
HAL Id: hal-01721287
https://hal.science/hal-01721287

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modeling Delayed Dynamics in Biological Regulatory
Networks from Time Series Data

Emna Ben Abdallah, Tony Ribeiro, Morgan Magnin, Olivier Roux, Katsumi
Inoue

To cite this version:
Emna Ben Abdallah, Tony Ribeiro, Morgan Magnin, Olivier Roux, Katsumi Inoue. Modeling De-
layed Dynamics in Biological Regulatory Networks from Time Series Data. Algorithms, 2017, 10 (4),
�10.3390/a10010008�. �hal-01721287�

https://hal.science/hal-01721287
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

algorithms

Article

Modeling Delayed Dynamics in Biological
Regulatory Networks from Time Series Data †

Emna Ben Abdallah 1,*, Tony Ribeiro 1, Morgan Magnin 1,2, Olivier Roux 1 and Katsumi Inoue 2,3

1 IRCCyN UMR CNRS 6597 (Institut de Recherche en Communications et Cybernétique de Nantes),
École Centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France; tony.ribeiro@irccyn.ec-nantes.fr (T.R.);
morgan.magnin@irccyn.ec-nantes.fr (M.M.); olivier.roux@irccyn.ec-nantes.fr (O.R.)

2 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan; inoue@nii.ac.jp
3 Department of Computer Science, Tokyo Institute of Technology, 2-12-1 Oookayama, Meguro-ku,

Tokyo 152-8552, Japan
* Correspondence: emna.ben-abdallah@irccyn.ec-nantes.fr; Tel.: +33-240-376-970
† This paper is an extended version of our paper published in Ben Abdallah, E.; Ribeiro, T.; Magnin, M.;

Roux, O.; Inoue, K. Inference of Delayed Biological Regulatory Networks from Time Series Data.
In Proceeding of the International Conference on Computational Methods in Systems Biology.
21–23 September 2016; pp. 30–48.

Academic Editor: Takeyuki Tamura
Received: 31 October 2016; Accepted: 20 December 2016; Published: 9 January 2017

Abstract: Background: The modeling of Biological Regulatory Networks (BRNs) relies on background
knowledge, deriving either from literature and/or the analysis of biological observations. However,
with the development of high-throughput data, there is a growing need for methods that automatically
generate admissible models. Methods: Our research aim is to provide a logical approach to infer
BRNs based on given time series data and known influences among genes. Results: We propose
a new methodology for models expressed through a timed extension of the automata networks
(well suited for biological systems). The main purpose is to have a resulting network as consistent
as possible with the observed datasets. Conclusion: The originality of our work is three-fold:
(i) identifying the sign of the interaction; (ii) the direct integration of quantitative time delays in the
learning approach; and (iii) the identification of the qualitative discrete levels that lead to the systems’
dynamics. We show the benefits of such an automatic approach on dynamical biological models, the
DREAM4(in silico) and DREAM8 (breast cancer) datasets, popular reverse-engineering challenges,
in order to discuss the precision and the computational performances of our modeling method.

Keywords: learning models; dynamics modeling; delayed biological regulatory networks; timed
automata networks; time series data

1. Introduction

With both the spread of numerical tools in every part of daily life and the development of NGS
methods (Next Generation Sequencing methods), like DNA microarrays in biology, a very large amount
of time series data is now produced [1–3]. This means that the produced data from the experiments on
biological systems grows drastically. The newly-produced data, as long as the associated noise does
not raise an issue with regard to the precision and relevance of the corresponding information, can give
us some new insights into the behavior of a system. This justifies the urge to design efficient methods
for inference.

Reverse engineering of gene regulatory networks from expression data have been handled by
various approaches [4–8]. Most of them are only static. However, other researchers are rather focusing
on incorporating temporal aspects in inference algorithms. The relevance of these various algorithms
has been recently assessed in [9]. The authors of [10] tackled the inference problem of time-delayed

Algorithms 2017, 10, 8; doi:10.3390/a10010008 www.mdpi.com/journal/algorithms

http://www.mdpi.com/journal/algorithms
http://www.mdpi.com
http://www.mdpi.com/journal/algorithms

Algorithms 2017, 10, 8 2 of 26

gene regulatory networks through Bayesian networks, and in [11], the authors infer a temporal
Boolean network. As this is a complex problem, in [12], the authors propose a time-window-extension
technique based on time series segmentation in different successive phases. These approaches take
gene expression data into account as the input and generate the associated regulations. However,
the discrete approaches that simplify this problem by abstractions need to determine the relevant
thresholds of each gene to define its active and inactive state. Various approaches have been designed
to tackle the discretization problem. We can cite for example [12], in which the authors have proposed
an alternative methodology that considers not a concentration level, but the way the concentration
changes (in other words: the derivative of the function giving the concentration w.r.t. time) in the
presence/absence of one regulator. On the other hand, the major problem for modeling lies in the
quality of the expression data. Indeed, noisy data may be the main origin of the errors in the inference
process. Thus, the pre-processing of the biological data is crucial for the pertinence of the inferred
relations between components. In our work, we assume that the input data are pre-processed into
reliable discretized time series data and focus on the dynamical inference problematics.

In this paper, we aim to provide a logical approach to tackle the learning of qualitative models
of biological dynamical systems, like gene regulatory networks. In our context, we assume the set
of interacting components as fixed, and we consider the learning of the interactions between those
components. As in [13], in which the authors targeted the completion of stationary Boolean networks,
we suppose that the topology of the network is given, providing us the influences among each gene as
the background knowledge. From time series data of the evolution of the system, given its topology,
we learn the dynamics of the system. The main originality of our work is that we address this problem
in a timed setting, with quantitative delays potentially occurring between the moment an interaction is
activated and the moment its effect is visible.

During the past decade, there has been a growing interest for the hybrid modeling of gene
regulatory networks with delays. These hybrid approaches consider various modeling frameworks.
In [14], the authors hybridize Petri nets: the advantage of the hybrid approach with regard to discrete
modeling lies in the possibility of capturing biological factors, e.g., the delay for the transcription of
RNA polymerase. The merits of other hybrid formalisms in biology have been studied, for instance
timed automata [15], hybrid automata [16], the hybrid model of a neural oscillator [17] and Boolean
representation [18,19]. In [20], the authors also propose algorithms to learn the delayed dynamics of
systems from time series data. However, they focus only on synchronous dynamics, and the delays
they consider are different from the duration of the reaction that we model here. Other works based on
approximate bisimulations [21] present a procedure to compare neural structures among them, which
is verified on continuous time recurrent neural networks. In addition, an application of the framework
of approximate bisimulations to an approximation of nonlinear systems was proposed in [22]. Here, the
authors use an over-approximation of the observational distance between nondeterministic nonlinear
systems. Finally, in [23], the authors investigate a direct extension of the discrete René Thomasmodeling
approach by introducing quantitative delays. These delays represent the compulsory time for a gene
to turn from a discrete qualitative level to the next (or previous) one. They exhibit the advantage
of such a framework for the analysis of mucus production in the bacterium Pseudomonas aeruginosa.
The approach we propose in this paper inherits from this idea that some models need to capture these
timing features.

Similar concerns are presents in the work of [24], where the authors model the dynamics of the
system using the S[B] paradigm [25] via delayed discrete automaton and persistent entropy. However,
where they focus on the global dynamics of the system, we aim to capture the local interactions of each
components. Their methods can reproduce the global evolution of the system among steady states,
but what we target is the precise evolution of the system every fixed amount of time.

The first theoretical steps behind our method have been introduced in [26]. In the current paper,
we have deepened our work to widen its applicability: after introducing a range of filters to curate

Algorithms 2017, 10, 8 3 of 26

the models resulting from our algorithms, we show its efficiency on new benchmarks coming from
DREAM Challenges.

We briefly introduce Automata Networks (AN) in Section 2, and all theoretical and practical
notions are then settled to introduce our timed extension of AN in Section 3. Then, in Section 4,
we present the related learning algorithm. We propose in Section 5 new refinement methods applied
to the generated model. We demonstrate the performance of our algorithm by a running case study
example in Section 6. Then, we show in Section 7 the implementation of the modeling method and
of all filters in Answer Set Programming (ASP). Finally, we illustrate the merits of our approach in
Section 8 by applying it on popular reverse-engineering challenges: the DREAM4 in silico dataset,
then on the real data of the breast cancer network from DREAM8 dataset. Additionally, we summarize
our contribution in Section 9 and give some perspectives for future works.

2. Automata Networks

We present in this section the definition and the semantics of automata networks. The enrichment
of the automata networks with delays and the corresponding new semantics are presented in Section 3.

Definition 1 introduces the Automata Network (AN) [27–29] as a model of finite-state machines
having transitions between their local state conditioned by the state of other automata in the network.
A local state of an automaton is noted by ai, where a is the automaton identifier, and i is the expression
level within a. At any time, each automaton has exactly one active local state, and the set of active local
states is called the global state of the network.

The concurrent interactions between automata are defined by a set of local transitions. Each local

transition has this form τ = ai
`→aj, with ai, aj being local states of an automaton a called, respectively,

the origin and destination of τ, and ` is a (possibly empty) set of local states of automata other than a
(with at most one local state per automaton).

Notation: Given a finite state A, ℘(A) is the power set of A. Given a network N, state(N, t) is the
state of N at a time step t ∈ N.

Definition 1 (Automata Network (AN)). An automata network is a triple (Σ,S , T) where:

• Σ = {a, b, . . . } is the finite set of automata identifiers;
• For each a ∈ Σ, S(a) = {ai, . . . , aj}, is the finite set of local states of automaton a; S = ∏a∈Σ S(a) is the

finite set of global states and LS = ∪a∈ΣS(a) denotes the set of all of the local states.
• T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a)× ℘(LS \ S(a))× S(a) with (ai, `, aj) ∈ Ta ⇒

ai 6= aj, is the mapping from automata to their finite set of local transitions.

Example 1. Figure 1 represents an automata network, AN = (Σ,S ,T), with four automata (Σ = {a, b, c, d}),
such that S(a) = {a0, a1}, S(b) = {b0, b1}, S(c) = {c0, c1, c2} and S(d) = {d0, d1, d2}, and five local
transitions,

T = { b0
{a1}−→b1, a1

{b1,d2}−→ a0, c2
{a1}−→c1, d2

{a0}−→d1, b1
{a1,c2}−→ b0}.

A global state of a given AN consists of a set of all active local states of each automaton in the
network. The active local state of a given automaton a ∈ Σ in a state ζ ∈ S is denoted ζ[a]. For any
given local state ai, we also note ai ∈ ζ if and only if ζ[a] = ai. For each automaton, it cannot have
more than one active local state at one global state.

Algorithms 2017, 10, 8 4 of 26

a

0

1

b

0

1

c

0

1

2

d

0

1

2

b1, d2 a1

a1 a0

a1, c2

Figure 1. Example of an automata network with four automata: a, b, c and d presented by labeled boxes;
and their local states are presented by circles (for instance, a is either at Level 0 or 1). A local transition
is a labeled directed edge between two local states within the same automaton: its label stands for the
set of necessary conditions for local states of the automata to play the transition. The grayed circles
stand for the global state: 〈a1, b0, c2, d2〉.

Definition 2 (Playable local transition). Let AN = (Σ,S , T) be an automata network and ζ ∈ S , with

ζ = state(AN , t). We denote Pt the set of playable local transitions inAN at time step t by: Pt = { ai
`→aj ∈ T

| ` ⊆ ζ ∧ ai ∈ ζ with state(AN , t) = ζ}.

