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In tokamaks plasmas, turbulent transport is triggered above a threshold in the temperature gradient and
leads to stiff profiles. This particularity, neglected so far in the problem of magnetic island stabilization
by a localized heat source, is investigated analytically in the present paper. We show that the efficiency
of the stabilization is deeply modified compared to previous estimates due to the strong dependence of the
turbulence level on the additional heat source amplitude inside the island.

PACS numbers: 52.30.Cv, 52.35.Py, 52.55.Fa, 52.55.Tn

I. INTRODUCTION

The production of fusion energy in tokamaks requires
the confinement of a hot plasma medium in nested mag-
netic surfaces. Magnetic islands degrade the quality of
this confinement by breaking locally the magnetic topol-
ogy, but they can be damped using the injection of a
localized current drive at their O-point18, or by a lo-
calized heating7,14,15, as demonstrated experimentally21.
In this later case, the stabilizing effect is provided by
the reduction of the local plasma resistivity that depends
on the temperature change produced by the local heat-
ing, and therefore on the properties of the heat trans-
port that is mainly originating from turbulent processes.
Theory1,6,19 and experiments10,17 show that turbulent
transport is triggered above a critical temperature gradi-
ent, and leads to resilient (also refered to as stiff) profiles
above this threshold, with a stiffness that is expected
to be large in ITER13. Inside magnetic islands, where
the temperature profile is flattened, a reduced diffusivity
is expected8 and effectively measured9,11. The conse-
quences of this kind of transport rule has recently been
investigated for nonlinear island saturation4. Here we
show analytically that profile stiffness strongly impacts
the stabilization efficiency by localized heating. It varies
as (PRF /Peq)

1/σ, with σ the stiffness parameter, Peq the
power injected inside the island position of a plasma at
equilibrium and PRF the additional heat source centered
at the O-point of the island. In the most common case
where the ratio (PRF /Peq) is small, the stabilization can
be much larger than anticipated without profile stiffness.

II. STIFFNESS MODEL

We adopt a simple model for the heat diffusivity, that
incorporates plasma stiffness in the vicinity of a reference
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state where turbulent transport equilibrates the incoming
heat flux:

χ⊥ = χ0
⊥
∣∣T ′/T ′eq∣∣σ−1

(1)

where T is the temperature and the prime refers to the
derivative relative to the radial co-ordinate, σ is the stiff-
ness, the ”eq” subscript refers to the equilibrium situ-
ation without magnetic island and without additional
heating from RF waves, and χ0

⊥ is the heat diffusivity in
this reference case. This formulation is consistent with
the definition of the stiffness parameter given in13. In
this representation, anomalous transport starts growing
above a critical gradient

∣∣T ′crit/T ′eq∣∣ = 1−1/(σ−1), with
a soft transition between sub- and over-critical regimes.
In this simple parametrization, the turbulent transport
properties are assumed to be identical with and without
island.

The equilibrium (no island) is assumed to be in a fully
developped turbulent regime, above the threshold, with
a distance to the threshold that depends on the stiffness
parameter. In the realistic situation where the stiffness
parameter is large, the temperature gradient cannot de-
part strongly from the threshold value. The variation of
the temperature gradient when the power injected inside
a given radial position is varied is illustrated in figure 1.

In the presence of an island, the above diffusivity model
(equation 1) reproduces the fact that for a stiffness pa-
rameter σ larger than unity, the drive for turbulent modes
(the temperature gradient here) may vanish and lead to
a reduced diffusivity, as observed experimentally and ex-
pected theoretically. The effect of local heating on is-
land stabilization has not been derived so far in this case
(only σ = 1 has been considered in previous works), and
this threshold property of turbulent transport leads to
deep modifications of the island response to this control
method, as we will show in the following.
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FIG. 1. Ratio of the power injected inside a given radial
position relative to its equilibrium value, as a function of the
temperature gradient relative to its equilibrium value, for a
stiffness parameter σ = 1 and σ = 8, and in the absence of
any island.

