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ABSTRACT. The aim of this paper is to study an optimal control problem for a parabolic solar collector.
By means of empirical estimations, we derive a simplified bilinear distributed model, where the control
models the mass flow of the heat-transfer fluid. We characterize the optimal control, that steers the
fluid temperature close to the required level. Then we give an algorithm for the computation of the
optimal control. The obtained results are illustrated by simulations of the simplified model, using data
of Ain Beni Mathar solar plant in Morocco.

RÉSUMÉ. L’objet de cet article est d’étudier le problème du contrôle optimal d’un collecteur solaire
parabolique. Par le biais d’estimations empiriques, on obtient un modèle simplifié bilinéaire distribué,
où le contrôle modélise le débit massique du fluide caloporteur. On caractérise le contrôle optimal,
qui rend la température du fluide assez proche du niveau requis. Puis on donne un algorithme pour
l’implémentation numérique de ce contrôle. Les résultats obtenus sont illustrés à travers des simula-
tions numériques, en utilisant les données de la station solaire Ain Beni Mathar au Maroc.

KEYWORDS : Bilinear systems, Solar collector, Parabolic trough reflector, Semigroups, Optimal con-
trol.

MOTS-CLÉS : Systèmes bilinéaires, Collecteur solaire, Réflecteur parabolique, Semi-groupes, Contrôle
optimal.



1. Introduction
Renewable energy is a clean and sustainable alternative to fossil energy. It is a promis-

ing technology to face the increasingly global demand for energy and the fluctuating
prices of fossil fuels. Particularly, solar thermal energy (STE) is an abundant energy
resource, which consists in collecting sunlight to generate thermal or electric energy. The
efficiency of solar energy is affected by the position of the sun and by the weather. In
this context, the geographic position of Morocco enables the exploitation of solar thermal
energy with highly efficient power stations, which significantly reduces electricity produc-
tion costs. Land availability is also an important factor that gives Morocco a tremendous
potential to successfully invest in solar energy.
In this work, we are interested in the optimization of a parabolic power plant perfor-
mance. Power plants usually use parabolic mirrors to concentrate sunlight onto a receiver
tube, containing a heat-transfer fluid, which is often a synthetic oil. The mirrors (or re-
flectors) change their position along the day from east to west to collect a maximum of
sunlight. The receiver tube is enclosed in a vacuum glass envelope. The vacuum signifi-
cantly reduces the heat losses. Once the fluid is heated by solar irradiation, it is carried to
a heat engine, where the heat energy is converted to electricity via steam turbines. For a
maximal efficiency of the heat engine, the fluid temperature has to reach a required level
Td ≃ 673.15K (≃ 400◦C). The fluid temperature depends on the intensity of solar irra-
diation, on the optical properties of the reflectors, and on the fluid mass flow. In order to
reach the required temperature, it is essential to determine the optimal fluid flow, which
can be achieved via minimizing a given functional.
This is the aim of this paper. We consider an optimal control problem, where the control
stands for the fluid mass flow. The optimal control to be searched is the minimizer of a
quadratic cost functional. In order to characterize the optimal control, the original model
describing the heat transfer within the collector is simplified into a distributed bilinear sys-
tem. A rich literature is devoted to the optimal control of such systems (see for instance
[1, 3, 5, 9, 11, 12]). However, in previous works, the control operator B is usually as-
sumed to be relatively bounded with respect to the dynamics operator A. By contrast, the
solar collector studied here is modeled by a bilinear system whose operator A is bounded,
while the control operator B is unbounded and is the generator of a strongly continuous
semigroup. Thereby, the optimal control of the solar collector will be studied using a new
method, based on the tools of semigroup theory.
The paper is organized as follows. In section 2 the original model of the parabolic col-
lector is simplified into a distributed bilinear system, modeling the evolution of the fluid
temperature. Section 3 is devoted to the formulation of the optimal control problem, as
well as the existence and the characterization of the solution. In section 4 we provide
simulations of the solar collector simplified model, using data of Ain Beni Mathar solar
plant in Morocco.

2. The simplified model
We consider a parabolic solar collector, as depicted in figure 1. The heat-transfer fluid

flows through a metallic receiver tube of length L, which is enclosed in a concentric glass
tube. Both tubes are located in the focal line of a parabolic mirror, which concentrates
sunlight towards the tubes.