The dynamics of the AN is performed thanks to the global transitions. Indeed, the transition from
one state ζ1 to its successor ζ2 is satisfied by a set of the playable local transitions (Definition 2) at ζ1.

Definition 3 (Global transitions). Let AN = (Σ,S , T) be an automata network and ζ1, ζ2 ∈ S , with
ζ1 = state(AN , t) and ζ2 = state(AN , t + 1). Let Pt be the set of playable local transitions at t. We denote
Gt the power set of global transitions at t:

Gt := ℘(Pt)

In the semantics that we base our work on, the parallel application of local transitions in different
automata is permitted, but it is not enforced. Thus, the set of global transitions is a power set of all of
the playable local transitions (also the empty set).

3. Timed Automata Networks

In some dynamics, it is crucial to have information about the delays between two events (two
states of an AN). The discrete transitions, described above, cannot exhibit this information: we just
process chronological information that the state ζ2 will be after ζ1 in the next step, but it is not possible
to know chronometry, i.e., how much time this transition takes to occur and whether it blocks some
transitions during this time. In fact some local transitions could not be played any more because of
conflict about shared resources (necessary components to play a transition) between them. Thus, we
need to restrain the general dynamics to capture more realistic behavior w.r.t. biology. Therefore, we
propose in this section to add the delays in the local transitions’ attributes: timed local transitions.
Later, we give the associated semantics that we base our work on to learn biological networks.

Definition 4 (Timed Automata Network (T-AN)). A timed automata network is a triple (Σ,S , T) where:

• Σ = {a, b, . . . } is the finite set of automata identifiers;
• For each a ∈ Σ, S(a) = {ai, . . . , aj}, is the finite set of local states of automaton a; S = ∏a∈Σ S(a) is the

finite set of global states; LS = ∪a∈ΣS(a) denotes the set of all of the local states.
• T = {a 7→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a)× ℘(LS \ S(a))×N× S(a) with (ai, `, δ, aj) ∈

Ta ⇒ ai 6= aj, is the mapping from automata to their finite set of timed local transitions.

To model biological networks where quantitative time plays a major role, we will use T-AN.

This formalism enriches AN model with timed local transitions: ai
`→
δ

aj. In the latter, δ is called a

Algorithms 2017, 10, 8 5 of 26

delay and represents the time needed for the transition to be performed. When modeling a regulation
phenomenon, this allows one to capture the delay between the activation order of the production of
the protein and its effective synthesis, as well as the synthesis of the product.

We note τ = ai
`→
δ

aj ∈ T ⇔ τ = (ai, `, δ, aj) ∈ T (a) and orig(τ) = ai, dest(τ) = aj, cond(τ) = `

and delay(τ) = δ.

Lemma 1. If AN = (Σ,S , T) is an AN, so it can be transformed to a T-AN, AN ′ = (Σ,S , T ′) such that
∀τ ∈ T , ∃τ′ ∈ T ′ with orig(τ′) = orig(τ), dest(τ′) = dest(τ), cond(τ′) = cond(τ) and delay(τ′) = 1.

According to Lemma 1, Definition 2 is then also applicable to timed local transitions.
Considering that delays in the evolution of timed automata networks create conflict between

the timed local transitions, this conflict is mainly justified by the shared resources between the timed
local transitions (Definition 5). Indeed, transitions that have the same origins and/or destinations
could not be fired synchronously. Besides, during the delay of the execution of a transition τ1, it is
possible that another transition τ2 is activated. Then, we need to take care of the following possible
conflicts between resources: transition τ2 may change the local states of the automata participating in
τ1. We make the following assumption, which is similar to that adopted in [30]: we consider that τ2

needs to be blocked until the current transition τ1 finishes. Nevertheless, we allow the resources of τ1

to participate in other transitions. In addition, we do not forbid the process involved in orig(τ1) to
participate in another transition τ2 if and only if that the remaining delay(τ1) is greater than delay(τ2)

(see Definition 6). Those considerations lead to the followings definitions.

Definition 5 (Timed local transitions in conflict). LetAN = (Σ,S , T) be a T-AN and a, b ∈ Σ with a 6= b.
Let τ1 ∈ Ta play at a time step t1 and τ2 ∈ Tb playable at t2 with t2 > t1. τ2 is said to be in conflict with τ1 if
and only if orig(τ2) ∈ cond(τ1) ∧ t2 + delay(τ2) < t1 + delay(τ1).

In Definition 6, if P is the set of currently ongoing timed local transitions, it allows us to prevent
the execution of transitions that would alternate the resources currently being used or that would rely
on resources that will be modified before the end of those transitions.

Definition 6 (Blocked timed local transition). Let AN = (Σ,S , T) be a T-AN and t ∈ N. Let P be a set of
pairs T ×N. The set of blocked timed local transitions of AN by P at t is defined as follows:

B(AN , P, t): = {ai
`→
δ

aj ∈ T | ∃(bk
`′→
δ′

bl , t′) ∈ P, such that (a = b) ∨(ai ∈ `′ ∧ δ′ > t′ − (t + δ))

∨(bk ∈ ` ∧ δ′ < t′ − (t + δ))}

Let τ1 be a transition, such that τ1 = ai
`→
δ

aj is fired at time step t. Therefore, t + δ is the

ending time of τ1, and (t′ − (t + δ)) is the interval of time between the ending of the transition

τ2 = bk
`→ bl

δ′
and the beginning of transition τ1 with t′ > t. According to Definition 6, τ2 is blocked if

ai (respectively bk) is a necessary resource for τ2 (respectively τ1) and the τ1 (respectively τ2) finishes
before τ2 (respectively τ1): δ′ > t′ − (t + δ) (respectively δ′ < t′ − (t + δ)), i.e., ai (respectively bk) is
not available to participate in the transition τ2 (respectively τ1) during δ′ (respectively δ).

Lemma 2. If τ2 is in conflict with an ongoing transition τ1 at a time step t then τ2 is blocked by τ1.

Lemma 2 is completely coherent with semantics dynamics. It is not possible to play a transition
that it is in conflict with another ongoing one. Thus, the set of fireable transitions depends at each step
on the set of the ongoing transitions, the blocked ones and the new playable ones.

Algorithms 2017, 10, 8 6 of 26

Definition 7 (Fireable timed local transition). Let AN = (Σ,S , T) be a T-AN and ζ ∈ S the
state of AN at t ∈ N. Let P be a set of pairs T ×N and B(AN , P, t) be the set of blocked timed local
transitions ofAN by P at t. The set of fireable timed local transitions ofAN in ζ w.r.t. P at t is defined as follows:

F(AN , ζ, P, t) := {ai
`→
δ

aj ∈ T \ B(AN , P, t) | ` ⊆ ζ, ai ∈ ζ}

Definition 7 extends the notion of playable transition by considering concurrences with the
currently ongoing transition of P.

Definition 8 (Set of fireable sets of timed local transition). Let AN = (Σ,S , T) be a T-AN and ζ ∈ S the
state of AN at t ∈ N. Let P be a set of pairs T ×N and F(AN , ζ, P, t) the set of fireable local transitions of
AN in ζ w.r.t. P at t. The set of fireable sets of timed local transitions of AN in ζ w.r.t. P at t is defined as:

SFS(AN , ζ, P, t) := {FS ⊆ F(AN , ζ, P, t) |

(∀τ = (bk
`→
δ

bl) ∈ FS,@(bk
`′→
δ′

bl′) ∈ FS, bl 6= bl′ , τ 6∈ B(AN , FS \ {τ}, t)}

Definition 8 prevents the execution of two transitions that would affect the same automaton.

Definition 9 (Active timed local transitions). Let AN = (Σ,S , T) be a T-AN and ζ ∈ S the state of AN
at t ∈ N. Let SFS(AN , ζ, P, t) be the set of fireable sets of timed local transition. The set of active timed local
transitions of AN at t is:

A(AN , t) :=

{(τ ∈ FS, t) | FS ∈ SFS(AN , ζ, ∅, t)} if t = 0

{(τ ∈ FS, t) | FS ∈ SFS(AN , ζ, A(AN , t− 1), t)}
∪{(bk

`′→
δ′

bl , t′) ∈ A(AN , t− 1) | t− t′ < δ} if t > 0

Definition 9 provides us the evolution of the possible set of ongoing transitions. Supposing that
in an initial state of a trajectory (at t = 0), no transition is blocked and all playable timed transitions
are fireable, then, when t > 0, at each time step, it should be verified that a playable timed transition is
also fireable; in other words, that it is not blocked by the active timed local transitions fired in previous
steps. Furthermore, the fired timed local transitions at the same time should not block each other.

In Figure 2 we detail the distribution of the timed local transitions of an T-AN at any step.
We suppose that all timed local transitions T in the network are presented by the green set, the blocked
ones B are presented by the red set, the fireable one F are presented by the gray set and finally the
fireable set FS at a step t is presented by the blue set. We remind that F ∩ B = ∅ and FS ⊆ F.

FS
FT

B

Figure 2. Distribution of timed local transitions T at any time step t of Definitions 4–9.

Algorithms 2017, 10, 8 7 of 26

Delays of local transitions can now be represented in an automata network thanks to timed local
transitions. Note that if all delays of local transitions are set to zero, this is equivalent to an AN without
delays (original AN). The way these new local transitions should be used is described as follows.

At any time, each automaton has one and only one local state, forming the global state of the
network. Choosing arbitrary ordering between automata identifiers, the set of global states of the
network is referred to as S with S = ∏a∈Σ S(a). Given a global state ζ ∈ S , ζ(a) is the local state of
automaton a in ζ, i.e., the a-th coordinate of ζ. We write also ai ∈ ζ ⇔ ζ(a) = ai; and for any ls ∈ LS,
ls ⊂ ζ ⇔ ∀ai ∈ ζ, ζ(a) = ai. In this paper, we allow, but do not force, applying parallel transitions in
different automata, such in Definition 3, but adding delays in the local transitions and considering
concurrency between transitions require further study of the semantics of the model (Definition 10).

Definition 10 (Semantics of timed automata network). Let AN = (Σ,S , T) be a T-AN and t ∈ N. The
set of timed local transitions fired at t is:

FS := {(ai
`→
δ

aj) | ((ai
`→
δ

aj), t) ∈ A(AN , t)} then

(ai
`→
δ

aj) ∈ FS =⇒ ζ(a) = aj with ζ = state(AN , t + δ).

The state of AN at t + 1 is denoted ζt+1 = state(AN , t + 1) and defined according to the set of timed
local transitions that finished at t + 1:

Ft+1 := {(bk
`′→
δ′

bl) | ((bk
`′→
δ′

bl), t′) ∈ A(AN , t), t + 1− t′ = δ}

then ∀c ∈ Σ, such that @(ck
`′′→
δ′′

cl) ∈ Ft+1 =⇒ ζt+1(c) = ζt(c) with ζt = state(AN , t) and

ζt+1 = state(AN , t + 1)

We note that at any time step t, such that ζ = state(AN , t) and P the set of ongoing transitions,
we have: FS ∈ F(AN , ζ, P, t) ∈ T \ B(AN , P, t).