III. ADDITIONAL HEATING IN THE ABSENCE OF
ISLAND

The energy balance equilibrates the heat flux with the
volumic heat source H:

∇ · (Nχ⊥∇T ) = −H (2)

with N the plasma density. Without island, after inte-
grating on the plasma volume inside a radial position r
we obtain

−T ′(r) =

∫ r
0
dr′J (r′)H(r′)

J (r)N(r)χ⊥(r)
=

P (r)

(2π)2J (r)N(r)χ⊥(r)
(3)

with P (r) the power injected inside r and J the Jaco-
bian of the co-ordinate system (r, θ, ϕ), with θ and ϕ the
poloidal and toroidal angles, that in the large aspect ra-
tio limit is J ≈ rR with R the major radius of the torus.
At equilibrium, H = Heq and

−T ′eq(r) =

∫ r
0
dr′J (r′)Heq(r

′)

J (r)N(r)χ0
⊥(r)

=
Peq(r)

(2π)2J (r)N(r)χ0
⊥(r)

(4)

When the plasma is heated by RF waves, H = Heq +
HRF , P = Peq + PRF and

−T ′(r) =
Peq(r)

(2π)2J (r)N(r)χ0
⊥(r)

(
1 +

PRF
Peq

)1/σ

(5)

The gradient increase due to the RF heating is reduced
as expected when the stiffness is large.
IV. HEATING AT THE O-POINT OF AN ISLAND

Inside an island, the temperature gradient is reduced
and may eventually go below the turbulent threshold,
leading to a low level of diffusivity. In this context, the
impact of a localized heat source strongly depends on the
distance to the threshold, to which the equilibrium tem-
perature gradient is close when the stiffness parameter
is large. In the following we derive the evolution equa-
tion of the island width in the case of a localized heating
source at the O-point, for an island that is large enough
so that the temperature gradient without heating is zero
inside the separatrix.

A. Temperature gradient increase due to localized heating

We consider the magnetic equilibrium of a tokamak
with major radius R and minor radius a, a toroidal mag-
netic field Bz, a safety factor q and magnetic shear s =
(r/q)dq/dr in the large aspect ratio limit. The magnetic
perturbation with poloidal and toroidal mode numbers
m and n associated with the magnetic island localized at
r = rs where q = m/n is B̃ = ∇×ψ̃ez. The magnetic flux
surfaces are labelled by Ω with Ω = 8(x/w)2 − cos(mα)
with x = r− rs, α = θ− (n/m)ϕ, and w the island total
width. We have the relation

ψ̃

Bz
= −w

2

16

ns

Rm
cos(mα) (6)

In the following we use the notations

g(α) ≡ cos(mα) (7)

ψ1 ≡
w2

16

Bzns

Rm
(8)

After integrating equation (2) in the interval

(2
√

2 x±/w) = ±Ω, we obtain:

(
−dT
dΩ

)
=

(
Peq/(2π)2

)1−1/σ

Nχ0
⊥Js

(
w

4
√

2

)1+1/σ

∫ Ω

−1
dΩ′J

∮
dαH(Ω′,α)√

Ω′+g∮
dα (Ω + g)

σ/2


1/σ

(9)

with Js the Jacobian at the resonant surface. We assume that there is no other heat source in the island than RF
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power, with a constant value of HRF in the region Ω ∈
[−1,Ωc] or µ = (Ω + 1)/2 ∈ [0, µc], with µc < 1. This

mimics a perfect O-point heating over a width δH , with
µc = (δH/w)2 (see figure 2), and leads to

−dT
dΩ

=
P

1−1/σ
eq P

1/σ
RF (Ω)

(2π)2Nχ0
⊥Js

w

4
√

2

{
π

Iσ(Ω)

}1/σ

= (−T ′s)
(
P totRF

Peq

)1/σ
w

4
√

2

{
π

Iσ(Ω)

E(µ) + (µ− 1)K(µ)

E(µc) + (µc − 1)K(µc)

}1/σ

(10)

−1.0 −0.5 0.0 0.5 1.0

x/w

−0.4

−0.2

0.0

0.2

0.4

α
/2
π W

δH

FIG. 2. Schematic view of the island geometry and heating
area of width δH .

where T ′s = T ′eq(rs) and

Iσ(Ω) =

∮
dα (Ω + g(α))

σ/2
(11)

= 22+σ/2µ1/2+σ/2Jσ(µ) (12)

Jσ(µ) =

∫ π/2

0

dθ
cosσ+1 θ√
1− µ sin2 θ

(13)

and K and E are the complete elliptic integrals of the
first and second kind respectively:

K(µ) =

∫ π/2

0

dθ√
1− µ sin2 θ

(14)

E(µ) =

∫ π/2

0

dθ

√
1− µ sin2 θ (15)

B. Rutherford equation

The Rutherford equation is obtained via the integra-
tion of the Maxwell-Ampère law

−∇2
⊥ψ̃ = µ0J̃‖ (16)