Figure 1. Cylindro-parabolic solar collector [2]

The following assumptions are made on the basis of empirical estimations :
1) The fluid is incompressible, and the fluid flow is laminar, then the flow is space-

independent, and depends only on time.
2) The fluid flow and temperature are uniformly distributed over the tube section,

hence the receiver tube can be modeled by a one dimensional segment [0, L].
3) There is perfect vacuum separating the receiver tube and the glass envelope,

then the heat loss caused by the glass tube is negligible.
Upon the above assumptions, it has been proven (see for instance [4, 8]) that the solar
collector can be modeled by a system of two partial differential equations on ]0, L[, de-
scribing the temperature of the fluid Tf (K) and that of the receiver tube Tm (K), and
given by

∂Tf

∂t
(x, t) = aTf (x, t) + a1Tm(x, t)− u(t)

∂Tf

∂x
(x, t) ]0, L[×]0, T [

∂Tm

∂t
(x, t) = b1Tf (x, t) + b2Tm(x, t) + b3 ]0, L[×]0, T [

(Tf (0, t), Tm(0, t)) = (Tf,0, Tm,0) ]0, T [
(Tf (x, 0), Tm(x, 0)) = (Tf,0, Tm,0) ]0, L[

(1)

where a, a1, b1, b2 and b3 are empirically estimated coefficients, depending on the weather
and the optical properties of the collectors, and assumed to be constant in our application
due to the choice of a small time interval.
u(t) =

Cf

Ncoll
Q̇f (t), where Q̇f (t) (kg s−1) is the mass flow of the fluid, Cf (J kg−1 K−1)

is the specific heat of the fluid, and Ncoll is the number of collectors. Cf and Ncoll are
constant. In what follows u(t) stands for the control, and we assume that 0 ≤ u(t) ≤ 1.

In [6], El Jai and Chalqi provide simulations of the original model (1), where it is
shown that, for a relatively small fluid mass flow, the receiver tube temperature reaches
rapidly a given value Tmax ≃ 873 K (≃ 600◦C), due to the quick metal heat absorption.
They conclude that the temperature of the receiver tube Tm(., .) can be assumed to be
time-independent and close to Tmax, while the simulated fluid temperature remains very



close to that of the original model.
Therefore the collector model (1) can be simplified into a system of one partial differential
equation, given by

∂Tf (x, t)

∂t
= aTf (x, t) + a1Tm(x)− u(t)

∂Tf (x, t)

∂x
Tf (0, t) = Tf,0

Tf (x, 0) = Tf,0

(2)

where the metallic tube temperature Tm is approached by a smooth function, satisfying
Tm(0) = − a

a1
Tf,0, as depicted in figure 2 :
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Figure 2. Temperature distribution in the metallic tube Tm

We consider the state space H = L2(0, L), and we define the state y(t) ∈ H by

[y(t)](x) = Tf (x, t)− Tf,0

Denote B = − ∂

∂x
, and b = aTf,0 + a1Tm ∈ H , then equation (2) takes the form of the

following bilinear system {
ẏ(t) = u(t)By(t) + ay(t) + b
y(0) = 0

(3)

The domain of B is D(B) = {z ∈ H1(0, L) : z(0) = 0}. Then y(0), b ∈ D(B).
Moreover, B is the infinitesimal generator of the following C0 semigroup

[S(t)y](x) =

{
y(x− t) if x− t > 0
0 if x− t < 0

For a maximal performance, the fluid temperature Tf has to reach a given value Td =
673.15K (400◦C) along the tube. To this end, we will search the optimal control u(.) that
minimizes the gap between y(t) and yd = Td − Tf,0. This is the purpose of the next
section.



3. Optimal control problem
We consider the following system{

ẏ(t) = u(t)By(t) + ay(t) + b(t)
y(0) = y0

(4)

where B is the infinitesimal generator of a C0 semigroup (S(t))t≥0 on a separable Hilbert
space H , with a dense domain D(B). u ∈ L2(0, T ) is the control. a ∈ R, b ∈
L2(0, T ;D(B)), and y0 ∈ D(B).
Our purpose is to find a control that steers the state y(t) as close as possible to a desired
state yd ∈ H . Practically, this can be formulated as a minimization of the following cost
functional

J(u) =
α

2
∥y(T )− yd∥2 +

β

2

∫ T

0

∥y(s)− yd∥2ds+
r

2

∫ T

0

u(s)2ds (5)

over the set of admissible controls

Uad = {u ∈ L2(0, T ) : umin ≤ u(t) ≤ umax}

where α, β ≥ 0, r > 0, and 0 ≤ umin < umax.
Then the optimal control problem is stated as :{

minJ(u)
u ∈ Uad

(6)

We first give the expression of the unique mild solution of system (4).