Where synchronous biological regulatory networks have been studied, little has been done on the
asynchronous counterpart [31], although there is evidence that most living systems are governed by
synchronous and asynchronous updating. According to Harvey and Bossomaier [32], asynchronous
systems are biologically more plausible for many phenomena than their synchronous counterpart, and
observed global synchronous behavior in nature usually simply arises from the local asynchronous
behavior. In this paper, we defend these assumptions, and we consider an asynchronous behavior for
each automata, on the one hand, and a synchronous behavior in the global network.

In [20], the authors also propose algorithms to learn the delayed dynamic of systems from time
series data. However, they focus only on synchronous dynamics, and changes take only one step to
occur. The delays that they consider are in the conditions of the change (body of there rules), which
can be at different previous time step, where in our method the conditions, are in the same state, and
the delay is in the change (head of there rules). However, the assumptions in the synchronous model
that all components could change at the same time and take an equivalent amount of time in changing
their expression levels are biologically unrealistic. However, there is seldom enough information
to be able to discern the precise order and duration of state transitions. The timed extension of AN
that we propose in this paper allows both asynchronous and synchronous behavior by proposing a
non-deterministic application of the timed local transitions. Table 1 shows a trajectory of a T-AN when
we choose to apply timed local transitions in a synchronous manner.

We presented above the semantics of the T-AN that we base our work on to model BRNs from
experimental data. Even a few hybrid formalisms already exist, like time Petri nets, hybrid automata,
etc., we propose this extension of the AN framework for several reasons. First, AN is a general
framework that, although it was mainly used for biological networks [28,33], allows one to represent
any kind of dynamical models, and converters to several other representations are available. Indeed, a

Algorithms 2017, 10, 8 8 of 26

T-AN is a subclass of timed Petri nets [34]. Finally, the particular form of the timed local transition in
the T-AN model allows one to easily represent them in ASP, with one fact per timed local transition, as
described in this work [35]. Later, we propose a new approach to resolve the generation problem of
T-AN models from time series data.

Taking the following T-AN as an example, we generate a possible trajectory of the network
starting from a known initial state.

Example 2. Let AN = (Σ,S , T)) be a timed automata extended with delays from Example 1, such that

T = { τ1 = b0
{a1}−→

2
b1, τ2 = a1

{b1,d2}−→
3

a0, τ3 = c2
{a1}−→

5
c1, τ4 = d2

{a0}−→
2

d1, τ5 = b1
{a1,c2}−→

2
b0, }.

We give in the following Table 1 an example of a trajectory of the T-AN of Example 2 starting
from an initial state until reaching a stable state.

Table 1. Example of a trajectory of the T-AN of Example 2 starting from an initial state < a1, b0, c2, d2 >

(at t = 0) to a stable state < a0, b0, c1, d1 > (at t = 10); with P = A(AN , t− 1) as in Definition 9, and B,
F, SFS, FS, A(AN , t), state(AN , t) are computed as defined in Definitions 4–8.

t B(AN , P, t) F(AN , ζ, P, t) SFS FS A(AN , t) state(AN , t)

0 ∅ {τ1, τ3} {{∅}, {τ1}, {τ3}, {τ1, τ3}} {τ1, τ3} {(τ1, 0), (τ3, 0)} < a1, b0, c2, d2 >
1 {τ1, τ2, τ3} ∅ {∅} ∅ {(τ1, 0), (τ3, 0)} < a1, b0, c2, d2 >
2 {τ3} {τ2, τ5} {∅, {τ2}, {τ5}} {τ2} {(τ3, 0), (τ2, 2)} < a1, b1, c2, d2 >
3 {τ2, τ3} {τ5} {τ5} {τ5} {(τ3, 0), (τ2, 2), (τ5, 3)} < a1, b1, c2, d2 >
4 {τ2, τ3, τ5} ∅ {∅} ∅ {(τ3, 0), (τ2, 2), (τ5, 3)} < a1, b1, c2, d2 >
5 ∅ {τ4} {∅, τ4} {τ4} {(τ4, 5)} < a0, b0, c1, d2 >
6 {τ4} ∅ {∅} ∅ {(τ4, 5)} < a0, b0, c1, d2 >

10 ∅ ∅ {∅} ∅ ∅ < a0, b0, c1, d1 >

4. Learning Timed Automata Networks

This algorithm takes as input a model expressed as a T-AN, whose set of timed local transitions
is empty, and time series data capturing the dynamics of the studied system. Given the influences
between the components (or assuming all possible influences if no background knowledge is available),
this algorithm generates the timed local transitions that could result in the same changes of the model
as the observed ones through the observation data.

Algorithm

In this section, we propose an algorithm to build T-AN from time series data. We assume that
the latter data observations are provided as a chronogram of size T, with T the maximum number of
time points: the value of each variable is given for each time point t ∈ N+, 0 ≤ t ≤ T, through a time
interval discretization (see Definition 11 below and Example in Figure 3 on page 13).

Definition 11 (Chronogram). A chronogram is a discretization of the time series data for each component of
a biological regulatory network. It is presented by the following function Γ,

Γ : [0, T] ⊂ N+ −→ {0, ..., n}

t 7−→ i

with T the maximum time point regarding the time series data called the size of the chronogram and n the
maximum level of discretization.

We denote Γa a chronogram of the time series data for a component a.
Algorithm 1, MoT-AN (Modeling Timed Automata networks), shows the pseudocode of our

implemented algorithm. It will generate all possible timed local transitions that can realize each

Algorithms 2017, 10, 8 9 of 26

observed change. A change corresponds to a modification of a component expression level. It happens
because of an activation or an inhibition of the changed component by a timed local transition. Thanks
to MoT-AN, we compute the discrete levels of the origin and the destination of timed local transitions
and the discrete levels of all automata involved in its condition. Thus, finding this timed local transition
responsible for this change is also finding the sign of the interaction responsible for this change.

Algorithm 1 MoT-AN: modeling timed automata networks.

INPUT:

- Timed automata network AN = (Σ,S , T) with T = ∅;
- a chronogram Γ =

⋃
a∈Σ Γa;

- the regulation influences χ =
⋃

a∈Σ χa and
- a maximal in-degree i ∈ N∗

OUTPUT: φ a set of T-AN that realize the time series data.

• Let ϕ := ∅
• Step 1: According to Γ, for each time step t where a component a changes its value from ai to

aj, with ai, aj ∈ Sa:

- for all ` ∈ ℘(χa), |`| ≤ i, generate exhaustively all timed local transitions:

τ := (ai, `, aj, δ)

such that,
- if ∃(ck, `c, cl , δc) ∈ T with a ∈ `c and Πc

t ≥ Πa
t ∧Πc

t ≥ Πb
t ∀b ∈ ` then δ = t− δc

t
else δ = t−max(Πa

t ,Πh
t) with h ∈ ` ∧ ∀b ∈ `, b 6= h, Πb

t ≤ Πh
t .

- Add all timed local transition τ in ϕ

• Step 2: Create in Φ as much as possible T-AN AN ′ = (Σ,S , ϕ′) with ϕ′ ⊆ Φ a set of timed
local transitions that can realize Γ, such that ϕ′ is minimal:

∀AN ′ = (Σ,S , ϕ′) ∈ φ,@ϕ′′ ⊆ Φ, ϕ′′ ⊂ ϕ′, such that ϕ′can realize Γ

∀a ∈ Σ, ∀t a time step in Γ, ∃!τ ∈ ϕ, such that τ explains Πa
t

Because of the delays and the non-deterministic semantics, it is not possible to decide whether
a timed local transition is absolutely correct or not. However, we can output the minimal sets of
timed local transitions, which are necessary to realize all of the dynamics changes. However, since
observations are not perfect, we cannot safely remove non-consistent transitions. Thus, we refine
the output model by filters taking into account the different possible perturbations. These filters are
detailed more later in Section 5.

For the rest of the article, we denote by Πx
t the last change of each component x comparing to t

(i.e., ∀x ∈ Σ Πx
t ≤ t).

Theorem 1 (Completeness). Let AN = (Σ,S , T) be a T-AN, Γ be a chronogram of the components of AN ,
i the indegree with i ∈ N and R ∈ T the set of timed local transitions that realized the chronogram Γ, such
that (ai, l, aj, δ) ∈ R =⇒ |l| ≤ i. Let χ be the regulation influences of all a ∈ Σ. Let AN ′ = (Σ,S , ∅) be
a T-AN. Given AN ′, Γ, χ and i as input, Algorithm 1 is complete: it will output a set of T-AN φ, such that
∃AN ′′ = (Σ,S , ϕ′) ∈ φ with R ⊆ ϕ′.

Proof. Let us suppose that the algorithm is not complete, then there is a timed local transition h ∈ R
that realized Γ and h 6∈ ϕ′. In Algorithm 1, after Step 1, ϕ contains all timed local transitions that can
realize each change of the chronogram Γ. Here, there is no timed local transition h ∈ R that realizes

Algorithms 2017, 10, 8 10 of 26

Γ, which is not generated by the algorithm, so h ∈ ϕ. Then, it implies that at Step 2, ∀ϕ′, h 6∈ ϕ′.
However, since h realizes one of the changes of Γ and h is generated at Step 1, then it will be present
in one of the minimal subsets of timed local transitions; such that h will be in one of the networks
outputted by the algorithm.

If AN = (Σ,S , T) is a T-AN learned model regarding the chronogram Γ and the interaction
graph χ of the automata in Σ, such that ∀Πx

t ∈ Γ ∃τ ∈ T , which realize Πx
t .

Theorem 2 (Complexity). Let AN = (Σ,S , T) be a T-AN, |Σ| be the number of automata of AN , η the
total number of local states of an automaton of AN and i the maximal in-degree of all transitions with
0 ≤ i ≤ |Σ|. Let Γ be a chronogram of the components of AN over T units of time, such that c is the number
of changes in Γ, 0 ≤ c ≤ T. The memory use of Algorithm 1 belongs to O(T · (|Σ| · η)|i| · 2T·(|Σ|·η)|i|) that is
bounded by O(T · |Σ|T·|Σ||Σ|+1

). The complexity of learning AN by generating timed local transitions from the
observations of Γ with Algorithm 1 belongs to O(c · (|Σ| · η)|i| + 22·T·(|Σ|·η)|i|+c·2T·(|Σ|·η)|i|) that is bounded
by O(T · 23·T·(|Σ|·η)|Σ|).

Proof. Let p be an automaton local state of AN , then |Σ| is the maximal number of automaton that
can influence p. There is (|Σ| · η)|i| possible combinations of those regulators that can influence p at
the same time forming a timed local transition. There is at most T possible delays, so that there are
T · |Σ| · (Σ · η)|i| possibles timed local transitions; thus, in Algorithm 1 at Step 1, the memory is bounded
by O(T · (|Σ| · η)|i|), which belongs to O(T · |Σ||Σ|) since 0 ≤ i ≤ |Σ|. Generating all minimal subsets of
timed local transitions ϕ of AN that can realize Γ can require one to generate at most 2T·|Σ|·(|Σ|·η)|i| sets
of rules. Thus, the memory of our algorithm belongs to O(c · (|Σ| · η)|i| + 22·T·(|Σ|·η)|i| + c · 2T·(|Σ|·η)|i|)
and is bounded by O(T · 23·T·(|Σ|·η)|Σ|).

The complexity of this algorithm belongs to O(c · i|Σ|). Since 0 ≤ i ≤ |Σ| and 0 ≤ c ≤ T, the
complexity of Algorithm 1 is bounded by O(T · |Σ||Σ|)).