Here we focus on the contribution of the perturbed ohmic
current, due to the perturbed parallel electric field Ẽ‖
and perturbed plasma resistivity η̃, using the Spitzer re-
sistivity dependence on temperature η ∝ T−3/2:

J̃Ω = Ẽ‖/η − JΩη̃/η (17)

= η−1∂tψ1 〈g〉+ JΩ
3

2

〈
T̃ /T

〉
(18)

with the flux surface average operator:

〈A〉 =

(∮
dα A/

√
Ω + g

)
/

(∮
dα/

√
Ω + g

)
(19)

Introducing the tearing stability index ∆′5 and the nor-
malized island width W = w/a, we obtain from the stan-
dard asymptotic matching procedure20

I1τR∂tW = a∆′ + a∆′Ω (20)

with τR = µ0a
2/η the resistive time and

I1 =
√

2

∫ ∞
−1

dΩ

∮
dα

2π

g 〈g〉√
Ω + g

≈ 0.82 (21)

a∆′Ω =
24

W
√

2

q

s

µ0RJΩ

Bz

∫ ∞
−1

dΩ

∮
dα

2π

g
〈
T̃ /T

〉
√

Ω + g
(22)

We consider a large island (compared with the char-
acteristic transport scale length3), so that the temper-
ature profile without RF heating is flat inside the is-
land. The perturbed temperature is determined from〈
T̃ /T

〉
= (T (Ω)− T (Ω = 1))/Ts, leading to〈
T̃

T

〉
(µ) =

−T ′s
Ts

w

4

(
π

4

P totRF

Peq

)1/σ

Fσ(µ, µc) (23)

with P totRF the total RF power, and
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FIG. 3. IΩ = f(µc) and the fit given by equation 32 for σ = 1
and σ = 8.

Fσ(µ < µc, µc) =

∫ µc

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

E(µ′) + (µ′ − 1)K(µ′)

E(µc) + (µc − 1)K(µc)

}1/σ

+

∫ 1

µc

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ

(24)

Fσ(µ > µc, µc) =

∫ 1

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ

(25)

Note that the symmetry in x of the temperature pertur-
bation that is assumed here implies that the impact of the
O-point heating on the bootstrap current perturbation3

is zero within this model.
The stabilizing contribution due to a localized heating

can finally be expressed as

a∆′Ω = −FΩ

(
µc,

P totRF

Peq
, σ

)
a

J
q

s

µ0RJΩ

Bz

Peq
Nχ0
⊥Ts

(26)

FΩ =
3

4π2
IΩ(µc, σ)

(
4

π

)1−1/σ (
P totRF

Peq

)1/σ

(27)

with IΩ(µc, σ) = I1(µc, σ) + I2(µc, σ) + I3(µc, σ) and

I1(µc, σ) =

∫ µc

0

dµ [2E(µ)−K(µ)]

∫ µc

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

E(µ′) + (µ′ − 1)K(µ′)

E(µc) + (µc − 1)K(µc)

}1/σ

(28)

I2(µc, σ) =

(∫ µc

0

dµ [2E(µ)−K(µ)]

)(∫ 1

µc

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ
)

(29)

I3(µc, σ) =

∫ 1

µc

dµ [2E(µ)−K(µ)]

∫ 1

µ

dµ′

µ′1/2

{
1

µ′1/2Jσ(µ′)

}1/σ

(30)

Note that using equation 4, and introducing the tempera-
ture gradient length LT ≡ (−Ts/T ′s), we can also express
the stabilization effect as

a∆′Ω = −FΩ

(
µc,

P totRF

Peq
, σ

)
(2π)2 a

LT

q

s

µ0RJΩ

Bz
(31)

showing that the knowledge of the equilibrium profiles

and of the function FΩ fully characterizes the expected
island decay rate.

The function IΩ is computed numerically and fitted
with a simple formulae in the range µc ∈ ]0, 1[ (39
points) and σ ∈ [1, 9] (9 points) using the Mathemat-
ica software12 (figure 3), so that the function FΩ can be
approximated by:
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FΩ

(
µc,

P totRF

Peq
, σ

)
≈ 3

4π2

[
0.804 +

0.600

σ
− 1.091

µc
σ

+ 0.242
(µc
σ

)2

− 0.228
µc
σ

ln
µc
σ

](
P totRF

Peq

)1/σ

(32)

FIG. 4. Case σ = 1 : comparison of the CΩ(µc) term with
references7 (we take C0 = 1) and15,16.

and FΩ

(
µc,

P tot
RF

Peq
, σ →∞

)
tends to be a constant, in-

dependent of both P totRF and µc.

