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RESUME. La modélisation par des équations différentielles d'ordre fractionnaire présente plus d'avan-
tages pour décrire la dynamique d'un phénomeéne a mémoire qui existe dans de nombreux systémes
biologiques. Dans cet article, nous proposons un modele d'ordre fractionnaire pour I'infection par le
virus de I'immunodéficience humaine (VIH) en incluant une classe de cellules infectées qui ne pro-
duisent pas encore de virus, c'est-a-dire, des cellules au stade de |'éclipse. Nous prouvons d'abord
la positivité et la bornitude des solutions afin d’assurer que le modéle proposé est bien posé. En
construisant des fonctions de Lyapunov appropriées, la stabilité globale de I'équilibre libre et de I'équi-
libre d'infection chronique est établi. Des simulations numériques sont présentées afin de valider nos
résultats théoriques.

ABSTRACT. Modeling by fractional order differential equations has more advantages to describe the
dynamics of phenomena with memory which exists in many biological systems. In this paper, we
propose a fractional order model for human immunodeficiency virus (HIV) infection by including a
class of infected cells that are not yet producing virus, i.e., cells in the eclipse stage. We first prove the
positivity and boundedness of solutions in order to ensure the well-posedness of the proposed model.
By constructing appropriate Lyapunov functionals, the global stability of the disease-free equilibrium
and the chronic infection equilibrium is established. Numerical simulations are presented in order to
validate our theoretical results.

MOTS-CLES : Infection par le VIH, stade de I'éclipse, taux d'incidence non linéaire, stabilité globale.

KEYWORDS : HIV infection, eclipse stage, nonlinear incidence rate, global stability.




1. Introduction

In recent years, many mathematical models used fractional order differential
equations (FDEs) have been developed to better describe the dynamics of viral
infections such as the human immunodeficiency virus (HIV), the hepatitis B vi-
rus (HBV) and the hepatitis C virus (HCV). In 2012, Arafa et al. [1] introduced
fractional-order into a model of HIV infection of CD4™ T cells and they studied
the effect of the changing the average number of viral particles with different
sets of initial conditions on the dynamics of the presented model. In 2016, Liu
et al. [2] proposed a fractional mathematical model which includes cure rate and
Beddington-DeAngelis functional response. They established only the local stabi-
lity of equilibria, but not investigated the global stability of these equilibria. In
2017, Salman and Yousef [3] considered a fractional-order model for HBV infec-
tion with cure of infected cells and they discussed the local asymptotic stability of
equilibria. In the same years, Boukhouima et al. [4] generalized all the above mo-
dels by modeling the infection transmission process by Hattaf’s incidence rate [5].
This incidence rate was used by many authors [6-9] and it covers many common
types existing in the literature, such as the bilinear incidence function called also
the mass action, the saturation incidence rate, the Beddington-DeAnglis functio-
nal response [10,11] and the Crowley-Martin functional response [12]. In the above
fractional-order models [1-4], infected cells are assumed to produce new virions im-
mediately after target cells are infected by a free virus. However, there are many
biological steps between viral infection of target cells and the production of new
virions. In our study, we extend and improve these fractional models by incor-
porating an eclipse phase, representing the stage in which infected cells have not
started to produce new virions.

The rest of this paper is outlined as follows. In the next section, we formulate
our fractional model and give their basic properties. In Section 3, by constructing
suitable Lyapunov functionals, the global stability of equilibria is investigated.
Numerical simulations are presented in Section 4. Finally, we conclude our results
and give future work.