Each set has to be compared with the others to keep only the minimal ones, which costs
O(22·T·(|Σ|·η)|i|). Furthermore, each set of timed local transitions has to realize each change of
Γ; it requires to check that c changes, and it costs O(c · 2T·(|Σ|·η)|i|). Finally, the total complexity
of learning AN by generating timed local transitions from the observations of Γ belongs to
O(c · (|Σ| · η)|i| + 22·T·(|Σ|·η)|i| + c · 2T·(|Σ|·η)|i|) that is bounded by O(T · 23·T·(|Σ|·η)|Σ|).

In practice, we can fix the maximal indegree of the generated timed local transitions and consider
binary automaton (maximum of two local levels per automaton: η = 2) to make the computation
tractable. Considering an indegree i = 2, the complexity falls down to O(c · (2 · 2)2 + 22·T·(2·2)2

+ c ·
2T·(2·2)2

) = O(c · 16 + 2T·16 + c · 2T·16). If at each time step, there is a change, so it is bounded by
O(T · 23·T·(|Σ|·2)2

) = O(T · 23·T·(2·2)2
) = O(T · 248·T).

Indeed, in biological systems, the number of interactions between components is not too large, so
it is not the source of complexity, but the fact that we generate all possible minimal models. Besides,
behavior can be captured with a simple combination consisting of two components, like in Section 3.2
of [4]. If we output only one model, we find that the complexity falls down to O(c · 16) = O(c).

5. Refining

In Section 4, we create as many models as possible that satisfy our semantics and the given
dynamics (time series data). However, in these models, there may exist some contradictions. Thus, in
this section, we introduce a set of refinements to perform model curation and keep the ones that are
the most consistent with some given assumptions.

Algorithms 2017, 10, 8 11 of 26

5.1. Synchronous Behavior

As detailed in Section 2, in our semantics, we impose the synchronous semantics behavior as long
as there is no conflict between transitions. In other words, for any step, if there is at least one transition
τ that is not blocked by another one and τ can be played, then τ should be fired.

Definition 12 (Synchronous and not in conflict transitions). Let AN = (Σ,S , T) be a learned T-AN
model regarding a chronogram Γ and an interaction graph χ of all automata in Σ. The model is said to be coherent
with the synchronous and non-conflict behavior in Γ if and only if ∀τ ∈ T if τ = (ai, `, δ, aj) is playable at
a time step t in Γ and @τ′ ∈ T , such that τ′ is in conflict with τ, then ∃Πa

t′ = t + δ in Γ with t′ + δ > t.

This filter checks whether each model is consistent with the synchronous and not in conflict
transitions (Theorem 12). If this is not the case, then the model will be discarded from the output of
Algorithm 1.

5.2. More Frequent Timed Automata Networks

All outputted models have one execution, which exactly reproduces the given observations
(see Theorem 1); thus, it is interesting to compare all of these models and to find the transitions that
are more commonly performed.

Definition 13 (Transition frequency). Let AN 1 = (Σ,S , T1)...AN n = (Σ,S , Tn) be the set of found
models by Algorithm 1. Let Freq(τ) be the frequency of appearance of a transition τ ∈ Ti, 1 ≤ i ≤ n in all of
these models:

Freq(τ) =
∑n

k=1 appearancek(τ)

n
with,

appearancek(τ) :=

{
1 if τ ∈ Tk
0 if τ 6∈ Tk

Giving a minimal frequency to this filter, minFreq ∈ [0, 1], it maintains only transitions τ, such
that Freq(τ) ≥ minFreq. It can happen that some transitions are lost that are important, but it keeps
only the transitions that are more relevant.

5.3. Deterministic Influence

In a T-AN model, we do not want a component to inhibit and activate another with the same
level of expression because biologically, this is generally not the case. In Definition 14, we say that
the component b with a level of expression k cannot be a part of the conditions that activate (τ1) and
inhibit (τ2) a.

Definition 14 (Distinct influence). Let AN = (Σ,S , T) be a T-AN model, τ1 ∈ T , a, b ∈ Σ, ai, aj ∈ S(a)

with i < j and bk ∈ S(b). If τ1 = ai
`1−→
δ1

aj ∧ bk ∈ `, then ∀τ2 ∈ T with τ2 = aj
`2−→
δ2

ai, bk 6∈ `2.

Therefore, this filter eliminates all learned models in which there exists transitions that do not
satisfy the deterministic influences between components (Definition 14).

5.4. Several Delays

Usually in the same model for the same transition, there is only one delay. However, when
learning models from real-time series data (e.g., data coming from cell cancer lineages, circadian clock,
. . .), we may not be guaranteed that the data have been normalized, even after discretization. Indeed,
there is often noise in data. Thus, after computing the delays, Algorithm 1 can find the same transition

Algorithms 2017, 10, 8 12 of 26

with different delays. Here, the user (biologist) can choose whether to keep all of these transitions or
we propose to him/her to merge all of them and keep only one transition with an interval of delays by
computing the maximum value and the minimum one.

Definition 15 (Interval of delays). ∀τ1, τ2, ..., τn ∈ T t.q τ1 = ai
`−→
δ1

aj, τ2 = ai
`−→
δ2

aj, ..., τn = ai
`−→

δn
aj

with ai, aj ∈ Σa, ` ∈ ℘(LS \ S(a)) and δ1 6= δ2 6= ... 6= δn then: merge all transitions τ1, τ2, ..., τn in one
transition τ:

τ = ai
`−→

[δmin ,δmax]
aj

such that:
∀δk = delay(τk), 1 ≤ k ≤ n, δmax ≥ δk ∧ δmin ≤ δk

On the other hand, we can compute a delay equal to the average value of all of these transitions
that differ only by delays (see Definition 16). The intuition is that, in practice, if there are enough
observations, the delay of those actions should tend to the real value.

Definition 16 (Average of delays). ∀τ1, τ2, ..., τn ∈ T t.q τ1 = ai
`−→
δ1

aj, τ2 = ai
`−→
δ2

aj, ..., τn = ai
`−→

δn

aj with ai, aj ∈ Σa, ` ∈ ℘(LS \ S(a)) and δ1 6= δ2 6= ... 6= δn then: merge all transitions τ1, τ2, ..., τk in one
transition τ:

τ = ai
`−→

δavg
aj

such that:

δavg =
∑n

k=1 δk

n

In Definition 17, we want each learned transition to have only one delay in one model.

Definition 17 (deterministic delay). Let AN = (Σ,S , T) be a T-AN model, τ1 ∈ T if @τ2 ∈ T such that
orig(τ1) = orig(τ2), dest(τ1) = dest(τ2), cond(τ1) = cond(τ2), then delay(τ1) 6= delay(τ2).

6. Case Study

In this section, we show how this method generates a T-AN model consistent with the set of
biological regulatory time series data. First, the method uses discretized observations as an input
(i.e., chronogram), thus, it is necessary to process at the beginning the time series data with another
method (as shown in Figure 3) in order to discretize it.

Our method may be summarized as follows:

- Detect biological components’ changes;
- Compute the candidate timed local transitions responsible for the network changes;
- Generate the minimal subset of candidate timed local transitions that can realize all changes;
- Filter the timed candidate actions.

We apply Algorithm 1 on learning the timed local transition τ ∈ T of the example of a network
AN = (Σ,S , T) with 3 components (|Σ| = 3) whose chronogram is detailed in Figure 3 on page 13:

Algorithms 2017, 10, 8 13 of 26

G
en

e
Ex

pr
es

si
on
 

[a
]

0 1 2 3 4 5 6 7 t

G
en

e
Ex

pr
es

si
on
 

[b
]

0 1 2 3 4 5 6 7 t

G
en

e
Ex

pr
es

si
on
 

[z
]

0 1 2 3 4 5 6 7 t

C
hr

on
og

ra
m

: 
 D

is
cr

et
 E

xp
re

ss
io

n
of

G

en
e

[a
]

0 1 2 3 4 5 6 7 t

change(5)

change(3)

C
hr

on
og

ra
m

: 
 D

is
cr

et
 E

xp
re

ss
io

n
of

G

en
e

[b
]

0 1 2 3 4 5 6 7 t

change(4)

C
hr

on
og

ra
m

: 
 D

is
cr

et
 E

xp
re

ss
io

n
of

G

en
e

[z
]

0 1 2 3 4 5 6 7 t

change(6)

change(2)

Figure 3. Examples of the discretization of continuous time series data into bi-valued chronograms.
The abscissa (respectively ordinate) represents time (respectively gene expression levels). In this
example, the expression level is discretized according to a threshold fixed to half of the maximum gene
expression value. change(t) indicates that the expression level of a biological component, here a gene,
changes its value at a time point t.

The first change occurs at tmin = t1 = 2, denoted by change(2). It is the gene z whose value
changes from zero to one; thus the timed local transition that has realized this change has this form

z0
`→
δ

z1, where ` can be any combination of the values of the regulators of z.

Let χ = {b → z, a → z, a → a} be the set of regulation influences among the components of
the network. According to χ, the set of genes having influence on z is χz = {a, b}. This means that
` = {a?, b?}, or ` = {a?}, or ` = {b?}. The expression level of the genes of χz when the researched
candidate timed local transition (τi) is ongoing, i.e., during the partial steady state between two
successive changes (ti and ti−1). This level is computed from the chronograms as follows:

a ∈ χz: [a]t = 0 ∀t ∈ [0, 2]
b ∈ χz: [b]t = 1 ∀t ∈ [0, 2]

Thus, `={a0, b1} or `={a0} or `={b1}, and the set of candidate timed local transitions is:

Tchange(2) = {τ1 = z0
a0→
δ1

z1, τ2 = z0
b1→
δ2

z1, τ3 = z0
a0∧b1−→

δ3
z1}. Since it is the first change, the delay of

each timed local transition is the same: δ1 = δ3 = δ3 = 2.
The second change occurs at t2 = 3 and is denoted by change(3). Here, it is the gene a whose

state changes from a0 to a1; thus, the timed local transition that realizes this change has this form

τ = a0
`→
δ

a1 where ` can be any combination of the regulators value at t1 of z. According to χ,

the genes influencing a are χa = {a}. This means that ` = {a?}, and the expression level of a
between t1 and t2 is a0. Therefore, ` = {a0}. Thus, there is only one candidate timed local transition:

Tchange(3) = {τ = a0
∅→
1

a1}.
The third change occurs at t3 = 4, change(4). Here, it is the gene b whose value changes from b1

to b0; thus, the timed local transition that realizes this change is of this form, τ = b1
`→
δ

b0 where ` can

be any combination of the regulators value at t3 − 1 of b. According to χ, there is no gene that can
influence b; thus, no timed local transition can realize this change.

The fourth change occurs at t4 = 5, change(5). Here, it is a whose expression decreases and
changes from a1 to a0; thus, the candidate timed local transition that could realize this change has this

form, τ = a1
`→
δ

a0 where ` can be any combination of the regulators value at t4 − 1 of a. According

to χ, the set of genes having influences on a is χa = {a}. Again, ` = {a?} as the expression level of a
since its last change is a1. We have A = {a1}, and there is only one candidate timed local transition:

Tchange(5) = {τ = a1
∅→
1

a0}.

