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I. INTRODUCTION

The production of fusion energy in tokamaks requires the confinement of a hot plasma medium in nested magnetic surfaces. Magnetic islands degrade the quality of this confinement by breaking locally the magnetic topology, but they can be damped using the injection of a localized current drive at their O-point [START_REF] Maraschek | Control of neoclassical tearing modes[END_REF] , or by a localized heating [START_REF] Hegna | On the stabilization of neoclassical magnetohydrodynamic tearing modes using localized current drive or heating[END_REF][START_REF] Kurita | Effect of local heating on the m=2 tearing mode in a tokamak[END_REF][START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF] , as demonstrated experimentally [START_REF] Westerhof | Tearing mode stabilization by electron cyclotron resonance heating demonstrated in the TEXTOR tokamak and the implication for ITER[END_REF] . In this later case, the stabilizing effect is provided by the reduction of the local plasma resistivity that depends on the temperature change produced by the local heating, and therefore on the properties of the heat transport that is mainly originating from turbulent processes. Theory [START_REF] Dimits | Comparisons and physics basis of tokamak transport models and turbulence simulations[END_REF][START_REF] Garbet | Physics of transport in tokamaks[END_REF][START_REF] Rebut | The critical temperature gradient model of plasma transport: applications to JET and future tokamaks[END_REF] and experiments [START_REF] Imbeaux | Modelling of ECH modulation experiments in ASDEX Upgrade with an empirical critical temperature gradient length transport model[END_REF][START_REF] Mantica | Experimental Study of the Ion Critical-Gradient Length and Stiffness Level and the Impact of Rotation in the JET Tokamak[END_REF] show that turbulent transport is triggered above a critical temperature gradient, and leads to resilient (also refered to as stiff) profiles above this threshold, with a stiffness that is expected to be large in ITER [START_REF] Kinsey | ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model[END_REF] . Inside magnetic islands, where the temperature profile is flattened, a reduced diffusivity is expected [START_REF] Hornsby | Interaction of turbulence with magnetic islands: effect on bootstrap current[END_REF] and effectively measured [START_REF] Ida | Reduction of Ion Thermal Diffusivity Inside a Magnetic Island in JT-60U Tokamak Plasma[END_REF][START_REF] Inagaki | Observation of Reduced Heat Transport inside the Magnetic Island O Point in the Large Helical Device[END_REF] . The consequences of this kind of transport rule has recently been investigated for nonlinear island saturation [START_REF] Fitzpatrick | Effect of nonlinear energy transport on neoclassical tearing mode stability in tokamak plasmas[END_REF] . Here we show analytically that profile stiffness strongly impacts the stabilization efficiency by localized heating. It varies as (P RF /P eq ) 1/σ , with σ the stiffness parameter, P eq the power injected inside the island position of a plasma at equilibrium and P RF the additional heat source centered at the O-point of the island. In the most common case where the ratio (P RF /P eq ) is small, the stabilization can be much larger than anticipated without profile stiffness.

II. STIFFNESS MODEL

We adopt a simple model for the heat diffusivity, that incorporates plasma stiffness in the vicinity of a reference a) patrick.maget@cea.fr state where turbulent transport equilibrates the incoming heat flux:

χ ⊥ = χ 0 ⊥ T /T eq σ-1 (1) 
where T is the temperature and the prime refers to the derivative relative to the radial co-ordinate, σ is the stiffness, the "eq" subscript refers to the equilibrium situation without magnetic island and without additional heating from RF waves, and χ 0 ⊥ is the heat diffusivity in this reference case. This formulation is consistent with the definition of the stiffness parameter given in [START_REF] Kinsey | ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model[END_REF] . In this representation, anomalous transport starts growing above a critical gradient T crit /T eq = 1 -1/(σ -1), with a soft transition between sub-and over-critical regimes. In this simple parametrization, the turbulent transport properties are assumed to be identical with and without island.

The equilibrium (no island) is assumed to be in a fully developped turbulent regime, above the threshold, with a distance to the threshold that depends on the stiffness parameter. In the realistic situation where the stiffness parameter is large, the temperature gradient cannot depart strongly from the threshold value. The variation of the temperature gradient when the power injected inside a given radial position is varied is illustrated in figure 1.

In the presence of an island, the above diffusivity model (equation 1) reproduces the fact that for a stiffness parameter σ larger than unity, the drive for turbulent modes (the temperature gradient here) may vanish and lead to a reduced diffusivity, as observed experimentally and expected theoretically. The effect of local heating on island stabilization has not been derived so far in this case (only σ = 1 has been considered in previous works), and this threshold property of turbulent transport leads to deep modifications of the island response to this control method, as we will show in the following.

