
HAL Id: hal-01721363
https://hal.science/hal-01721363v1

Submitted on 8 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Exact Hydrodynamic Description of Active Lattice
Gases

Mourtaza Kourbane-Houssene, Clément Erignoux, Thierry Bodineau, Julien
Tailleur

To cite this version:
Mourtaza Kourbane-Houssene, Clément Erignoux, Thierry Bodineau, Julien Tailleur. Exact Hydro-
dynamic Description of Active Lattice Gases. Physical Review Letters, 2018, 120 (26), pp.268003.
�10.1103/PhysRevLett.120.268003�. �hal-01721363�

https://hal.science/hal-01721363v1
https://hal.archives-ouvertes.fr


Exact Hydrodynamic Description of Active Lattice Gases

Mourtaza Kourbane-Houssene,1 Clément Erignoux,2 Thierry Bodineau,3 and Julien Tailleur1
1Université Paris Diderot, Sorbonne Paris Cité, MSC, UMR 7057 CNRS, 75205 Paris, France

2Instituto de Matemática Pura e Aplicada, Rio de Janeiro, Brazil
3CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, 91128, Palaiseau, France

(Dated: January 30, 2018)

We introduce a class of lattice gas models of active matter systems whose hydrodynamic descrip-
tion can be derived exactly. We illustrate our approach by considering two systems exhibiting two of
the most studied collective behaviours in active matter: the motility-induced phase separation and
the transition to collective motion. In both cases, we derive coupled partial differential equation de-
scribing the dynamics of the local density and polarization fields and show how they quantitatively
predict the emerging properties of the macroscopic lattice gases.

Active matter systems are intrinsically out of thermal
equilibrium due to the dissipation of energy at the mi-
croscopic scales to produce motion [1–4]. The result-
ing non-Brownian random walks endow these systems
with a rich phenomenology, from the long-range order
observed in 2D assemblies of self-propelled particles [5–
8] to the spatio-temporal chaos of dense assemblies of
nematic particles [9, 10] through the enhanced cluster-
ing resulting from the interplay of repulsive forces and
self-propulsion [11–13].

The toolbox of equilibrium statistical mechanics can-
not be used a priori to describe such non-thermal sys-
tems and one has to rely on dynamical studies, even to
characterize systems in a steady state. When an effective
detailed-balance with respect to a non-Boltzman distri-
bution is (partially) restored [14–16], this can only be
established after a complex, case-by-case study of other-
wise analytically untractable dynamics. Numerical simu-
lations have thus become a prominent tool to study active
matter, and progress is often hindered by strong finite-
size effects [17]. In such contexts, exact results derived
on simple model systems can offer much needed guiding
principles. Whereas this has frequently been true out-
side equilibrium, for instance to characterize dynamical
phase transitions [18], little success has been achieved
along these lines for active matter systems. In particu-
lar, the derivation of coarse-grained descriptions of ac-
tive systems has attracted a lot of interest over the past
decades [19–31], but the complexity of the underlying
microscopic models has prevented the derivation of ex-
act results outside the mean-field regime [32, 33].

In this letter, following the recent interest for lattice
models of active particles [27, 31, 34–39], we introduce a
new class of active lattice gas models whose large-scale
physics can be described exactly. We build on recent de-
velopments in the mathematical-physics literature to de-
rive exact hydrodynamic descriptions of lattice gases [40–
43]. For illustration purposes, we focus on two of the
most studied emergent behaviours in active systems: the
motility-induced phase separation (MIPS) [11, 15, 44]
and the transition to collective motion [5, 17, 45], but the
approach we present here can be extended beyond these

cases. For both systems, we single out the relevant hy-
drodynamic modes and construct their exact dynamics.
This allows us both to simulate efficiently their large scale
behaviours as well as analytically study their instabilities
and the corresponding phase diagrams.

We first consider a microscopic lattice gas which ex-
hibit MIPS. N particles evolve on a discrete ring of αL
sites. There are two types of particles and each site is
occupied by at most one particle so that a configuration
can be represented using occupation numbers σi at site
i with values in {−1, 0, 1}. To model self-propulsion, we
endow the + particles with a weak drift to the right and
the − particles with a weak drift to the left, in addition
to a symmetric diffusive motion. Furthermore, a particle
can tumble and change sign at fixed rate. More precisely,
the dynamics combine 3 mechanisms:

1.1 For each bond (i, i + 1), σi and σi+1 are exchanged
at rate D.

1.2 For each bond (i, i + 1), a + particle in i jumps to
i+ 1 if σi+1 = 0 or a − particle in i+ 1 jumps to i if
σi = 0, with rate λ/L.