2. Model formulation and basic properties

The first aim of this paper is to extend and improve the fractional-order models
[1-4] by proposing the following model

DOT(t) = A —prT(t) — F(T(), V)V (E) + pE(2),
DOE(t) = [(T(), VOV () - (ug + p+)E(®), 0
DeIt) = yE(t) - prl(t),
DOV(t) = kI(t) - py V().

where D is fractional derivative in the Caputo sense and « is a parameter that
describes the order of the fractional time-derivative with 0 < @ < 1. The variables
T(t), E(t), I(t) , V(t) denote the concentrations of uninfected CD4T T cells,
infected cells in the eclipse stage (unproductive infected cells), productive infected
cells and free HIV particles at time ¢, respectively. The constant A is the production
rate of infected CD4™ T cells and pr is their natural death rate, and f(T,V)V =



pTV describes the incidence of HIV infection of health CD4+T
1 + OélT + OéQV + OégTV
cells, where a1, g, 3 > 0 are the saturation factors measuring the inhibitory or
psychological effect, and f is the infection rate. The unproductive infected cells die
at the rate pg, return to the uninfected cells at the rate p and become productive
infected cells at the rate . Productive infected cells die at the rate py. Free HIV
particles are produced from infected cells at the rate k and cleared at the rate py .
It is very important to note when a = 1, system (1) becomes a model with an
ordinary derivative presented by Hattaf and al. in [8] which is the generalization
of ODE models presented in [14, 16].

The use of fractional derivative in our model is justified by the fact that the
membranes of cells of biological organisms have fractional order electrical conduc-
tance [17]. Further, the comparisons between the results of the fractional-order
model, the results of the integer model and the measured real data obtained from
10 patients during HIV infection show that the results of the fractional-order mo-
del give predictions to the plasma virus load of the patients better than those of
the integer model [18].

For biological reasons, we assume that the initial data for system (1) satisfy :

T(0)=T52>0, E(0)=Eo >0, I(0) =1Io >0, V(0) = Vo > 0. (2)

First, we have the following result.

Theorem 2.1. For any initial data satisfying (2), system (1) has a unique solu-
tion on [0,+00). This solution remains non-negative and bounded for all t > 0.
Moreover, we have

(i) N(t) < N(0) + 3,
(i) V() < V(0) + 7= |11,
where N(t) =T(t) + E(t) + I(t) and § = min{pur, pug, 11}

Proof. From (1), we have

DT |r—o = A+pE >0,
DYE |pey = (T, V)V >0,
DI'|1=o = ~vE >0,

DV ly—o = KI>0.

It follows from [13] that the set R} = {(T,E,I,V) e R* : T > 0,F > 0,1 >
0,V > 0} is positively invariant.

It is not hard to see that the vector function of system (1) satisfies the first
condition of Lemma 4 in [4]. It remains to show the second condition condition of
this Lemma. Let

T(t) A
X(t) = ?((tt)) and n = 0

<
—~
~+
~
s}

So, we discuss four cases :
If oy # 0, then system (1) can be written as follows
OélT

DOX(t) =n+ A4 X A X
(&) =n+M4 T r T T oaV T aaTV 2




where

—ur P 0 0 00 0 ;—;
A= O ety 00— 000 &
0 o —pur 0 000 O
0 0 ko —pv 000 O
(3)
Then
DX @) < [Inll + ([[Ax ]| + [[A=]]) [|X]] - (4)

If ag # 0, we have
OéQV

DX (t) = A X Az X
(&) =n+M4 +1+a1T+a2V+a3TV 3
where
=50 0 0
s £ 00 0
3= @2
0 0 0 O
0 0 0 O
Then

DX @O < llnll + ([ A2+ [ Asl) 1 X
If ag # 0, we have

OégTV

DX (t) = A1 X
(&) =n+MA +1+a1T+a2V+a3TV

AuX,

where
;—jooo
L 90 0
A= @
4 0 00 0
0 0 0 0
Then

DX @I < llnll + (1Al + [[Aall) 1 X

If a1 = as = az3 =0, we have
DX(t)=C+ A1 X +VA5X,

where

As

ooﬁ%
cooco
o O OO
o O OO

Then
DX @) < [I<I] + (VI As]| + [[A[[) ]| X]]-

Hence, the second condition of Lemma 4 in [4] is satisfied. Therefore, system (1)
has a unique solution on [0, +00).
By adding the first three equations of system (1), we obtain

DON(t) < A —SN(1),



which implies that

N(t) < N(0)Ey(—0tY) + % [1 — Eo(—0tY)],
— : : :
where F,(z) = kgo Tk +1) is the Mittag-Leffler function of parameter «. Since
0 < Eq(—0t*) <1, we deduce (i).