Algorithms 2017, 10, 8 14 of 26

The fifth change occurs at t5 = 6, change(6). Here, it is z whose value changes from z1 to z0;

thus, the time local transition that has realized this change has the form of: τ = z1
`→
δ

z0 where `

can be any combination of the regulators’ value at t3 − 1 of b. Since χz = {a, b}, this means that
` = {a?, b?} or ` = {a?} or ` = {b?} The expression level of a and b at t5 − 1 is respectively a0 and b0.
Thus, ` = {a0, b1} or ` = {a0} or ` = {b0}. The candidate timed local states are:

Tchange(6) = {τ1 = z1
a0→
δ1

z0, τ2 = z1
b0→
δ2

z0, τ3 = z1
a0∧b0−→

δ3
z0}.

The last change of a is at t4 = 5, and the last change of b is at t3 = 4. Thus, δ1 = t5 − t4 = 1,
δ2 = t5 − t3 = 2, δ3 = t5 −max(t4, t3) = 1.

After processing all changes, the set of timed local transitions that could realize the chronograms is:

Tchange(2) = {τ1 = z0
a0→
2

z1, τ2 = z0
b1→
2

z1, τ3 = z0
a0∧b1−→

2
z1}

Tchange(3) = {τ4 = a0
∅→
1

a1}, Tchange(5) = {τ5 = a1
∅→
1

a0}

Tchange(6) = {τ6 = z1
a0→
1

z0, τ7 = z1
b0→
2

z0, τ8 = z1
a0∧b0−→

1
z0}.

All learned timed local transitions are consistent with all observed time series data and the
regulation influences given as input. The used method ensures completeness; we have the full set
of timed local transitions that can explain the observations. By generating all minimal subsets of
this set of timed local transitions, one of those subsets (as in Figure 4) define the model that realized
the observations.

a

z

b z

0

1

a

0

1

b

0

1

{a0, b1},2 1 1b0,2

1

Figure 4. (Left) Influence graph modeling of the case study example (Figure 3); (right) one of the T-AN
generated by Algorithm 1. The labels of each local transition stand for the local states of the automata,
which make the transition playable, and its delay (time needed for the transition to be performed).

7. ASP Encoding

7.1. ASP Syntax

In this section, we briefly recapitulate the basic elements of ASP [36], a declarative language that
proved efficient to address highly computational problems. An answer set program is a finite set of
rules of the form:

a0 ← a1, . . . , am, not am+1, . . . , not an. (1)

where n ≥ m ≥ 0, a0 is a propositional atom or⊥; all a1, . . . , an are propositional atoms, and the symbol
“not” denotes negation as failure. The intuitive reading of such a rule is that whenever a1, . . . , am are
known to be true and there is no evidence for any of the negated atoms am+1, . . . , an to be true, then
a0 has to be true, as well. If a0 = ⊥, then the rule becomes a constraint (in which case the symbol ⊥
is usually omitted). As ⊥ can never become true, if the right-hand side of a constraint is validated,
it invalidates the whole solution.

Algorithms 2017, 10, 8 15 of 26

In the ASP paradigm, the search of solutions consists of computing the answer sets of
a given program. An answer set for a program is defined by Gelfond and Lifschitz [37] as follows.
An interpretation I is a finite set of propositional atoms. A rule r as given in (1) is true under I if and
only if:

{a1, . . . , am} ⊆ I ∧ {am+1, . . . , an} ∩ I = ∅⇒ a0 ∈ I .

An interpretation I is a model of a program P if each rule r ∈ P is true under I. Finally, I is
an answer set of P if I is a minimal (in terms of inclusion) model of PI , where PI is defined as the
program that results from P by deleting all rules that contain a negated atom that appears in I and
deleting all negated atoms from the remaining rules. Programs can yield no answer set, one answer
set or several answer sets. To compute the answer sets of a given program, one needs a grounder
(to remove free variables from the rules) and a solver. For the present work, we used CLINGO(we used
CLINGO Version 5.0: http://potassco.sourceforge.net/) [38], which is a combination of both.

In the rest of this section, we use ASP to tackle the problems’ learning models from the time series
data (i.e., implementing Algorithm 1 and all of the refinements in Section 5).

7.2. All Models

Encoding of the case study in Section 6, Figure 3 on page 13: We encode the observations as a set
of predicates obs(X,Val,T), where X is an automaton identifier, Val a level of this automaton and T is
a time point, such that the automaton X has the value Val starting from T.

1 % All network components with its levels after discretization
2 automatonLevel("a",0..1). automatonLevel("b",0..1). automatonLevel("c",0..1).
3 % Time series data or the observation of the components
4 obs("a",0,0). obs("a",0,1). obs("a",0,2). obs("a",0,3). obs("a",1,3). obs("a",1,4). obs("a",1,4).
5 obs("a",1,5). obs("a",0,5). obs("a",0,6). obs("a",0,7). obs("b",1,0). obs("b",1,1). obs("b",1,2).
6 obs("b",1,3). obs("b",1,4). obs("b",0,4). obs("b",0,5). obs("b",0,5). obs("b",0,6). obs("b",0,7).
7 obs("c",0,0). obs("c",0,1). obs("c",0,2). obs("c",1,2). obs("c",1,3). obs("c",1,4). obs("c",1,5).
8 obs("c",1,6). obs("c",0,6). obs("c",0,7).

We define in the predicate changeState(X,Val1, Val2, T), the time point T where X changes its
level from Val1 to Val2. We admit that at t=0, all components change (lines 11–12). Then, to reduce
the complexity of the program, we consider in the predicate time only the time points where the
components change their levels (line 18). Similar for the delays, D is a delay when it is equal to the
difference between two time steps where some components change their levels (line 19). To compute
the chronogram of a component a, we compute the time points where it is constant (i.e., has only one
level) between two successive changes of a: T1 and T2 (lines 21–22) .

9 % Changes identification
10 % initialization of all changes for each automaton at t=0 (assumption)
11 changeState(X,Val,Val,0) ← obs(X,Val,0).
12 changeState(X,0) ← obs(X,_,0).
13 % Compute all changes of each component according to the observations (chronogram)
14 changeState(X,Val1, Val2, T) ← obs(X, Val1, T), obs(X,Val2,T),obs(X, Val1, T-1), obs(X, Val2, T+1),
15 Val1!=Val2.
16 changeState(X,T) ← changeState(X,_,_,T).
17 % Find all time points where changes occure (reduce complexity)
18 time(T) ← changeState(_,T).
19 delay(D) ← time(T1), time(T2), D=T2-T1, T2>=T1.
20 % Observations processing
21 obs_normalized(X,Val,T1,T2) ← obs(X,Val,T1), obs(X,Val,T2), T1<T2, not existChange(X,Val,T1,T2),
22 time(T1), time(T2).
23 % Verify if X changes its level between two time points T1 and T2
24 existChange(X,Val,T1,T2) ← obs(X,Val,T1), obs(X,Val,T2), obs(X,Val1,T), T>T1, T<T2, Val!=Val1.
25 existChange(X,Val,T1,T2) ← obs(X,Val,T1), obs(X,Val,T2), changeState(X,T), T>T1, T<T2.
26 existChange(X,Val,T1,T2) ← obs(X,Val,T1), obs(X,Val,T2), T1<T2, changeState(X,Val,Val_,T1), Val!=Val_.

We detailed in Section 3 how to compute the delays. Therefore, the delay is the difference between
the time where the change happens (changeState) and the last change of the components involved in

http://potassco.sourceforge.net/

Algorithms 2017, 10, 8 16 of 26

the local transition: the influenced one, X, and the influencing one(s) (here, we detail only the transition
with indegree = 1). Find the last component that has changed, the influenced component X, the
influencing component Y or one of the components influenced by X, such that there exists a transition
in conflict with the computing one. This last time step of the change H comparing to the time step T2
for the component X having as an influence Y is computed in the predicate lastChange(X,Y,H,T2)
(lines 29–39). In other words, H=ΠT2

X .

27 % Find the time step when the transition has started playing
28 % The last change of X such that W is influencing by X and X is influencing by Y
29 lastchange(X,Y,W,Max,T2) ← Max=#max{ T : changeState(Y,T;X,T;W,T), T<T2}, changeState(X, T2),
30 existInfluence(X,Y), existInfluence(W,X), Max>=0.
31 lastChangeAll(X,Y,Max,T2) ← lastchange(X,Y,W,Max,T2), transition(X,_,W,_,_,D, change(T3)), T3<T2,
32 T2-U>D, lastConditionChange(X,Y,U,T2).
33 % Last change between X and its influencing component Y
34 lastConditionChange(X,Y,H,T2) ← H=#max{ T : changeState(Y,T;X,T) , T<T2}, changeState(X, T2),
35 existInfluence(X,Y), H>=0.
36 % Find the time point of the last change: it is the last change of X, or of the component influenced by X
37 % or of the components involved in the transition condition
38 lastChange(X,Y,Max,T2) ← lastChangeAll(X,Y,Max,T2).
39 lastChange(X,Y,H,T2) ← lastConditionChange(X,Y,H,T2), not lastChangeAll(X,Y,H,T2), H!=H, delay(H).

We propose below Figure 5 where we simplify the explication of the encoding part. It illustrates
which resources are necessary to compute the origin, destination, conditions and delay of each timed
local transition.

obs Compute all
changes

obs  
normalized

changeState

origin + destination 
discret levels of the changed automaton

conditions
combinaison of all automata (corresponding discret levels)

having influence on the changed automaton

Compute the delay
according to the last change between the changed
automaton and the the automata in the condition

delay

for each automaton change

for each transition condition

Transition

Exist
Influence

Figure 5. An illustration of how the ASP encoding computes the timed local transitions "transition"
from the observations "obs". The names in lozenges correspond to the predicates in the ASP code.

Algorithms 2017, 10, 8 17 of 26

To create as many models as possible that satisfy the given time series data, we add in the head of
the rule the brackets { } between the predicates of the transition (see lines 41–43). Then, we make
sure that we keep exactly one transition for each change at a step T by component X. We compute this
number of different transitions in Tot by the predicate getTransNumber(Tot,X,T) (line 46). Therefore,
we eliminate all models that do not satisfy this assumption by the constraints in lines 48–49.

40 % Compute all models with all candidate timed local transitions
41 {transition(Y,Valy,X,Val1,Val2,D, change(T2))} ← obs_normalized(X,Val1,T1,T2),
42 obs_normalized(Y,Valy,T1,T2), changeState(X,Val1,Val2,T2), existInfluence(X,Y),
43 lastChange(X,Y,T1,T2), T2=T1+D, delay(D).
44 transition(Y,Valy,X,Val1,Val2,D) ← transition(Y,Valy,X,Val1,Val2,D, _).
45 % for each change keep only one transition (xOR)
46 getTransNumber(Tot,X,T)← Tot={transition(_,_,X,_,_,_, change(T))}, changeState(X,T), T!=0.

47 % Exactly one transition by change in a model
48← getTransNumber(Tot,X,T), changeState(X,T), Tot=0.
49← getTransNumber(Tot,X,T), changeState(X,T), Tot>1.

7.3. Refinement

In this section, we show the encoding part of the filters presented in Section 5 to eliminate all
contradiction between transitions in the same model or between the transition and the semantics.

7.4. Refinement According to the Semantics

The following constraint ensures that each output model will respect Definition 14: a component
cannot inhibit and activate another one with the same level (line 51).

50 % A component with the same level inhibits and activates the same component
51← transition(Y,Valy,X,Val1,Val2,_), transition(Y,Valy,X,Val3,Val4,_), Val1<Val2, Val3>Val4.