Lemma 3.1. System (4) has a unique mild solution, written as

y(t) = S

(∫ t

0

u(τ)dτ

)
y0 +

∫ t

0

S

(∫ t

s

u(τ)dτ

)
[ay(s) + b(s)] ds (7)

where (S(t))t≥0 is the C0 semigroup generated by B.
Moreover, since y0 ∈ D(B), then y(t) ∈ D(B), ∀t ≥ 0.

Proof. For u ∈ Uad, denote U(t, s) = S

(∫ t

s

u(τ)dτ

)
. Then (U(t, s))t≥s is a strongly

continuous evolution family, generated by the family of operators B(t) = u(t)B (see
definition 9.2, chapter VI in [7]). Moreover, there exist constants M ≥ 1 and ω ∈ R
such that ∥U(t, s)∥ ≤ Me|ω|umax(t−s), then U(t, s) is exponentially bounded. By virtue
of corollary 9.20, chapter VI in [7], it follows that the family of operators (u(t)B + aI)
generates an exponentially bounded evolution family (Γ(t, s))t≥s, given by

Γ(t, s)y = U(t, s)y +

∫ t

s

U(t, τ)aΓ(τ, s)ydτ

Then system (4) has a unique mild solution, written as

y(t) = Γ(t, 0)y0 +

∫ t

0

Γ(t, s)b(s)ds



Replacing Γ(t, 0) and Γ(t, s) by their respective expressions, and applying Fubini’s theo-
rem yield

y(t) = U(t, 0)y0 +

∫ t

0

U(t, s) [ay(s) + b(s)] ds

Hence we obtain (7). Finally, since y0 ∈ D(B) then, by proposition 9.3, chapter VI in
[7], y(t) ∈ D(B), ∀t ≥ 0.

In the next proposition we prove the existence of an optimal control, solution of prob-
lem (6).

Proposition 3.2. There exists u∗ ∈ Uad such that

J(u∗) = inf
u∈Uad

J(u)

Proof. The functional J is nonnegative, and the set Uad is nonempty, then there exists
J∗ ≥ 0 such that J∗ = inf{J(u) | u ∈ Uad}. Let (un)n∈N be a sequence in Uad, such
that lim

n→∞
J(un) = J∗. Since Uad is bounded then the sequence (un)n∈N is bounded,

hence (un)n∈N has a subsequence, still denoted (un)n∈N, converging weakly to u∗. Since
Uad is closed and convex, then Uad is weakly closed, which yields u∗ ∈ Uad.
Let yn and y∗ be the respective mild solutions of system (4), relatively to un and u∗. Then

yn(t)− y∗(t) =S

(∫ t

0

un(τ)dτ

)
y0 − S

(∫ t

0

u∗(τ)dτ

)
y0

+

∫ t

0

S

(∫ t

s

un(τ)dτ

)
a[yn(s)− y∗(s)]ds

+

∫ t

0

[
S

(∫ t

s

un(τ)dτ

)
y∗(s)− S

(∫ t

s

u∗(τ)dτ

)
y∗(s)

]
ds

+

∫ t

0

[
S

(∫ t

s

un(τ)dτ

)
b(s)− S

(∫ t

s

u∗(τ)dτ

)
b(s)

]
ds

Denote µ = sup
n∈N

∥un∥, and let M ≥ 1 and ω ∈ R such that ∥S(t)∥ ≤ Meωt, ∀t ≥ 0. Let

M̂ = Me|ωa|
√
Tµ. Then applying Gronwall’s lemma to the above equality yields

∥yn(t)− y∗(t)∥ ≤M̂

∥∥∥∥S (∫ t

0

un(τ)dτ

)
y0 − S

(∫ t

0

u∗(τ)dτ

)
y0

∥∥∥∥
+ M̂

∥∥∥∥∫ t

0

[
S

(∫ t

s

un(τ)dτ

)
y∗(s)− S

(∫ t

s

u∗(τ)dτ

)
y∗(s)

]
ds

∥∥∥∥
+ M̂

∥∥∥∥∫ t

0

[
S

(∫ t

s

un(τ)dτ

)
b(s)− S

(∫ t

s

u∗(τ)dτ

)
b(s)

]
ds

∥∥∥∥
The weak convergence un ⇀ u∗ gives lim

n→∞

∫ t

s

un(τ)dτ =

∫ t

s

u∗(τ)dτ , ∀s, t ∈ [0, T ].