1.3 Particles switch sign at rate γ/L2.

The total number of particles is N ≡ ρ0αL where ρ0 ∈
[0, 1] stands for the mean density. The system remains
homogeneous for small ρ0 or λ, whereas the homogeneous
phases become unstable for large densities and drift. The
previous dynamics can be generalized to higher dimen-
sions. We show in Fig. 1 the result of 2D numerical sim-
ulations leading to the coexistence between dilute and
dense phases typical of MIPS. Depending on whether the
2D case is built solely with a left-right bias or whether
one considers biases along each of the four directions, we
observe different symmetries for the coexistence phases.

To account for this phenomenology, one needs to char-
acterize the evolution of the local density of particles.
The expectation of the microscopic variables can be
computed from the dynamical rules. For example, let
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Figure 1. Snapshots of microscopic simulations of dynamics
1.1-1.3 in 2D showing MIPS for lattices of αL×αL sites, with
L = 100. The symmetry of the dense phase depends whether
particles are biased only along x̂ (left, α = 4, ρ0 = 0.65) or can
point along the four lattice bonds (right, α = 8, ρ0 = 0.63).
The color of a site gives the direction of a particle: blue for �,
green for �, red for �, yellow for �. Simulations parameters:
D = 1, γ = 10, λ = 40.

σ±i (t) = 1{σi(t)=±1} then

∂t〈σ+
i 〉 =D[〈σ+

i+1〉+ 〈σ+
i−1〉 − 2〈σ+

i 〉]−
γ

L2

[
〈σ+
i 〉 − 〈σ

−
i 〉
]

+
λ

L

[〈
σ+
i−1
(
1− |σi|

)〉
−
〈
σ+
i

(
1− |σi+1|

)〉]
(1)

These equations are however not closed, since the evolu-
tion of 〈σ+

i (t)〉 involves the correlator 〈σ+
i (t)|σi+1(t)|〉.

A closed, explicit description of the dynamics can, how-
ever, be achieved at the macroscopic level. Indeed, fol-
lowing [40–43], we chose the three processes above to oc-
cur with rates scaling with L in such a way that they all
contribute equally to a hydrodynamic regime obtained
by a diffusive rescaling of space and time: x = i/L and
τ = t/L2. Indeed, the first dynamical rule leads to the
diffusion of the particles: if one follows the particles with-
out their signs, the exchange dynamics 1.1 amount to a
symmetric simple exclusion process (SSEP). This first
rule makes particles travel a distance ∆i ∼ L on a time
δt ∼ L2 and hence at a macroscopic scale ∆x ∼ 1 for
∆τ ∼ 1. The second rule applies at a reduced rate λ/L,
but provides a systematic drift to the left or to the right
depending on the particle type. Similarly, in a time L2,
this leads to a displacement of order L. Finally at an
even more reduced rate γ/L2, the particle type changes
which boils down to saying that a particle changes di-
rection once in a macroscopic unit of time. This occurs
sufficiently rarely so that the drift has a macroscopic ef-
fect between two updates.

To derive the hydrodynamic description of the system
in the large L limit, we introduce the macroscopic densi-
ties as

ρ±(x, τ) ' 1

2Lδ

∑
|i−Lx| 6 Lδ

1{σi(τL2)=±1}, (2)

where the coarse graining scale is determined by the
parameter δ ∈ (0, 1). Note that the microscopic sys-
tem size αL depends on two parameters: 1/L plays the
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Figure 2. Successive snapshots leading to phase coexistence
in 1D: the microscopic (red) and macroscopic (blue) simula-
tions agree quantitatively. Simulation parameters: D = 1,
λ = 5, γ = 0.1, ρ0 = 0.75, α = 4. Microscopic simula-
tions: Continuous time simulation of dynamics 1.1-1.3 with
L = 1000. The density profiles of the microscopic simulations
are averaged over 200 independent runs; Macroscopic sim-
ulations: Semi-spectral method with n = 50 modes and a
semi-implicit Euler time-stepping with dt = 10−4.

role of a microscopic mesh; it vanishes in the L → ∞
limit in which α then controls the rescaled system size
x ∈ [0, α]. The macroscopic equations for the densities
(ρ+, ρ−), starting from a smooth initial condition, can
then be derived exactly as