Furthermore, according to Definition 14, a component cannot have the same effect on another one
with the same level of expression. This property is encoded by the following constraint (line 53).

52 % A component with different levels influence another component with the same effect
53← transition(Y,Valy,X,Val1,Val2,_), transition(Y,Valy_,X,Val1,Val2,_), Valy_!=Valy.

According to Definition 12, a transition that is playable at a time point and that is not in conflict
with another one should be played (synchronous behavior). If this is not the case, the model is not
correct and will be eliminated by the following constraint in lines 68–69.

54 % Last time points in the data
55 timeSeriesSize(Last) ← Last=#max{ T : obs(_,_,T) }.
56 step(0..Last)← timeSeriesSize(Last).
57 % Compute all the obs between all the time points in the data
58 obs_(X,Val,T1,T2) ← obs(X,Val,T1), obs(X,Val,T2), T1<T2, not existsChange(X,Val,T1,T2).
59 existsChange(X,Val,T1,T2) ← obs(X,Val1,T), T>T1, T<T2, Val1!=Val, obs(X,Val,T1), obs(X,Val,T2).
60 % There is a transition with different delays
61 existTransDiffDelays(Y,Valy,X,Val1,Val2,D1,D2) ← transition(Y,Valy,X,Val1,Val2,D1),
62 transition(Y,Valy,X,Val1,Val2,D2), D1!=D2.
63 % There is a transition in conflict with "transition(Y,Valy,X,Val1,Val2,D1)"
64 existTransInConflict(Y,Valy,X,Val1,Val2,D1,T1,T2) ← transition(Y,Valy,X,Val1,Val2,D1),
65 transition(X,Val1,_,_,_,D2,change(T3)), T3>=T2, D2>=D1, T3-D2 <=T2, step(T2),
66 step(T1), T1<T2, D1=T2-T1, obs_(X,Val1,T1,T2), obs_(Y,Valy,T1,T2).
67 % Eliminate all models that do not respect the semantics (Definitions 5-6)
68← transition(Y,Valy,X,Val1,Val2,D), obs_(X,Val1,T1,T2), obs_(Y,Valy,T1,T2), step(D),
69 not changeState(X,Val1,Val2,T2), not existTransInConflict(Y,Valy,X,Val1,Val2,D,T1,T2),
70 not existTransDiffDelays(Y,Valy,X,Val1,Val2,D,D2), changeState(X,Val1,Val2,T3),
71 T2!=Max, timeSeriesSize(Max), obs_(X,Val1,T1,T3), T3-T1=D2, delay(D2), D=T2-T1.

Algorithms 2017, 10, 8 18 of 26

7.5. Refinement on the Delays

The several refinements of the generated models we propose can be seen as parameters that can
be combined or not. For example, the user can specify that for the same transition, if we find different
delays, we can take the average value or even specify an interval in which we define the minimum
value and the maximum value.

According to Definition 17, in one model, a transition cannot have different delays; so that such
models can be eliminated by the following constraint in line 12.

73 % No different delays for the same transition
74← transition(Y,Valy,X,Val1,Val2,D1), transition(Y,Valy,X,Val1,Val2,D2), D1!=D2.

Otherwise, we can merge all transitions that only differ by their delay in one transition, but whose
delay is equal to the average delay of these transitions. To compute the average delays for a transition
in the same model according to Definition 16, we do as follows in ASP. First, we compute the total
number of these transitions in Tot by nbreTotTrans(Y,Valy,X,Val1,Val2,Tot) (lines 77–77), where
the shared part between all transitions is Y,Valy,X,Val1,Val2; then, the sum of all of these delays in
S by the predicate sumDelays (lines 80–81). To find the average, we divide S by Tot (Davg=S/Tot). The
new transition after merging is then transAvgDelay(Y,Valy,X,Val1,Val2,Davg) (lines 83–84).

75 % Transitions with the average of delays
76 % Number of the repetition of each transition
77 nbreTotTrans(Y,Valy,X,Val1,Val2,Tot) ← Tot={transition(Y,Valy,X,Val1,Val2,_,_)},
78 transition(Y,Valy,X,Val1,Val2,_).
79 % The sum of the delays for each transition
80 sumDelays(Y,Valy,X,Val1,Val2,S) ← S=#sum{ D: transition(Y,Valy,X,Val1,Val2,D)},
81 transition(Y,Valy,X,Val1,Val2,_), S!=0.
82 % Compute the average delay for each transition
83 transAvgDelay(Y,Valy,X,Val1,Val2,Davg) ← nbreTotTrans(Y,Valy,X,Val1,Val2,Tot),
84 sumDelays(Y,Valy,X,Val1,Val2,S), Davg=S/Tot.

It is also possible to compute the interval of the delays according to Definition 15: [Max, Min]
with Max is the maximum value of the delays of this transition, computed by the predicate maxDelay
(lines 86–87); Min is the minimum value of the delays computed by the predicate minDelay (lines 88–89).
Finally, the generation of a transition after merging is done by the predicate transIntervalDelay in
lines 90–91.

85 % Compute the maximum value and the minimum value of the delays of a same transition
86 maxDelay(Y,Valy,X,Val1,Val2,Max) ← Max=#max{ D : transition(Y,Valy,X,Val1,Val2,D)},
87 transition(Y,Valy,X,Val1,Val2,_).
88 minDelay(Y,Valy,X,Val1,Val2,Min) ← Min=#min{ D : transition(Y,Valy,X,Val1,Val2,D)},
89 transition(Y,Valy,X,Val1,Val2,_).
90 transIntervalDelay(Y,Valy,X,Val1,Val2,interval(Min,Max)) ← minDelay(Y,Valy,X,Val1,Val2,Min),

91 maxDelay(Y,Valy,X,Val1,Val2,Max).

According to the Definition 13, we want to find the more frequent transitions in the models.
In ASP, the option "- - cautious” computes the cautious consequences (intersection of all answer sets)
of a logic program (algorithm implementation in ASP). Therefore, we use this option while executing.

8. Evaluation

In this section, we provide two assessments of Algorithm 1. We evaluate the capacity of our
algorithm (all programs, described in this article for timed automata network generation are
implemented in ASP and are available online at: http://www.irccyn.ec-nantes.fr/~benabdal/
modeling-biological-regulatory-networks.zip) to build models for prediction and the impact of
the quantity of observations on run time. Here, we process chronograms obtained from time series
data of the DREAM4 challenge [39] and of the DREAM8 challenge [40].

http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip
http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip

Algorithms 2017, 10, 8 19 of 26

8.1. DREAM4

In this section, we assess the efficiency of our algorithm through case studies coming from the
DREAM4 challenge. DREAM challenges are annual reverse engineering challenges that provide
biological case studies. In this section, we focus on the datasets coming from DREAM4 (available
online at https://www.synapse.org/#!Synapse:syn3049712/wiki/74630). It provides data for systems
of different size (10 genes on the one hand; 100 genes on the other), allowing us to assess the scalability
of our approach. The input data that we tackle here consist of the following: five different systems each
composed of 100 genes, all coming from Escherichia coli and yeast networks. For every such system, the
available data are the following: (i) 10 time series data with 21 time points, and 1000 is the duration
of each time series; (ii) steady state for the wild-type; (iii) steady states after knocking out each gene;
(iv) steady states after knocking down each gene (i.e., forcing its transcription rate at 50%); (v) steady
states after some random multifactorial perturbations. We processed all of the data. Here, we focus on
the management of time series data.

Each time series includes different perturbations that are maintained all of the time during the
first 10 time points and applied to at most 30% of the genes. In this setting, a perturbation means
a significant increase or decrease of the gene expression. In the raw data of the time series, gene
expression values are given as real numbers between zero and one.

The discretization is a crucial part for the abstraction of the data. However, in this article, we
do not develop the method of the discretization, and we suppose this as already chosen. There are
many ways to discretize those data; using biological databases and statistical methods, we could
identify gene expression thresholds. Clustering techniques could be used to group data points into
discrete levels. On the other hand, rather than considering thresholds, we could focus on components’
speed evolution to discretize the data. It is indeed a perspective of optimization to regularize the
model through different levels and methods of discretization. However, in this article, we focus on the
learning algorithm and consider discretization as more or less given.

To apply our approach, we chose to discretize those data into two to six qualitative values.
Increasing the number of qualitative values from two to four improves the precision, but then the
score decreases from five, most likely because of over-fitting: the relations learned become too precise
and cannot be applied on something else other than the training data. The best score we obtained was
with four qualitative values and is reported in Table 2. Each gene is discretized in an independent
manner, with respect to the following procedure: we compute the average value of the gene expression
among all data of a time series, then the values between the average and the maximal/minimal value
are divided into as many levels. Discretizing the data according to the average value of expression is
expected to reduce the impact of perturbation on the discretization and, thus, on the model learned.

Table 2. Evaluation of our method on the learning and prediction of the evolution of gene regulatory
network benchmarks from the DREAM4 challenge [39] through the Mean Square Error (MSE): 10
variables benchmarks (left); and 100 variables benchmarks (right).

Benchmark Number of Genes MSE
insilico_size10_1 10 0.086
insilico_size10_2 10 0.080
insilico_size10_3 10 0.076
insilico_size10_4 10 0.039
insilico_size10_5 10 0.076

Benchmark Number of Genes MSE
insilico_size100_1 100 0.052
insilico_size100_2 100 0.042
insilico_size100_3 100 0.033
insilico_size100_4 100 0.033
insilico_size100_5 100 0.052

The DREAM4 challenge offers two different problems, which consist of predicting: (i) the structure
of the gene interactions (in terms of an unsigned directed graph); (ii) attractors in some given conditions.
Our method is not designed to tackle the first issue; indeed, we need to know those influences.
However, the models we learn can be applied to predict trajectories and thus attractors. Here, we use

https://www.synapse.org/#!Synapse:syn3049712/wiki/74630

Algorithms 2017, 10, 8 20 of 26

the influences graphs expected in the first problem as the background knowledge (inferred by the
Gene Network Weaver [41]) to tackle the attractor prediction part of the challenge.

8.2. Results

For this evaluation, we are given an initial state and five different dual gene knockout conditions.
The goal is to predict the attractor in which the system will fall from the initial state for each dual
knockout. Here, we just choose the first model that our algorithm outputs and use the biggest set
of fireable timed local transitions at each time step to produce a trajectory until a cycle is detected.
The first state of this cycle is reverse discretized and proposed as the predicted state. In the challenge,
the quality of the prediction is evaluated by computing the mean square error (MSE) between the
predicted state and the expected one. As shown in Table 2, the precision we achieved in those
experiments is quite good considering the results of the competitors of the DREAM4 challenge [39].
Their results range between 0.010 and 0.075 for the same evaluation settings, which are comparable
to (0.033 to 0.086), giving us encouraging results. Regarding run time, learning and predicting the
trajectories of the benchmarks of 10 genes took less than 30 s, and the same experiments for the
benchmarks of 100 genes took about 3 h and 20 min on a one-processor Intel Core2 Duo (P8400,
2.26 GHz).

To achieve this score, we had to perform several tests by varying the discretization precision and
the complexity of the dynamics learned. Figure 6 shows the score we got on predicting the training
data of DREAM4 benchmarks of size 10 starting with two levels of discretization until 20. Here, we
take the series of each benchmark as the input, and the first state of each series is used to start a
prediction. MSE is computed over the 21 points of the original series against the predicted ones. We
can see that increasing the discretization precision improves the prediction precision until five levels
of discretization. Then, the model prediction quality decreases as it tends to overfit the data. Those
tests also allow us to assess the scalability of our approach in practice. Figure 7 shows the impact of
both timed local transition indegree and discretization level on run time when learning the DREAM4
benchmarks of size 100.