Now, we show (ii). The fourth equation of system (1) implies that

V(t) =V (0)Es(—pyvt®) + k/o al(s)(t —8)* LB (—pv (t — 5)*)ds.

Then
V(t) < V(0)Ba—puyt®) + uiv Ml L= Ea(—pvt®).

Thus,
k
V($) <V(0) + — || u
2%

We begin the analysis of the equilibria by observing that system (1) has a
disease-free equilibrium Qo(—,0,0,0). Then we define the basic reproduction
Hr
number of (1) as follows

_ ABky
prpy (Mo + pr)(p+ pe +7)

Ry

which represents the average number of secondary infections produced by one
productive infected cell during the period of infection when all cells are uninfected.
Similarly to [8], it is not hard to get the following result.

Theorem 2.2.
(i) If Ry < 1, then the system (1) has a unique disease-free equilibrium of
the form Qo(T0,0,0,0), where Ty = i
wr
(ii) If Ry > 1, then the disease-free equilibrium is still present and the system
(1) has a unique chronic infection equilibrium of the form Q1(Ty, By, I1, Vi) where
A A — prT A — prT Ey(A — prT;
T e, 2y, = 2ot oA = prTy) - kA pr)
pir 1E +7 pr(pe +7) prpy (pe +7)

3. Global stability

In this section, we establish the global stability of the disease-free equilibrium
Qo and the chronic infection equilibrium ;.

Theorem 3.1. If Ry <1, then the disease-free equilibrium Qo is globally asymp-
totically stable, and becomes unstable if Ry > 1.



Proof. Consider the following Lyapunov functional
T T T—-To+ E)?
Lot) = —2 & (_) n p( 0 )
1—|—O[1T0 To 2(1+O‘1TO)(,UT+,UE+”Y)TO

+p+uE+vI+E+uz(p+kuE+”y)M
y

where ®(z) =z — 1 — In(z),x > 0. By using the property of fractional derivatives
given in [19], we can compute

1 T p(T — Ty + E) (DT + D*E)
DLo(t) < ———(1—-—=|D*T+
oft) = 1+ anTp ( T) 2(1 + a1 o) (pur + pe + )T
LPHHETY par s pap pr(p+ e +7) pay,
Y Ky
Using A = urTy, we get
Ty —T)? 1 TYTof(T,V T—-Ty)FE
D°Lo(t) < _MT(O ) (14 o T) To f(T, )V—f—p ( 0)
(1+O&1T0)T (1+011T0)T (1+011T0)T
_ pur (T —Tp)? B plpe +7)E?
(I +aiTo)(pr +pe +7)To (14 a1To)(pr + pe +v)To
pE prpv(p+pE +7)
+— (T —-T) — V.
(1 +a1TO)T0( 0o-T) ke
Hence,
1 p pr (T — Tp)? plue +7)E?

D%Lo(t) < —(=+
ot) < (T (MT+ME+’Y)T0) 1+ a1Tp (14 anTo)(pur + pe +v)To

p(T =To)*E | prpv(p+pe +7)
- Ry — 1)V
(14 a1 Tp)TTo + kv (Ro )
ﬂTo(OAQ + OégT)VQ

(14+a1To) 1+ a1 T + oV + a3TV)'

Since Ry < 1, we have that D*Ly(t) < 0. Furthermore, D*Lo(t) = 0 if and only
if T =Ty, E =0 and V = 0. From the last equation of (1), we get I = 0.
Consequently, the largest invariant set of {(T, E, I, V) | D*Ly(t) = 0} is the
singleton {Qq}. It follows from LaSalle’s invariance principale [15] that the free
equilibrium @y is globally asymptotically stable when Ry < 1.