∂τρ
+ = D∂2xρ

+ − λ∂x[ρ+(1− ρ)]− γ(ρ+ − ρ−), (3)

∂τρ
− = D∂2xρ

− + λ∂x[ρ−(1− ρ)] + γ(ρ+ − ρ−), (4)

where the total density is ρ = ρ+ + ρ−. The mathe-
matical method to rigorously derive these hydrodynamic
equations has been initiated in [40, 41] and we refer to [43]
for a detailed implementation. We will explain below the
underlying principles. Intuitively, Eq. (3) can be deduced
from the microscopic equation (1) by first replacing the
discrete differences by derivatives. Justifying the forms
of the non-linear advection terms require to close the two-
point correlations in (1). Even though on a macroscopic
scale the three mechanisms of the dynamics compete at
equal footing, the first one dominates locally as it occurs
much more frequently. Thus, in the large L limit, it can
be shown that the local correlations are controlled by the
stirring part. The invariant measures of the dynamics re-
duced to the stirring part are product Bernoulli measures
indexed by two parameters which prescribe the local den-
sities of ± particles. Thus, at any time, the local statis-
tics of the full dynamics are determined by a product of
Bernoulli measures parametrized by the local densities
(2). The approximation by these local measures is valid
beyond the expectation of the correlations and applies
at the level of sample paths so that local averages as in
(2) converge with high probability to the solution of the
hydrodynamic equations (3)–(4). Note that the hydro-
dynamic equations directly extend to higher dimensions.
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We compare in Fig. 2 simulations of the microscopic and
macroscopic dynamics for the 1D case. A perfect agree-
ment between the two dynamics is observed on their way
to phase coexistence.

To analyze the emerging behaviours predicted by (3)-
(4), we first introduce an unnormalized polarization field
m = ρ+ − ρ−. The dynamics can then be reduced to
a dimensionless form using ρ = ρ̄ρ̃, m = ρ̄m̃, x = `x̃

and t = τ t̃ where ρ̄ = 1, τ = 1
γ , ` =

√
D
γ , so that x̃ ∈

[0;α
√

γ
D ]. In this system of units the evolution equation

reads:

∂tρ = ∆ρ− Pe∇(m(1− ρ)) (5)
∂tm = ∆m− Pe∇(ρ(1− ρ))− 2m (6)

with Pe = λ√
Dγ

and where, for the sake of clarity, we
have omitted the tilde notation (we stick to the rescaled
variables until the end of the discussion of this model).
Eqs. (5) and (6) show that the system is fully character-
ized by two control parameters: the density ρ0 = N/L
and the Péclet number Pe. The latter compares the
length traveled between two tumbles thanks to the drift,
λ/γ, to the one resulting from the diffusive dynamics,√
D/γ. For small Péclet numbers, the diffusion domi-

nates and the effect of self-propulsion is negligible. Con-
versely, the effect of activity gets more and more pro-
nounced as Pe increases.

The homogeneous solutions of Eqs. (5)–(6), ρ(x, t) =
ρ0 and m(x, t) = 0, are linearly unstable when

Pe2(1− ρ0)(2ρ0 − 1) > 2. (7)

For any Pe larger than a critical value Pec = 4, the
system is thus linearly unstable for ρ0 ∈ [ρsl , ρ

s
h] with

ρsl,h = 3
4 ±

1
4

√
1− 16

Pe . This defines the spinodal re-
gion of the system. Note that this is a large wavelength
instability, observed only for macroscopic system size
Lα ≡ α

√
γ
D > 2π√

Pe2(1−ρ0)(2ρ0−1)−2
. We now turn to

the computation of the coexisting densities, generalizing
the method introduced in [46].