In the results obtained from the experimentation of our algorithm on the time series data of the
DREAM4, we can see the exponential influence on the run time of the indegree per local transition
considered, as well as the level of discretization chosen for all five different networks. However, it also
shows that in practice, our approach can tackle big networks; here, 100 genes.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Discretization levels

M
S

E

Figure 6. Evaluation of the discretization impact on model precision over training data of DREAM4
benchmarks of a size of 10.

Algorithms 2017, 10, 8 21 of 26

2 3 4 5 6
0

100

200

300

400

500

600

700

Indegree=1

Indegree=2

Discretization Levels

R
u

n
 T

im
e

 (
in

 s
e

co
n

d
s)

2 3 4 5 6
0

100

200

300

400

500

600

700

Indegree=1

Indegree=2

Discretization Levels

R
u

n
 T

im
e

 (
in

 s
e

co
n

d
s)

2 3 4 5 6
0

100

200

300

400

500

600

700

Indegree=1

Indegree=2

Discretization levels

R
u

n
 T

im
e

 (
in

 s
e

co
n

d
s)

2 3 4 5 6
0

100

200

300

400

500

600

700

Indegree=1

Indegree=2

Discretization levels
R

u
n

 T
im

e
 (

in
 s

e
co

n
d

s)

2 3 4 5 6
0

100

200

300

400

500

600

700

Indegree=1

Indegree=2

Discretization levels

R
u

n
 T

im
e

 (
in

 s
e

co
n

d
s)

Figure 7. Evolution of run time on processing different models inferred from time series data of
DREAM4 (100 variables benchmarks), varying the indegree of local timed transitions and discretization
levels. These tests were performed on a processor of Intel Core i7 (4700, 3 GHz) with 16 GB of RAM.

8.3. DREAM8

We recently started to test our method on the DREAM8 [40]: Heritage-DREAM breast cancer
network inference challenge (the data set is available online at https://www.synapse.org/#!Synapse:
syn1720047/wiki/55342). The challenge is about the inference of causal signaling networks and
prediction of protein phosphorylation dynamics. As for DREAM4, we are focusing on the prediction
part. The aim is to build dynamical models that can predict trajectories of phosphoproteins. An
important emphasis is on the ability of models to generalize beyond the training data by predicting
trajectories under perturbations not seen in the training data. This sub-challenge is split into two
independent parts: A, breast cancer proteomic data; B, in silico data; and we choose to start with the
first one.

Training data come from experiments on four breast cancer cell lines stimulated with various
ligands. The data comprise protein abundance time courses under inhibitor perturbations. Training data
are provided for each of the 32 biological contexts defined by the combination of cell line and growth
condition (stimulus). These data comprise time courses for about 45 phosphoproteins under a
vehicle control (DMSO) and under inhibitor perturbations of network nodes, as shown in Figure 8
(Figure 8 is from https://www.synapse.org/#!Synapse:syn1720047/wiki/56061). Using these training
data, participants are asked to build dynamical models that can predict phosphoprotein trajectories
specific to each of the 32 biological contexts (32 cell line/stimulus pairs) and under the inhibition of
phosphoproteins that were not perturbed in the training data.

https://www.synapse.org/#!Synapse:syn1720047/wiki/55342
https://www.synapse.org/#!Synapse:syn1720047/wiki/55342
https://www.synapse.org/#!Synapse:syn1720047/wiki/56061

Algorithms 2017, 10, 8 22 of 26

Figure 8. DREAM8 time series data [42].

Here, we deal with about 48 variables per cell line, which is tractable for our algorithm. The quantity
of time series is also more generous than in DREAM4. The difficulty for us lies in the small amount of
data point per series: seven points (0, 5, 15, 30, 60 min and 2, 4 h). Even though, we succeed at producing
models that can be used for the time course prediction.

8.4. Results

To evaluate their precision, predicted trajectories are compared with experimental test data
obtained in each of the 32 cell line/stimulus contexts and following the inhibition of phosphoprotein
nodes by test inhibitors. These experiments are over the same time period as the training data (up
to 4 h). To get our precision score, we used dreamtools [43], an open-source Python package for
evaluating DREAM challenge scoring metrics. The scoring metric of this sub-challenge is based on
multiple metrics; so far, we focused on the mean RMSE (Root Mean Squared Error) provided by
dreamtools. In those experiments, we chose to abstract the data into a fixed number of discrete levels
as for the DREAM4 experiment (see Section 8.1). By varying the number of level of discretization (see
Table 3), our best score was obtained with five levels of discretization. Considering less levels results
in a prediction that is too general, while considering more levels results in a tendency to overfit the
modelw.r.t. the observed data. The best score we could get so far was 0.5528 mean RMSE, which would
rank our method around the ninth and 11th leader board method (the DREAM8 Subchallenge 2A leader
board is available at https://www.synapse.org/#!Synapse:syn1720047/wiki/56831), which got scored
between 0.5139 and 0.5564 on this metric. On this challenge, the best performing methods are based
on statistical analysis (see https://www.synapse.org//#!Synapse:syn2343141). The interest of our
method is that the model we learn is human readable, as well as the trajectory prediction. Indeed, we
explain the dynamical behavior of the network by providing detailed interactions between components
to explain each change step by step. These transitions are enriched by signs (activation/inhibition), the
level of expression (thresholds) and delays. The final model can be understood statically and can be
used to predict dynamical behaviors with respect to a known semantics.

Table 3. Evaluation results of our methods on DREAM8 Subchallenge 2A data.

Discrete Levels Run Time (s) Mean RMSE

2 9775 s 0.7054
3 7078 s 0.6419
4 15,941 s 0.5901
5 14,102 s 0.5528
6 19,356 s 0.5667
7 20,963 s 0.5563

Like for DREAM4, to achieve this score, we had to perform several tests by varying the
discretization precision and the complexity of the dynamics learned. Table 4 shows the score we

https://www.synapse.org/#!Synapse:syn1720047/wiki/56831
https://www.synapse.org//#!Synapse:syn2343141

Algorithms 2017, 10, 8 23 of 26

got on predicting the training data of DREAM8 benchmarks with two and five levels of discretizations
(here, we show only the detailed score for two levels, because of time (about 15 h per level after five)).

Table 4. Evaluation results of our methods on DREAM8 training data.

Benchmarks
Mean RMSE

2 Discrete Levels 5 Discrete Levels

BT20 1.712 0.458
BT549 1.507 0.449
MCF7 0.713 0.310

UACC812 12.6 3.391

8.5. Discussion

We propose a new method, MoT-AN (Algorithm 1), to automatically infer models that could
explain the dynamical evolution of the biological systems. The contribution of our method lies in
the fact that it identifies the set of interactions between biological components by concertizing the
signs (negative or positive), providing thresholds and associating the quantitative time delays for each
local transition.

We illustrated the merits of this method by applying it on large real biological systems (DREAM4
and DREAM8 challenges). As a result, we obtain in a few seconds models that are proven to be
relevant (this relevance is qualified in terms of mean square error using dream tools) This algorithm is
implemented using ASP [36,44], thus providing the exhaustive enumeration of all models.

The main limit of the approach presented in this paper is the fact that the topology of the
network is considered as granted. As discussed in the Introduction of the paper, there is a wide range
of algorithms designed to address this issue [41,45]. Furthermore, such interaction graphs could be
deduced from the available reliable databases of biological networks. Some examples of databases
for human regulatory knowledge are: the Pathways Interaction Database [46], the Human Integrated
Pathway DB [47] and the Causal Biological Network Database [48].

Various inference approaches [46,49,50] from time series data based on prior knowledge about
component interactions have been proposed. However, they share a common limit: they focus on
static characterization of the interactions, and they do not allow one to infer dynamic behaviors where
delays are involved. The merits of our contribution lie in the fact that we overcome such limits, and
we infer delays in a qualitative dynamic modeling of the network.

9. Conclusions and Perspectives

In this paper, we propose an approach that takes the background knowledge under the form of
regulation graph and time series data as the input. The originality of our work is three-fold: (i) the
identification of the sign of the interactions; (ii) the direct integration of quantitative time delays
in the learning approach; and (iii) the identification of the qualitative discrete levels that lead to
the systems dynamics. As a result, we produce a set of T-AN that explains the biological network
evolution. Algorithm 1 is implemented in ASP. We illustrated the applicability and limits of the proposed
method through benchmarks from DREAM4. We also improved our method and made it more robust
against noisy and scarce data by proposing some refinements. Then, we applied it on the DREAM8
dataset: Heritage-DREAM breast cancer network. These results open the way to promising applications
in the cooperation between biologists and computer scientists. Further works now consist of discussing
the kind of information one can get on T-AN by analyzing the associated non-timed model.

Supplementary Materials: The supplementary materials are available online at www.mdpi.com/1999-4893/10/
1/8/s1.

Acknowledgments: We thank Laurent Trilling for valuable discussions.

www.mdpi.com/1999-4893/10/1/8/s1
www.mdpi.com/1999-4893/10/1/8/s1

Algorithms 2017, 10, 8 24 of 26

Author Contributions: Emna Ben Abdallah and Tony Ribeiro did the formalization. Emna Ben Abdallah designed
and implemented the algorithms. Tony Ribeiro performed the experiments. Emna Ben Abdallah and Tony Ribeiro
wrote the paper. Morgan Magnin and Olivier Roux and Katsumi Inoue supervised the work.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

AN Automata Network
T-AN Timed Automata Network
ASP Answer Set Programming

References

1. Marx, V. Biology: The big challenges of big data. Nature 2013, 498, 255–260.
2. Callebaut, W. Scientific perspectivism: A philosopher of science’s response to the challenge of big data

biology. Stud. Hist. Philos. Sci. Part C 2012, 43, 69–80.
3. Fan, J.; Han, F.; Liu, H. Challenges of big data analysis. Natl. Sci. Rev. 2014, 1, 293–314.
4. Akutsu, T.; Kuhara, S.; Maruyama, O.; Miyano, S. Identification of genetic networks by strategic gene

disruptions and gene overexpressions under a Boolean model. Theor. Comput. Sci. 2003, 298, 235–251.
5. Sima, C.; Hua, J.; Jung, S. Inference of gene regulatory networks using time-series data: A survey. Curr. Genom.

2009, 10, 416–429.
6. Koksal, A.S.; Pu, Y.; Srivastava, S.; Bodik, R.; Fisher, J.; Piterman, N. Synthesis of biological models

from mutation experiments. In Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, Rome, Italy, 23–25 January 2013; Volume 48, pp. 469–482.

7. Kim, S.Y.; Imoto, S.; Miyano, S. Inferring gene networks from time series microarray data using dynamic
Bayesian networks. Brief. Bioinform. 2003, 4, 228–235.

8. Zhao, W.; Serpedin, E.; Dougherty, E.R. Inferring gene regulatory networks from time series data using the
minimum description length principle. Bioinformatics 2006, 22, 2129–2135.

9. Koh, C.; Wu, F.X.; Selvaraj, G.; Kusalik, A.J. Using a state-space model and location analysis to infer
time-delayed regulatory networks. EURASIP J. Bioinform. Syst. Biol. 2009, 2009, doi:10.1155/2009/484601.