It follows that

lim
n→∞

∥∥∥∥S (∫ t

0

un(τ)dτ

)
y0 − S

(∫ t

0

u∗(τ)dτ

)
y0

∥∥∥∥ = 0



lim
n→∞

∥∥∥∥S (∫ t

s

un(τ)dτ

)
y∗(s)− S

(∫ t

s

u∗(τ)dτ

)
y∗(s)

∥∥∥∥ = 0 a.e. on [0, t]

lim
n→∞

∥∥∥∥S (∫ t

s

un(τ)dτ

)
b(s)− S

(∫ t

s

u∗(τ)dτ

)
b(s)

∥∥∥∥ a.e. on [0, t]

Then, by applying Lebesgue’s dominated convergence theorem, we obtain

lim
n→∞

∥∥∥∥∫ t

0

[
S

(∫ t

s

un(τ)dτ

)
y∗(s)− S

(∫ t

s

u∗(τ)dτ

)
y∗(s)

]
ds

∥∥∥∥ = 0

lim
n→∞

∥∥∥∥∫ t

0

[
S

(∫ t

s

un(τ)dτ

)
b(s)− S

(∫ t

s

u∗(τ)dτ

)
b(s)

]
ds

∥∥∥∥ = 0

Therefore yn(t) → y∗(t) strongly in H , a.e. on [0, T ].
By Fatou’s lemma, we obtain∫ T

0

∥y∗(t)− yd∥2dt ≤ lim inf
n→∞

∫ T

0

∥yn(t)− yd∥2dt

and by the lower semi-continuity of norms, we have∫ T

0

u∗(t)2dt ≤ lim inf
n→∞

∫ T

0

un(t)
2dt

Hence J(u∗) ≤ lim inf
n→∞

J(un) = J∗, which yields J(u∗) = J∗.

Proposition 3.3. The mapping u 7→ yu(t) is Gâteaux-differentiable, and its derivative at
the direction h is given by

lim
ε→0

yu+εh(t)− yu(t)

ε
= zh(t)

where zh is the mild solution of the following equation{
żh(t) = u(t)Bzh(t) + azh(t) + h(t)Byu(t)
zh(0) = 0

(8)

and is written as

zh(t) =

∫ t

0

S

(∫ t

s

u(τ)dτ

)
[azh(s) + h(s)Byu(s)] ds (9)

Proof. Let u, h ∈ L2(0, T ) and ε ̸= 0. Without loss of generality, we can assume that
−1 ≤ ε∥h∥ ≤ 1. Let yu and yu+εh be the respective mild solutions of system (4),
relatively to u and u+ εh, and let zh be the mild solution of (8).
By replacing yu(s) in (9) by its expression, we obtain

zh(t) =

∫ t

0

S

(∫ t

s

u(τ)dτ

)
azh(s)ds+

∫ t

0

h(s)BS

(∫ t

0

u(τ)dτ

)
y0ds

+

∫ t

0

∫ s

0

h(s)BS

(∫ t

θ

u(τ)dτ

)
[ayu(θ) + b(θ)]dθds



Applying Fubini’s theorem to the above expression yields

zh(t) =

∫ t

0

S

(∫ t

s

u(τ)dτ

)
azh(s)ds+

(∫ t

0

h(τ)dτ

)
BS

(∫ t

0

u(τ)dτ

)
y0

+

∫ t

0

(∫ t

s

h(θ)dθ

)
BS

(∫ t

s

u(τ)dτ

)
[ayu(s) + b(s)]ds

(10)
For 0 ≤ s ≤ t ≤ T , we denote

Y0(t) = S

(∫ t

0

u(τ)dτ

)
y0, Y (s) = S

(∫ t

s

u(τ)dτ

)
ayu(s)

and Z(s) = S

(∫ t

s

u(τ)dτ

)
b(s). Then

yu(t) = Y0(t) +

∫ t

0

[Y (s) + Z(s)]ds

yu+εh(t) = S

(
ε

∫ t

0

h(τ)dτ

)
Y0(t) +

∫ t

0

S

(∫ t

s

(u(τ) + εh(τ))dτ

)
ayu+εh(s)ds

+

∫ t

0

S

(
ε

∫ t

s

h(τ)dτ

)
Z(s)ds

and, by expression (10), we have

zh(t) =

(∫ t

0

h(τ)dτ

)
BY0(t)