FIG. 1. Ratio of the power injected inside a given radial position relative to its equilibrium value, as a function of the temperature gradient relative to its equilibrium value, for a stiffness parameter σ = 1 and σ = 8, and in the absence of any island.

III. ADDITIONAL HEATING IN THE ABSENCE OF ISLAND

The energy balance equilibrates the heat flux with the volumic heat source H:

∇ • (N χ ⊥ ∇T ) = -H (2) 
with N the plasma density. Without island, after integrating on the plasma volume inside a radial position r we obtain

-T (r) = r 0 dr J (r )H(r ) J (r)N (r)χ ⊥ (r) = P (r) (2π) 2 J (r)N (r)χ ⊥ (r) (3) 
with P (r) the power injected inside r and J the Jacobian of the co-ordinate system (r, θ, ϕ), with θ and ϕ the poloidal and toroidal angles, that in the large aspect ratio limit is J ≈ rR with R the major radius of the torus. At equilibrium, H = H eq and

-T eq (r) = r 0 dr J (r )H eq (r ) J (r)N (r)χ 0 ⊥ (r) = P eq (r) (2π) 2 J (r)N (r)χ 0 ⊥ (r) (4) 
When the plasma is heated by RF waves, H = H eq + H RF , P = P eq + P RF and -T (r) = P eq (r) (2π) 2 J (r)N (r)χ 0 ⊥ (r)

1 + P RF P eq 1/σ

(5)

The gradient increase due to the RF heating is reduced as expected when the stiffness is large.

IV. HEATING AT THE O-POINT OF AN ISLAND

Inside an island, the temperature gradient is reduced and may eventually go below the turbulent threshold, leading to a low level of diffusivity. In this context, the impact of a localized heat source strongly depends on the distance to the threshold, to which the equilibrium temperature gradient is close when the stiffness parameter is large. In the following we derive the evolution equation of the island width in the case of a localized heating source at the O-point, for an island that is large enough so that the temperature gradient without heating is zero inside the separatrix.

A. Temperature gradient increase due to localized heating

We consider the magnetic equilibrium of a tokamak with major radius R and minor radius a, a toroidal magnetic field B z , a safety factor q and magnetic shear s = (r/q)dq/dr in the large aspect ratio limit. The magnetic perturbation with poloidal and toroidal mode numbers m and n associated with the magnetic island localized at r = r s where q = m/n is B = ∇× ψe z . The magnetic flux surfaces are labelled by Ω with Ω = 8(x/w) 2 -cos(mα) with x = r -r s , α = θ -(n/m)ϕ, and w the island total width. We have the relation ψ

B z = - w 2 16 ns Rm cos(mα) (6) 
In the following we use the notations

g(α) ≡ cos(mα) (7) 
ψ 1 ≡ w 2 16 
B z ns Rm (8) 
After integrating equation ( 2) in the interval (2 √ 2 x ± /w) = ±Ω, we obtain:

- dT dΩ = P eq /(2π) 2 1-1/σ N χ 0 ⊥ J s w 4 √ 2 1+1/σ    Ω -1 dΩ J dα H(Ω ,α) √ Ω +g dα (Ω + g) σ/2    1/σ (9) 
with J s the Jacobian at the resonant surface. We assume that there is no other heat source in the island than RF power, with a constant value of H RF in the region Ω ∈ [-1, Ω c ] or µ = (Ω + 1)/2 ∈ [0, µ c ], with µ c < 1. This mimics a perfect O-point heating over a width δ H , with µ c = (δ H /w) 2 (see figure 2), and leads to where T s = T eq (r s ) and

- dT dΩ = P 1-1/σ eq P 1/σ RF (Ω) (2π) 2 N χ 0 ⊥ J s w 4 √ 2 π I σ (Ω) 1/σ = (-T s ) P tot RF P eq 1/σ w 4 √ 2 π I σ (Ω) E(µ) + (µ -1)K(µ) E(µ c ) + (µ c -1)K(µ c ) 1/σ (10 
I σ (Ω) = dα (Ω + g(α)) σ/2 (11) = 2 2+σ/2 µ 1/2+σ/2 J σ (µ) (12) 
J σ (µ) = π/2 0 dθ cos σ+1 θ 1 -µ sin 2 θ ( 13 
)
and K and E are the complete elliptic integrals of the first and second kind respectively:

K(µ) = π/2 0 dθ 1 -µ sin 2 θ (14) 
E(µ) = π/2 0 dθ 1 -µ sin 2 θ (15) 

B. Rutherford equation

The Rutherford equation is obtained via the integration of the Maxwell-Ampère law

-∇ 2 ⊥ ψ = µ 0 J ( 16 
)
Here we focus on the contribution of the perturbed ohmic current, due to the perturbed parallel electric field Ẽ and perturbed plasma resistivity η, using the Spitzer resistivity dependence on temperature η ∝ T -3/2 :

JΩ = Ẽ /η -J Ω η/η (17) = η -1 ∂ t ψ 1 g + J Ω 3 2 T /T (18) 
with the flux surface average operator:

A = dα A/ Ω + g / dα/ Ω + g (19)
Introducing the tearing stability index ∆ 5 and the normalized island width W = w/a, we obtain from the standard asymptotic matching procedure 20

I 1 τ R ∂ t W = a∆ + a∆ Ω (20) 
with τ R = µ 0 a 2 /η the resistive time and

I 1 = √ 2 ∞ -1 dΩ dα 2π g g √ Ω + g ≈ 0.82 (21) 
a∆ Ω = 24 W √ 2 q s µ 0 RJ Ω B z ∞ -1 dΩ dα 2π g T /T √ Ω + g (22) 
We consider a large island (compared with the characteristic transport scale length 3 ), so that the temperature profile without RF heating is flat inside the island. The perturbed temperature is determined from 

F σ (µ < µ c , µ c ) = µc µ dµ µ 1/2 1 µ 1/2 J σ (µ ) E(µ ) + (µ -1)K(µ ) E(µ c ) + (µ c -1)K(µ c ) 1/σ + 1 µc dµ µ 1/2 1 µ 1/2 J σ (µ ) 1/σ (24) F σ (µ > µ c , µ c ) = 1 µ dµ µ 1/2 1 µ 1/2 J σ (µ ) 1/σ (25)
Note that the symmetry in x of the temperature perturbation that is assumed here implies that the impact of the O-point heating on the bootstrap current perturbation 3 is zero within this model.

The stabilizing contribution due to a localized heating can finally be expressed as

a∆ Ω = -F Ω µ c , P tot RF P eq , σ a J q s µ 0 RJ Ω B z P eq N χ 0 ⊥ T s ( 26 
)
F Ω = 3 4π 2 I Ω (µ c , σ) 4 π 1-1/σ P tot RF P eq 1/σ (27) with I Ω (µ c , σ) = I 1 (µ c , σ) + I 2 (µ c , σ) + I 3 (µ c , σ)
and

I 1 (µ c , σ) = µc 0 dµ [2E(µ) -K(µ)] µc µ dµ µ 1/2 1 µ 1/2 J σ (µ ) E(µ ) + (µ -1)K(µ ) E(µ c ) + (µ c -1)K(µ c ) 1/σ (28) I 2 (µ c , σ) = µc 0 dµ [2E(µ) -K(µ)] 1 µc dµ µ 1/2 1 µ 1/2 J σ (µ ) 1/σ (29) I 3 (µ c , σ) = 1 µc dµ [2E(µ) -K(µ)] 1 µ dµ µ 1/2 1 µ 1/2 J σ (µ ) 1/σ (30)
Note that using equation 4, and introducing the temperature gradient length L T ≡ (-T s /T s ), we can also express the stabilization effect as

a∆ Ω = -F Ω µ c , P tot RF P eq , σ (2π) 2 a L T q s µ 0 RJ Ω B z (31)
showing that the knowledge of the equilibrium profiles and of the function F Ω fully characterizes the expected island decay rate.

The function I Ω is computed numerically and fitted with a simple formulae in the range µ c ∈ ]0, 1[ (39 points) and σ ∈ [1, 9] (9 points) using the Mathematica software [START_REF] Inc | Mathematica[END_REF] (figure 3), so that the function F Ω can be approximated by: For σ = 1 (no profile resilience), the stabilizing contribution of RF heating writes

a∆ Ω = -C Ω (µ c ) a J q s µ 0 RJ Ω B z P tot RF N χ 0 ⊥ T s (33) 
C Ω ≈ 3 4π 2 1.40 -1.09µ c + 0.24µ 2 c -0.23µ c ln µ c (34)
The stabilization effect is linear in P tot RF in this case. The expression for C Ω (µ c ) can be compared with previous analytical 7 and numerical [START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF][START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF] works:

C HC Ω (µ c ) = 2 C 0 5π 2 µ 1/2 c E(µ c ) + (µ c -1)K(µ c ) (35) 
C DL Ω (µ c ) = 6 π 2 N H (µ c )M H (µ c )/f on (µ c ) (36) 
where the superscript HC refers to reference 7 and DL to references [START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF][START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF] . The result of 7 (equation (33)) exhibits a divergence for an extremely localized source (µ c → 0), but is otherwise quantitatively similar to our result. For the comparison with references [START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF][START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF] , we need to take into account the fact that the situation comparable (but not strictly identical) to the one we consider is a modulation with an on-time f on (µ c ) = π -1 arccos(1 -2µ c ). The effective stabilization is then a∆ Ω (σ)×f on , thus explaining the division by f on in the above expression. This procedure cannot reproduce exactly the modulation scheme, because in this latter case the deposition width in terms of flux surface (our variable µ c ) tends to be larger as the heat source departs from the O-point. We expect therefore the coefficient C DL Ω to be lower. Also, the RF heat source is Gaussian in reference [START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF] instead of Heaviside in our model. We need therefore to express the Gaussian deposition width as a function of µ c ≡ (δ H /w) 2 , and we choose to identify the width at half the maximum of the Gaussian with δ H , as was done in 2 where the difference between Heaviside and Gaussian shapes on island stabilization efficiency by current drive was found to be moderate. The comparison of the factor C Ω for σ = 1 (equations 34, 35 and 36) is displayed in figure 4, showing a reasonable agreement.

V. APPLICATIONS WITH PLASMA PARAMETERS OF LARGE TOKAMAKS

The importance of profile stiffness on the island stabilization capability by RF heating is illustrated by computing the quantity a∆ Ω (σ)×f on as a function of µ c and P tot RF /P eq (figure 5), as well as the ratio ∆ Ω (σ)/∆ Ω (σ = 1) (figure 6). We take as a typical value σ = 8 expected in ITER [START_REF] Kinsey | ITER predictions using the GYRO verified and experimentally validated trapped gyro-Landau fluid transport model[END_REF] . For moderate values of P tot RF /P eq (typically below unity), profile resilience is favourable since the heat diffusivity remains low inside the island as long as the temperature gradient stays below its equilibrium value, thus enhancing the effect of the RF power. For a typical medium size tokamak experiment (i.e. Asdex-Upgrade), taking B = 2.5 T , R = 1.7 m, a = 0.5 m, r = 0.2 m, q = 3/2, s = 1, J Ω = 5 × 10 5 A/m 2 , N = 6 × 10 19 m -3 , T = 2 keV , χ 0 ⊥ = 2 m 2 /s, P tot RF = 2 M W , P eq = 10 M W , and a 50% modulation scheme, we have µ c = 0.5, and an average stabilizing contribution from ohmic heating of a∆ Ω (σ) × f on ≈ -85 for σ = 8 instead of (-24) for σ = 1. In this example where P tot RF /P eq is small (as is generally the case), the importance of the heating contribution to island stabilization with RF is therefore much larger than computed so far without profile stiffness, and the contrast between small and large profile stiffness is expected to increase as this ratio will be lower.

VI. SUMMARY

The nature of turbulent transport in tokamak plasmas, that manifest itself by stiff temperature profiles, strongly impacts the response of a magnetic island to a heating source localized at its O-point. We have shown, using a simple model for the heat diffusivity in the vicinity of an equilibrium point, that the stabilization efficiency of this control method can be larger than predicted without profile stiffness, in the usual situation where the power used for the control is less that the power already circulating in the island region. An expression for the contribution of localized heating to the island dynamics has been derived for arbitrary stiffness strength, and we find reasonable agreement with previously published results in the limit without stiffness.
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 2 FIG.2. Schematic view of the island geometry and heating area of width δH .

FFIG. 3 .

 3 FIG.3. IΩ = f (µc) and the fit given by equation 32 for σ = 1 and σ = 8.
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 4 FIG.4. Case σ = 1 : comparison of the CΩ(µc) term with references 7 (we take C0 = 1) and[START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF][START_REF] Lazzari | On the merits of heating and current drive for tearing mode stabilization[END_REF] .
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 85 FIG. 5. The function FΩ µc, P tot RF Peq , σ for σ = 1 (left) and σ = 8 (right).
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 6 FIG. 6. The ratio FΩ µc, P tot RF Peq , σ = 8 /FΩ µc, P tot RF Peq , σ = 1 .
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