10. Liu, T.F.; Sung, W.K.; Mittal, A. Learning multi-time delay gene network using Bayesian network framework.
In Proceedings of the 16th IEEE International Conference on Tools with Artificial Intelligence, Boca Raton,
FL, USA, 15–17 November 2004; pp. 640–645.

11. Silvescu, A.; Honavar, V. Temporal Boolean network models of genetic networks and their inference from
gene expression time series. Complex Syst. 2001, 13, 61–78.

12. Zhang, Z.Y.; Horimoto, K.; Liu, Z. Time Series Segmentation for Gene Regulatory Process with
Time-Window-Extension. In Proceedings of the 2nd International Symposium on Optimization and Systems
Biology, Lijiang, China, 31 October–3 November 2008; pp. 198–203.

13. Akutsu, T.; Tamura, T.; Horimoto, K. Completing networks using observed data. In Algorithmic Learning
Theory; Springer: Berlin/Heidelberg, Germany, 2009; pp. 126–140.

14. Matsuno, H.; Doi, A.; Nagasaki, M.; Miyano, S. Hybrid Petri net representation of gene regulatory network.
Pac. Symp. Biocomput. 2000, 5, 341–352.

15. Siebert, H.; Bockmayr, A. Temporal constraints in the logical analysis of regulatory networks. Theor. Comput. Sci.
2008, 391, 258–275.

16. Ahmad, J.; Bernot, G.; Comet, J.P.; Lime, D.; Roux, O. Hybrid modelling and dynamical analysis of gene
regulatory networks with delays. ComPlexUs 2006, 3, 231–251.

17. Casagrande, A.; Dreossi, T.; Piazza, C. Hybrid Automata and epsilon-Analysis on a Neural Oscillator. In Hybrid
Systems Biology: First International Workshop, HSB 2012, Newcastle Upon Tyne, UK; Cinquemani, E., Donzé, A., Eds.;
Lecture Notes in Computer Science; Springer International Publishing: Cham, Switzerland, 2012; pp. 58–72.

18. Paoletti, N.; Yordanov, B.; Hamadi, Y.; Wintersteiger, C.M.; Kugler, H. Analyzing and synthesizing genomic
logic functions. In Computer Aided Verification; Springer: Cham, Switzerland, 2014; pp. 343–357.

19. Li, R.; Yang, M.; Chu, T. Synchronization of Boolean networks with time delays. Appl. Math. Comput. 2012,
219, 917–927.

Algorithms 2017, 10, 8 25 of 26

20. Ribeiro, T.; Magnin, M.; Inoue, K.; Sakama, C. Learning delayed influences of biological systems. Front. Bioeng.
Biotechnol. 2014, 2, doi:10.3389/fbioe.2014.00081.

21. Donnarumma, F.; Murano, A.; Prevete, R.; della Battaglia, V.S.M. Dynamic network functional comparison
via approximate-bisimulation. Control Cybern. 2015, 44, 99–127.

22. Girard, A.; Pappas, G.J. Approximate bisimulations for nonlinear dynamical systems. In Proceedings of the
44th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC 2005), Seville,
Spain, 12–15 December 2005; pp. 684–689.

23. Comet, J.P.; Fromentin, J.; Bernot, G.; Roux, O. A formal model for gene regulatory networks with time
delays. In Computational Systems-Biology and Bioinformatics; Springer: New York, NY, USA, 2010; pp. 1–13.

24. Merelli, E.; Rucco, M.; Sloot, P.; Tesei, L. Topological characterization of complex systems: Using persistent
entropy. Entropy 2015, 17, 6872–6892.

25. Merelli, E.; Pettini, M.; Rasetti, M. Topology driven modeling: The IS metaphor. Nat. Comput. 2015, 14,
421–430.

26. Ben Abdallah, E.; Ribeiro, T.; Magnin, M.; Roux, O.; Inoue, K. Inference of Delayed Biological Regulatory
Networks from Time Series Data. In Computational Methods in Systems Biology, Proceedings of the 14th
International Conference, CMSB, Cambridge, UK, 21–23 September 2016; Springer International Publishing
AG: Dordrecht, The Netherlands, 2016; pp. 30–48.

27. Paulevé, L.; Magnin, M.; Roux, O. Refining Dynamics of Gene Regulatory Networks in a Stochastic π-Calculus
Framework. In Transactions on Computational Systems Biology XIII; Springer: Berlin/Heidelberg, Germany, 2011;
Volume 6575, pp. 171–191.

28. Paulevé, L.; Chancellor, C.; Folschette, M.; Magnin, M.; Roux, O. Analyzing Large Network Dynamics with
Process Hitting. In Logical Modeling of Biological Systems; Wiley: New York, NY, USA, 2014; pp. 125–166.

29. Paulevé, L. Goal-Oriented Reduction of Automata Networks. In Computational Methods in Systems Biology
Proceedings of the 14th International Conference, CMSB, Cambridge, UK, 21–23 September 2016; Springer
International Publishing AG: Dordrecht, The Netherlands, 2016.

30. Goldstein, Y.A.; Bockmayr, A. A lattice-theoretic framework for metabolic pathway analysis. In Computational
Methods in Systems Biology; Springer: Berlin/Heidelberg, Germany, 2013; pp. 178–191.

31. Thomas, R. Regulatory networks seen as asynchronous automata: A logical description. J. Theor. Biol. 1991,
153, 1–23.

32. Harvey, I.; Bossomaier, T. Time out of joint: Attractors in asynchronous random Boolean networks. In Fourth
European Conference on Artificial Life; MIT Press: Cambridge, MA, USA, 1997; pp. 67–75.

33. Folschette, M.; Paulevé, L.; Inoue, K.; Magnin, M.; Roux, O. Identification of Biological Regulatory Networks
from Process Hitting models. Theor. Comput. Sci. 2015, 568, 49–71.

34. Freedman, P. Time, Petri nets, and robotics. IEEE Trans. Robot. Autom. 1991, 7, 417–433.
35. Ben Abdallah, E.; Folschette, M.; Roux, O.; Magnin, M. Exhaustive analysis of dynamical properties of

Biological Regulatory Networks with Answer Set Programming. In Proceedings of the IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA, 9–12 November 2015;
pp. 281–285.

36. Baral, C. Knowledge Representation, Reasoning and Declarative Problem Solving; Cambridge University Press:
Cambridge, UK, 2003.

37. Gelfond, M.; Lifschitz, V. The Stable Model Semantics for Logic Programming. In Proceedings of the
5th International Logic Programming Conference and Symposium, Seattle, WA, USA, 15–19 August 1988;
pp. 1070–1080.

38. Gebser, M.; Kaminski, R.; Kaufmann, B.; Ostrowski, M.; Schaub, T.; Wanko, P. Theory Solving Made Easy
with Clingo 5. In Proceedings of the Technical Communications of the 32nd International Conference on
Logic Programming (ICLP), New York City, USA, 16–21 October 2016; pp. 1–15.

39. Prill, R.J.; Saez-Rodriguez, J.; Alexopoulos, L.G.; Sorger, P.K.; Stolovitzky, G. Crowdsourcing network inference:
The DREAM predictive signaling network challenge. Sci. Signal. 2011, 4, doi:10.1126/scisignal.2002212.

40. Hill, S.M.; Heiser, L.M.; Cokelaer, T.; Unger, M.; Nesser, N.K.; Carlin, D.E.; Zhang, Y.; Sokolov, A.; Paull, E.O.;
Wong, C.K.; et al. Inferring causal molecular networks: Empirical assessment through a community-based
effort. Nature methods 2016, 13, 310–318.

41. Schaffter, T.; Marbach, D.; Floreano, D. GeneNetWeaver: In silico benchmark generation and performance
profiling of network inference methods. Bioinformatics 2011, 27, 2263–2270.

Algorithms 2017, 10, 8 26 of 26

42. Hill, S.M.; Nesser, N.K.; Johnson-Camacho, K.; Jeffress, M.; Johnson, A.; Boniface, C.; Spencer, S.E.F.;
Lu, Y.; Heiser, L.M.; Lawrence, Y.; et al. Context Specificity in Causal Signaling Networks Revealed by
Phosphoprotein Profiling. Cell Syst. 2016, doi:10.1101/039636.

43. Cokelaer, T.; Bansal, M.; Bare, C.; Bilal, E.; Bot, B.; Chaibub Neto, E.; Eduati, F.; de la Fuente, A.; Gönen, M.;
Hill, S.; et al. DREAMTools: A Python package for scoring collaborative challenges. F1000Research 2016, 4,
doi:10.12688/f1000research.7118.2.

44. Anwar, S.; Baral, C.; Inoue, K. Encoding Higher Level Extensions of Petri Nets in Answer Set Programming.
In Logic Programming and Nonmonotonic Reasoning; Springer: New York, NY, USA, 2013; pp. 116–121.

45. Villaverde, A.F.; Becker, K.; Banga, J.R. PREMER: Parallel Reverse Engineering of Biological Networks with
Information Theory. In Computational Methods in Systems Biology, Proceedings of the 14th International
Conference, CMSB, Cambridge, UK, 21–23 September 2016; pp. 323–329.

46. Ostrowski, M.; Paulevé, L.; Schaub, T.; Siegel, A.; Guziolowski, C. Boolean Network Identification from
Multiplex Time Series Data. In Computational Methods in Systems Biology, Proceedings of the 13th International
Conference, CMSB, Nantes, France, September 16–18 2015; Springer: Dordrecht, The Netherlands, 2015,
pp. 170–181.

47. Yu, N.; Seo, J.; Rho, K.; Jang, Y.; Park, J.; Kim, W.K.; Lee, S. hiPathDB: A human-integrated pathway database
with facile visualization. Nucleic Acids Res. 2012, 40, D797–D802.

48. Talikka, M.; Boue, S.; Schlage, W.K. Causal Biological Network Database: A Comprehensive Platform of
Causal Biological Network Models Focused on the Pulmonary and Vascular Systems. In Computational
Systems Toxicology; Springer: New York, NY, USA, 2015; pp. 65–93.

49. Saez-Rodriguez, J.; Alexopoulos, L.G.; Epperlein, J.; Samaga, R.; Lauffenburger, D.A.; Klamt, S.; Sorger, P.K.
Discrete logic modelling as a means to link protein signalling networks with functional analysis of
mammalian signal transduction. Mol. Syst. Biol. 2009, 5, doi:10.1038/msb.2009.87.

50. Gallet, E.; Manceny, M.; Le Gall, P.; Ballarini, P. An LTL model checking approach for biological parameter
inference. In Formal Methods and Software Engineering, Proceedings of the 16th International Conference on
Formal Engineering Methods, ICFEM, Luxembourg, Luxembourg, 3–5 November 2014; Springer: Heidelberg,
Germany; pp. 155–170.

c© 2017 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC-BY) license (http://creativecommons.org/licenses/by/4.0/).

http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Automata Networks
	Timed Automata Networks
	Learning Timed Automata Networks
	Refining
	Synchronous Behavior
	More Frequent Timed Automata Networks
	Deterministic Influence
	Several Delays

	Case Study
	ASP Encoding
	ASP Syntax
	All Models
	Refinement
	Refinement According to the Semantics
	Refinement on the Delays

	Evaluation
	DREAM4
	Results
	DREAM8
	Results
	Discussion

	Conclusions and Perspectives