By a simple computation, the characteristic equation at Qg is given by

(br +8) (€ + 1€ + az€ + az) =0,

where
ap = p+v+ue+pr+pv,
azg = pr(p+y+pe)+pvip+y+ue + pr),
a3 = prpv(p+v+pe)(l — Ro).



Let
P(&) =&+ a1 + asé + a3 (5)

We have gliIJP P(§) = 400 and P(0) = purpv (p+v+pe)(1 — Ro). If Ry > 1, then
— 400

P(0) < 0. So, there exists a & € (0,400) such that P(§y) = 0, which implies that
the characteristic equation at Q¢ has a positive root when Ry > 1. Consequently,
Qo is unstable if Ry > 1. 1

Theorem 3.2. The chronic infection equilibrium Q1 is globally asymptotically
stable if Ry > 1 and

(wrprpy (pe +7) + copr My (e + p+ ) + paskyA?

Ro<1+
ppriv (pe + p+5)(ur + a1d)

(6)

Proof. Consider the following Lyapunov functional

Lit) = U +aaby) Th oL
1+ aqTh + axVi + a3V T

p(1+ axVi)
2(1 + a1t 4+ asVy + 013T1V1)(,LLT + ug + "y)Tl

I FE Vv
LPHEEETY g (_> LB (_> AU ol D R (_) '
0 I Ey

+

(T-T1+E—Ep)?

The derivative of L;(t) along the positive solutions of (1) satisfies :

DOL(t) < (1—%) poT

p(1+aV)(T —T1 + E — Ey)
(1+onTy + axVi + asTiVh) (pr +pe+7) Th
AT LEL (1_1_1) DI+ (1_&) D°E

v 1 E
uﬂp+uE+7)< Vi

1— L) D>v.
Ky V>

(DT + D“E)

+



By applying A = urTy — f(T1,V1)Vi — pEy = urTy — (v + ug) E1,
wr = 7% and py = k{,—ll, we get

f(ThV1)>
DYLi(t) < 1—-—"""2)\D*T
1() - < f(Tu Vl)
p(1+ Vi) (T —T1 + E — Ey)
14+ a1Th + aVi + asTiVi)() (pr+pe+7v) Th

Pty (DN pap (B papyiletesty) (1 Vi pay
~ 1 E k~y 1%

(DT + D*E)

.V,
< (1= TG CurT — T 4 p(B - Br) = VIV + T W)
Ey f(T, Vi)V p+pE+7 I vE;
“0- ) (s - (0] 2288 (1 2) (o= 22)
pr(p+ pe +7) Vi kL
AR (1 ) (w - 72)
+P(1 +aVi)[(T —T1) + (B — Ey)|(—pr (T = Th) — (pe +7)(E — E1))
Ti(14+ Ty + aoVi + asTiVi)(ug + v + pr) '
Thus,
o —pr(1+ ax Vi) (T — Th)? oprT
D*L@) < TTh(1+ a1 Th + asVi + asTi Vi) <('LLTT1 —rE)+ wE + v+ pr * pE)

p(1+ aaV1)(ue +7)(E - E1)?

Ti(1+ o Ty + a2Vi + asTiVi) (ue + + pir)
[T, Vi)  EL  f(T,V) E\V  1IVi  f(T, V)
(T, VN (5 T fTov) B f(TL,v) EVi LV (T, V))

F(T, V) (1 + a1 Th) (e + asT)(V — V1)2
(1 + OélTl + OéQVl + O[ng‘/l)(l + OélT + OLQV + O[gTV) '

Since the arithmetic mean is greater than or equal to the geometric mean, it follows
that

f(T,Vh)  EL f(TV) E\V IV f(T, W)

f(r,vy) B f(Ty,V4) BV LV f(T,V) —

Therefore, D*L1(t) < 0 if pE; < prTi. It is not hard to show that pE; < urTh
is equivalent to (6). Further, D*L;(t) = 0 if and only if E = E;, V = V} and
?g};vvf)) = L — LW which implies that I = I; and T = T1. By the LaSalle’s
invariance principale, we conclude that @); is globally asymptotically stable. B

