vectorization, mean pooling and max pooling operation on
activation matrix associated to NMF. (right) Example of temporal dictionary atoms showing
that TDL is able to learn temporal structures.

all algorithms are given in Figure 2, where a point is the average performance
over 5 trials (with different noise realizations). Our tensor-based approach is
able to produce discriminative features with only 24 examples (3 per classes)
and it outperforms all NMF approaches regardless of the pooling strategy. On
the right plot of Figure 2, we have depicted 8 elements of temporal dictionary
W(t). We can note that each of these atoms represents temporal scale of the
sinusoids composing the signals to be classified. More importantly, they display
different temporal lengths showing that the learned temporal dictionaries are
robust to the signal scales.

DCase2013 data set: This dataset is for acoustic scene detection problem. How-
ever, audio scenes in this dataset do not have temporal structures suited to TDL
(since discriminative sound events can occur at any moment in the 30-s scene).
Our goal in this experiment is to prove empirically that TDL is still able to
learn relevant temporal dictionary atoms. The dataset is composed of ten scene
categories recorded in different locations. Training and test sets are made of 100
30-second-long scene instances with ten examples per class [9]. Spectrograms for
these signals are represented as non-negative matrices of size 60× 20. Again, all
hyperparameters have been tuned by cross-validation. Figure 3 reports the per-
formance of NMF with pooling and our TDL for increasing number of spectral
dictionary atoms and 10 temporal atoms. We can note that best performance of
all methods are nearly equal with slight advantage for NMF+max pooling. Inter-
estingly, max pooling also helps in stabilizing performance. More interestingly,
the right plot of the Figure 3 shows that as there are few temporal structures
to be learned by tensor decomposition, TDL learns temporal dictionary atoms
that behave as localized mean pooling covering all the time span.

4 Conclusion

In this paper, we have developed a tensor-based overcomplete dictionary learning
framework able to infer frequent temporal patterns in sequential data. The novel
framework proposed makes clear the connection between dictionary learning and



Fig. 3: (left) Performance of TDL and NMF + pooling on DCase 2013. (right) Example of
temporal dictionary atoms.

tensor factorization and can be easily extended with supervised information. Our
experimental results show that the learned features are competitive compared
to those obtained using NMF followed by pooling. The main bottleneck of our
approach is computational and we plan to lift this issue by exploring an online
version of our algorithm.
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