+

∫ t

0

(∫ t

s

h(τ)dτ

)
B[Y (s) + Z(s)]ds+

∫ t

0

S

(∫ t

s

u(τ)dτ

)
azh(s)ds

which yields

yu+εh(t)− yu(t)

ε
− zh(t) =

1

ε

[
S

(
ε

∫ t

0

h(τ)dτ

)
Y0(t)− Y0(t)

]
−
∫ t

0

h(τ)dτBY0(t)

+

∫ t

0

[
1

ε

[
S

(
ε

∫ t

s

h(τ)dτ

)
Y (s)− Y (s)

]
−
∫ t

s

h(τ)dτBY (s)

]
ds

+

∫ t

0

[
1

ε

[
S

(
ε

∫ t

s

h(τ)dτ

)
Z(s)− Z(s)

]
−
∫ t

s

h(τ)dτBZ(s)

]
ds

+

∫ t

0

S

(∫ t

s

(u+ εh)(τ)dτ

)
a

[
yu+εh(s)− yu(s)

ε
− zh(s)

]
ds

+

∫ t

0

[
S

(
ε

∫ t

s

h(τ)dτ

)
azh(s)− azh(s)

]
ds

There exist M ≥ 1 and ω ∈ R such that ∥S(t)∥ ≤ Meωt, ∀t ≥ 0. Then applying
Gronwall’s lemma to the above equality yields



∥∥∥∥yu+εh(t)− yu(t)

ε
− zh(t)

∥∥∥∥ ≤

M̂

∥∥∥∥1ε
[
S

(
ε

∫ t

0

h(τ)dτ

)
Y0(t)− Y0(t)

]
−
∫ t

0

h(τ)dτBY0(t)

∥∥∥∥
+ M̂

∥∥∥∥∫ t

0

[
1

ε

[
S

(
ε

∫ t

s

h(τ)dτ

)
Y (s)− Y (s)

]
−
∫ t

s

h(τ)dτBY (s)

]
ds

∥∥∥∥
+ M̂

∥∥∥∥∫ t

0

[
1

ε

[
S

(
ε

∫ t

s

h(τ)dτ

)
Z(s)− Z(s)

]
−
∫ t

s

h(τ)dτBZ(s)

]
ds

∥∥∥∥
+ M̂

∥∥∥∥∫ t

0

[
S

(
ε

∫ t

s

h(τ)dτ

)
azh(s)− azh(s)

]
ds

∥∥∥∥
where M̂ = Me|ωa|

√
T (∥u∥+1). By passing to the limit, we have

lim
ε→0

∥∥∥∥S (ε ∫ t

s

h(τ)dτ

)
azh(s)− azh(s)

∥∥∥∥ = 0 a.e. on [0, t]

Since Y0(t), Y (s) and Z(s) belong to D(B), then

lim
ε→0

∥∥∥∥1ε
[
S

(
ε

∫ t

0

h(τ)dτ

)
Y0(t)− Y0(t)

]
−
∫ t

0

h(τ)dτBY0(t)

∥∥∥∥ = 0

lim
ε→0

∥∥∥∥1ε
[
S

(
ε

∫ t

s

h(τ)dτ

)
Y (s)− Y (s)

]
−
∫ t

s

h(τ)dτBY (s)

∥∥∥∥ = 0 a.e. on [0, t]

lim
ε→0

∥∥∥∥1ε
[
S

(
ε

∫ t

s

h(τ)dτ

)
Z(s)− Z(s)

]
−
∫ t

s

h(τ)dτBZ(s)

∥∥∥∥ = 0 a.e. on [0, t]

By using appropriate bounds, and applying Lebesgue’s dominated convergence theorem,
we obtain

lim
ε→0

∥∥∥∥∫ t

0

[
S

(
ε

∫ t

s

h(τ)dτ

)
azh(s)− azh(s)

]
ds

∥∥∥∥ = 0

lim
ε→0

∥∥∥∥∫ t

0

[
1

ε

[
S

(
ε

∫ t

s

h(τ)dτ

)
Y (s)− Y (s)

]
−
∫ t

s

h(τ)dτBY (s)

]
ds

∥∥∥∥ = 0

lim
ε→0

∥∥∥∥∫ t

0

[
1

ε

[
S

(
ε

∫ t

s

h(τ)dτ

)
Z(s)− Z(s)

]
−
∫ t

s

h(τ)dτBZ(s)

]
ds

∥∥∥∥ = 0

Therefore

lim
ε→0

∥∥∥∥yu+εh(t)− yu(t)

ε
− zh(t)

∥∥∥∥ = 0

Hereafter we characterize the derivative of the cost functional (5).