For simplicity, we consider the 2D case with left-right
bias in which the interfaces between the phases are flat
and along ŷ. We consider fully phase-separated profiles
and use Eqs. (5)–(6) to construct a domain-wall solution
describing the evolution of the density and magnetization
fields through an interface. In the steady-state, Eq. (5)
simply leads to m = 1

Pe
∇ρ
1−ρ . Eq. (6) then reads ∂xg = 0

with

g ≡ g0(ρ) + Λ(ρ)(∂xρ)2 − κ(ρ)∂xxρ (8)

where Λ(ρ)−1 = −Pe(1− ρ)2, κ(ρ)−1 = Pe(1− ρ), and
g0(ρ) = Pe ρ(1 − ρ) − 2 log(1 − ρ)/Pe. Since the density
is homogeneous in the gas and liquid phases, one gets a
first relationship between the coexisting densities:

g0(ρg) = g0(ρ`) ≡ ḡ(Pe) (9)
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Figure 3. Phase diagram of the MIPS observed for dynam-
ics 1.1-1.3. For each Peclet number, the coexisting phases
are computed analytically (red line), by simulating the mi-
croscopic process (black & green dots) and by numerically
solving the macroscopic equations (red crosses). The analytic
predictions for the spinodals are shown in blue.

We now introduce a function R(ρ) such that R′′κ =
−(2Λ + κ′)R′ and φ(R) such that φ′(R) = g0(ρ). Com-
puting I =

∫ x`
xg
g∂xRdx leads to

I = ḡ[R(ρ`)−R(ρg)] = Φ(R`)− Φ(Rg) . (10)

Eq. (10) then enforces the equality of h0 ≡ φ′(R)R−φ(R)
between the two phases. The function R and φ can be
computed explicitly as

R(ρ) = log(1− ρ); Φ(R) = Pe(1− eR

2
)eR − R2

Pe
(11)

The binodals can then be computed from the equality
of g0 and h0 between the two phases, which amounts to
a common tangent construction on φ(R). The resulting
phase diagram is shown in Fig 3. It shows perfect agree-
ment with both simulations of the hydrodynamic equa-
tions and of the microscopic models in 1D and 2D. As
far as we are aware, this is the first microscopic model
for which the hydrodynamic description and the phase
diagram of a motility-induced phase separation can be
derived exactly.

We now turn to the phase transition leading to collec-
tive motion which is probably the most studied emerging
behaviour in active matter [1, 5–8, 17, 27, 45]. Following
the strategy laid out in the first part of this letter, we
introduce a microscopic model of polar aligning active
particles and derive its hydrodynamic limit exactly. For
simplicity, we first describe the model in one dimension.
N particles evolve on a discrete ring of αL sites. Each
particle is described by two degrees of freedom: its posi-
tion i ∈ {1 . . . L} and its orientation, noted ± in 1D. We
call ηi = (η+i , η

−
i ) ∈ N2 the number of particles of each

type on site i. The dynamics of a ± particle is given by
the three following processes:
2.1 Symmetric hops with rate 2D
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Figure 4. Successive snapshots of one-dimensional simula-
tions of the microscopic dynamics 2.1-2.3 and of the hydro-
dynamic equations (17) and (18). The system is in the or-
dered phase and the initial condition is fully ordered with
ρ(x, t) = ρ0[1 + cos(2πx)]. Microscopic simulations: the
density profiles are obtained by averaging over 300 contin-
uous time simulations of the dynamics 2.1-2.3 on a lattice
of L = 1000 sites (α = 1); Macroscopic simulations:
pseudo-spectral simulations with 50 Fourier modes and a
semi-implicit time-stepping with dt = 10−4. Physical param-
eters: D = 0.5, λ = 4, β = 0.8.

2.2 Jumps from site i to i± 1 with rate λ
L

2.3 Flips into a ∓ particle with rate 1
L2 c
±
i (η+i , η

−
i )

where we choose c± to produce a polar alignement

c±(η+i , η
−
i ) = exp[∓β(η+i − η

−
i )] (12)

We consider again a diffusive rescaling of time and
space to obtain the exact hydrodynamic equations

∂tρ
+ = D∆ρ+ + λ∇ρ+ − F (ρ+, ρ−) (13)

∂tρ
− = D∆ρ− − λ∇ρ− + F (ρ+, ρ−) (14)

where the functions F (ρ+, ρ−) are given by

F (ρ+, ρ−) = f+(ρ+, ρ−)− f−(ρ+, ρ−) (15)

and f±(ρ+(x), ρ−(x)) are the averages of n±c±(n+i , n
−
i )

with respect to the local Poisson measure

νρ+,ρ−(n+i , n
−
i ) = e−ρ

+−ρ− (ρ+)n
+
i

(n+i )!