Since

(wrprpv (pe + ) + copr My (e + p + ) + pazkyA?

lim

(
p—0 purpv (e + p+7)(pr + a1 ) ’
iy TRV (e £ 7) + aopr M) (up + p+9) + paskyX®
700 purpv (e + p+7)(pr + a1 ) ’

we have the following result.



Corollary 3.3.

(i) The chronic infection equilibrium Q1 is globally asymptotically stable if
Ry > 1 and p is sufficiently small. In particular for p = 0.

(i1) The chronic infection equilibrium Q1 is globally asymptotically stable if
Ry > 1 and v is sufficiently large.

4. Numerical simulations

In this section, we present some numerical simulations in order to illustrate our
analytical results. The initial conditions of system (1) are T'(0) = 800 cells mm~3
E(0) =100 cells mm™3, I(0) = 24 cells mm~3, and V' (0) = 8000 virions mm~3.

First, we choose A = 10, ur = 0.0139, § = 0.000024, a; = 0.1, ap = 0.01,
az = 0.00001, p =0.01, v = 1.1, ur = 0.29, pug = 0.0350, k£ = 600 and py = 3. By
calculation, we have Ry = 0.1568 < 1. It follows from Theorem 2.2 that system (1)
has a disease-free equilibrium (((719.4245,0,0,0). By Theorem 3.1, we see that
Qo is globally asymptotically stable which means that the virus is cleared and the
infection die out. Figure 1 illustrates this result.
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Figure 1. Stability of the disease-free equilibrium Q.

Next, we choose 8 = 0.0005 and we keep the other parameter values. We have
Ry = 3.2673 and

(wrprpy (e + ) + aopr Ny (e + p+ ) + paskyA?

1+
pprpy (e + p+ ) (pr + a1 )

=107.2121

Hence, the condition (6) is satisfied. From Theorem 2.2, the chronic infection
equilibrium @1(242.4,5.842,22.16,4232) is globally asymptotically stable, which
means that the virus persists in the host and the infection becomes chronic. This
result is confirmed by Figure 2.
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Figure 2. Stability of the chronic infection equilibrium Q1.

Finally, we choose p; = 0.27, ugp = 0.0347, 5 = 0.0084, v = 0.01, k£ = 200 and
we keep the other parameter values. We have Ry = 3.7397 and

(prprpy (pe+y)+aspr eyl (pe+p+7)+poskyA® .
14 v (et pt ) Gir o)) = 1.4443. Hence, the dynamics of

HIV infection converges to steady state @1, but the condition (6) is not satisfied.
Therefore, the condition (6) is not necessary for the global stability of @ (see
Figure. 3).
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Figure 3. Dynamics of HIV infection with the condition (6) not satisfied.

5. Conclusion

In this work, we have proposed a fractional-order model to describe the dyna-
mics of HIV infection by taking into account the cure of infected cells in eclipse



stage. We first proved that the proposed model is mathematically and virologically
well-posed. In addition, we have proved that the disease-free equilibrium @ is glo-
bally asymptotically stable if the basic reproduction number Ry < 1, which means
that the HIV particles are eradicated. When Ry > 1, Qg becomes unstable and
there occurs the HIV infection equilibrium (1 which is globally asymptotically
stable provided that the condition (6) is satisfied. In this case, the HIV particles
persist in the host. Numerically, we see that the condition (6) is not necessary (see
Figure 3). So, it will be interesting to prove it mathematically in future work. From
our analytical and numerical results, we conclude that the fractional order has no
effect on the asymptotic properties of the equilibria, but it may affect the time
for arriving at these equilibria. In addition, the fractional-order models presented
in [1-4] are extended and improved.
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