Proposition 3.4. The Gâteaux-derivative of functional J at u ∈ L2(0, T ) is given by{
DuJ.h = ⟨J ′(u), h⟩L2(0,T )

J ′(u)(t) = ⟨φ(t), By(t)⟩H + ru(t)
(11)



where y is the mild solution of system (4), associated to u, and φ is the mild solution of
the following adjoint equation{

φ̇(t) = −u(t)B∗φ(t)− aφ(t)− β(y(t)− yd)
φ(T ) = α(y(T )− yd)

(12)

such that B∗ is the adjoint operator of B.

Proof. By the differentiability of u 7→ yu, functional J is Gâteaux-differentiable over
L2(0, T ). Its derivative at the direction h is written as

DuJ.h = ⟨α(yu(T )−yd), zh(T )⟩H+

∫ T

0

⟨β(yu(t)−yd), zh(t)⟩Hdt+

∫ T

0

ru(t)h(t)dt

For n ∈ ρ(B), the resolvent set of B, let Bn = nB(nI − B)−1 be the Yosida approxi-
mation of B. Let zn and φn be the respective mild solutions of the following equations{

żn(t) = u(t)Bnzn(t) + azn(t) + h(t)Byu(t)
zh(0) = 0{

φ̇n(t) = −u(t)B∗
nφn(t)− aφn(t)− β(yu(t)− yd)

φn(T ) = α(yu(T )− yd)

Since Bn is bounded, and h(t)Byu(t) ∈ H a.e. on [0, T ], then żn, φ̇n ∈ L2(0, T ;H).
Therefore∫ T

0

⟨β(yu(t)− yd), zn(t)⟩Hdt = −
∫ T

0

⟨φ̇n(t) + u(t)B∗
nφn(t) + aφn(t), zn(t)⟩Hdt

= −
∫ T

0

⟨φ̇n(t), zn(t)⟩Hdt−
∫ T

0

⟨φn(t), u(t)Bnzn(t) + azn(t)⟩Hdt

= −
∫ T

0

⟨φ̇n(t), zn(t)⟩Hdt−
∫ T

0

⟨φn(t), żn(t)⟩Hdt+

∫ T

0

⟨φn(t), h(t)Byu(t)⟩Hdt

Since żn, φ̇n ∈ L2(0, T ;H), then∫ T

0

⟨φ̇n(t), zn(t)⟩Hdt+

∫ T

0

⟨φn(t), żn(t)⟩Hdt = ⟨φn(T ), zn(T )⟩H − ⟨φn(0), zn(0)⟩H

= ⟨α(yu(T )− yd), zn(T )⟩H

It follows that∫ T

0

⟨β(yu(t)−yd), zn(t)⟩Hdt = −⟨α(yu(T )−yd), zn(T )⟩H+

∫ T

0

⟨φn(t), h(t)Byu(t)⟩Hdt

By virtue of proposition 5.4, chapter 2 of [10], we have

lim
n→+∞

∥zn − zh∥C([0,T ];H) = 0 and lim
n→+∞

∥φn − φ∥C([0,T ];H) = 0

where zh and φ are the respective mild solutions of (8) and (12). Then the above equality
yields∫ T

0

⟨β(yu(t)−yd), zh(t)⟩Hdt+⟨α(yu(T )−yd), zh(T )⟩H =

∫ T

0

⟨φ(t), Byu(t)⟩Hh(t)dt



Therefore, the derivative of J is written as

DuJ.h =

∫ T

0

⟨φ(t), Byu(t)⟩Hh(t)dt+

∫ T

0

ru(t)h(t)dt

= ⟨J ′(u), h⟩L2(0,T )

where J ′(u) is given by (11).

In the next proposition we characterize the optimal control, solution of problem (6).