(ρ−)n
−
i

(n−i )!
. (16)

Again, while the dynamical rules 2.1− 2.3 all contribute
equally in the hydrodynamic scaling, the symmetric ran-
dom walk equilibrates much faster on the microscopic
mesh scale. The averages of the non-linear contributions
due to the flipping rules are thus computed with respect
to local Poisson measures, which are the steady-state
measures of the symmetric random walk, conditionned
to producing the correct mean local densities of + and −
particles. Finally, the hydrodynamic equations (13)–(14)
can be rewritten in the more familiar form

∂tρ = D∆ρ+ λ∇m (17)

∂tm = D∆m+ λ∇ρ− 2F̃ (m, ρ) (18)
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Figure 5. Phase diagram of the flocking transition observed
for dynamics 2.1-2.3 in the T, ρ plane for D = 0.5 and λ = 1.
The spinodals are shown in blue. Simulations of the hydro-
dynamics equations (red lines) and the microscopic model
(green dots) lead to coexisting densities which are in agree-
ment within the accuracy of our simulations.

where

F̃ =
(
m ch[m sh(β)]− ρ sh[m sh(β)]

)
e−β+ρ ch(β)−ρ

(19)

Note that F̃ is not equal to the mean-field expectation
of n+c+ − n−c−.

Simulations of the microscopic model and its hydro-
dynamic description confirm the presence of a transition
to collective motion. At large ‘temperature’ T ≡ β−1

and low density ρ0 = N/V , the system is in a homo-
geneous disordered ‘gas’ phase. At low noise and large
density, the system is in a homogeneous ordered liquid
phase with a non-zero average flux of particles in the
steady state. These homogeneous phases are separated
by a coexistence region in a which a dilute disordered
gas of density ρg(T ) coexist with a dense liquid phase
of density ρ`(T ). A perfect agreement between simula-
tions of the microscopic model and of its hydrodynamic
description is shown in Fig. 4 where the relaxation of
a perturbation towards a homogeneous liquid phase is
shown.

For this microscopic model, the similarity of this tran-
sition to collective motion with a liquid-gas phase transi-
tion in the canonical ensemble can now be derived an-
alytically. The hydrodynamic description indeed pre-
dicts that the disordered homogeneous phase ρ(x) =
ρ0,m(x) = 0 loses linear stability for densities such that
∂mF̃ (0, ρ) < 0, i.e. ρ0 > ρgs ≡ sh(β)−1. Then, a fully
ordered solution appears given by ρ(x) = ρ0 and m0 the
solution of

m0

ρ0
− tanh[m0 sh(β)] = 0 . (20)

This solution is however linearly unstable for ρgs < ρ0 <
ρ`s and leads to the travelling bands described above. As
far as we are aware, this is the first time that the exis-
tence of a region in which neither homogeneous phases
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is stable is rigorously proven. At higher densities, for
ρ0 > ρ`s, the ordered uniform state becomes linearly sta-
ble. In agreement with the liquid-gas scenario proposed
for the flocking transition [27, 45], the coexisting densi-
ties are such that ρg < ρgs < ρ`s < ρ`. The corresponding
phase diagram is shown in Figure 5. The coexisting den-
sities observed for the microscopic model agree with their
macroscopic counterparts within the numerical accuracy
of our simulations.

In this Letter we have introduced a class of lattice mod-
els for which one can derive exact hydrodynamic equa-
tions. Our strategy relies on scaling the rates of the dif-
ferent dynamical contributions so that they contribute
equally at a diffusive hydrodynamic scale. The symmet-
ric hopping however controls the dynamics at a local,
mesoscopic scale. This yields an explicit form for the
local measure one needs to use to compute the average
of any non-linear function entering the dynamics of the
mean local densities. Then, the hydrodynamic descrip-
tions allow us to characterize the large scale emerging
behaviours of these active lattice gases. In particular we
have introduced two models presenting two of the most
studied collective behaviours of active particles, namely
the Motility-Induced Phase Separation and the transi-
tion to collective motion. Constructing more general
models is rather straightforward using the ingredients
presented in this letter, for instance to study nematic
alignement or the interplay between MIPS and aligning
torques. Note that the hydrodynamic description is ex-
act for finite macroscopic times in the L→∞ limit. For
large-but-finite sizes, describing the statistics of the ac-
tive lattice-gas trajectories requires the addition of sub-
leading fluctuating terms, in the spirit of the Macroscopic
Fluctuation Theory [18, 47, 48]. These terms are key to
understanding the selection of meta-stable propagating
solutions observed in simple flocking models [45, 49, 50];
their rigorous mathematical derivation, however, remains
an open challenge.
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