C. Particular case σ = 1: comparison with existing results

For σ = 1 (no profile resilience), the stabilizing contri-
bution of RF heating writes

a∆′Ω = −CΩ(µc)
a

J
q

s

µ0RJΩ

Bz

P totRF

Nχ0
⊥Ts

(33)

CΩ ≈
3

4π2

[
1.40− 1.09µc + 0.24µ2

c − 0.23µc lnµc
]
(34)

The stabilization effect is linear in P totRF in this case.
The expression for CΩ(µc) can be compared with previ-
ous analytical7 and numerical15,16 works:

CHCΩ (µc) =
2 C0

5π2

µ
1/2
c

E(µc) + (µc − 1)K(µc)
(35)

CDLΩ (µc) =
6

π2
NH(µc)MH(µc)/f

on(µc) (36)

where the superscript HC refers to reference7 and DL to
references15,16. The result of7 (equation (33)) exhibits a
divergence for an extremely localized source (µc → 0),
but is otherwise quantitatively similar to our result. For
the comparison with references15,16, we need to take into
account the fact that the situation comparable (but not
strictly identical) to the one we consider is a modulation

with an on-time fon(µc) = π−1 arccos(1 − 2µc). The ef-
fective stabilization is then a∆′Ω(σ)×fon, thus explaining
the division by fon in the above expression. This proce-
dure cannot reproduce exactly the modulation scheme,
because in this latter case the deposition width in terms
of flux surface (our variable µc) tends to be larger as the
heat source departs from the O-point. We expect there-
fore the coefficient CDLΩ to be lower. Also, the RF heat
source is Gaussian in reference15 instead of Heaviside in
our model. We need therefore to express the Gaussian
deposition width as a function of µc ≡ (δH/w)2, and
we choose to identify the width at half the maximum of
the Gaussian with δH , as was done in2 where the differ-
ence between Heaviside and Gaussian shapes on island
stabilization efficiency by current drive was found to be
moderate. The comparison of the factor CΩ for σ = 1
(equations 34, 35 and 36) is displayed in figure 4, showing
a reasonable agreement.

V. APPLICATIONS WITH PLASMA PARAMETERS OF
LARGE TOKAMAKS

The importance of profile stiffness on the island stabi-
lization capability by RF heating is illustrated by com-
puting the quantity a∆′Ω(σ)×fon as a function of µc and
P totRF /Peq (figure 5), as well as the ratio ∆′Ω(σ)/∆′Ω(σ =
1) (figure 6). We take as a typical value σ = 8 expected in
ITER13. For moderate values of P totRF /Peq (typically be-
low unity), profile resilience is favourable since the heat
diffusivity remains low inside the island as long as the
temperature gradient stays below its equilibrium value,
thus enhancing the effect of the RF power. For a typical
medium size tokamak experiment (i.e. Asdex-Upgrade),
taking B = 2.5 T , R = 1.7 m, a = 0.5 m, r = 0.2 m,
q = 3/2, s = 1, JΩ = 5 × 105 A/m2, N = 6 × 1019 m−3,
T = 2 keV , χ0

⊥ = 2m2/s, P totRF = 2MW , Peq = 10MW ,
and a 50% modulation scheme, we have µc = 0.5, and
an average stabilizing contribution from ohmic heating
of a∆′Ω(σ) × fon ≈ −85 for σ = 8 instead of (-24) for
σ = 1. In this example where P totRF /Peq is small (as is
generally the case), the importance of the heating contri-
bution to island stabilization with RF is therefore much
larger than computed so far without profile stiffness, and
the contrast between small and large profile stiffness is
expected to increase as this ratio will be lower.

VI. SUMMARY

The nature of turbulent transport in tokamak plasmas,
that manifest itself by stiff temperature profiles, strongly
impacts the response of a magnetic island to a heating
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.

source localized at its O-point. We have shown, using
a simple model for the heat diffusivity in the vicinity of
an equilibrium point, that the stabilization efficiency of
this control method can be larger than predicted without
profile stiffness, in the usual situation where the power
used for the control is less that the power already circu-
lating in the island region. An expression for the con-
tribution of localized heating to the island dynamics has
been derived for arbitrary stiffness strength, and we find
reasonable agreement with previously published results
in the limit without stiffness.
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