Proposition 3.5. Let u∗ be an optimal control, then u∗ is given by

u∗(t) = max

(
umin; min

(
umax; −

1

r
⟨φ(t), By(t)⟩H

))
(13)

where y and φ are respectively the mild solutions of (4) and (12), associated to u∗.

Proof. Let u∗ be an optimal control, and w ∈ Uad. By the convexity of Uad we have
u∗ + ε(w − u∗) ∈ Uad, ∀ε ∈]0, 1[. Then J(u∗ + ε(w − u∗)) ≥ J(u∗), ∀ε ∈]0, 1[.
By passing to the limit, we obtain

⟨J ′(u∗), w − u∗⟩ = lim
ε→0

J(u∗ + ε(w − u∗))− J(u∗)

ε
≥ 0 (14)

– If umin < u∗(t) < umax over a nonempty open set I ⊂]0, T [ :
Let h ∈ D(I) (the space of smooth functions, compactly supported). If ∥h∥L∞(I) is
sufficiently small then we have u∗ + h, u∗ − h ∈ Uad. It follows from inequality (14),
applied to u∗ + h and u∗ − h, that

⟨J ′(u∗), h⟩ = 0, ∀h ∈ D(I)

By the density of D(I) in L2(I), it follows that J ′(u∗)(t) = 0 a.e. on I .

Therefore u∗(t) = −1

r
⟨φ(t), By(t)⟩H .

– If u∗(t) = umin over a nonempty open set I ⊂]0, T [ :
Let h ∈ D(I) such that h(t) ≥ 0, ∀t ∈ I . Then for ∥h∥L∞(I) sufficiently small we have
u∗ + h ∈ Uad. Hence inequality (14) yields ⟨J ′(u∗), h⟩ ≥ 0.
It follows that J ′(u∗)(t) ≥ 0 a.e. on I . Thus

−1

r
⟨φ(t), By(t)⟩H ≤ u∗(t) = umin a.e. on I

– Similarly to the above case, if u∗(t) = umax over a nonempty open set I ⊂]0, T [,
then

−1

r
⟨φ(t), By(t)⟩H ≥ umax a.e. on I

Therefore, u∗ = max

(
umin; min

(
umax; −

1

r
⟨φ(t), By(t)⟩H

))
a.e. on ]0, T [.



Finally, we give an algorithm, based on the projected gradient method, in order to im-
plement numerically the optimal control, given by (13).

Algorithm

– Step 1 : Choose an initial control u0 ∈ Uad , a threshold accuracy ε > 0, and a step
length λ. Initialize with k = 0.

– Step 2 : Solve the systems{
ẏk(t) = uk(t)Byk(t) + ayk(t) + b(t)
yk(0) = y0{
φ̇k(t) = −uk(t)B

∗φk(t)− aφk(t)− β(yk(t)− yd)
φk(T ) = α(yk(T )− yd)

– Step 3 : Compute

J ′(uk)(t) = ⟨φk(t), Byk(t)⟩+ ruk(t)

uk+1(t) = max (umin; min(umax; uk(t)− λJ ′(uk)(t) ))

– Step 4 : If ∥uk+1 − uk∥ > ε , k = k + 1 , go to step 2. Otherwise u∗ = uk+1.

4. Simulations
We consider the captor model (2) with data of Ain Beni Mathar solar plant, in North-

east Morocco (see [4]) :

L = 618m , a = −0.030 , a1 = 0.024 , Tf,0 = 423.15K (150◦C)

In order to determine the optimal fluid mass flow, we consider system (3) and the optimal
control problem (6) with the cost functional (5), where

T = 3600s , α = 3 , β = 0.1 , r = 5× 104

The required temperature is Td = 673.15K (400◦C), then the desired state is yd = Td −
Tf,0 = 250. The set of admissible controls is

Uad = {u ∈ L2(0, T ) | 0 ≤ u(t) ≤ 1 a.e.}

According to proposition 3.5, the optimal control is given by

u∗(t) = max

(
0; min

(
1; 2× 10−5

∫ L

0

φ(x, t)
∂

∂x
y(x, t)dx

))

where y is the solution of system (3) relatively to u∗, and φ is the solution of the adjoint

equation (12), with B∗ =
∂

∂x
.

Using the previous algorithm, with u0 = 0, λ = 10−6, and ε = 10−5, simulations lead to
the following figures :
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Figure 3. Fluid temperature at times t = 100s, t = 200s, and t = 3600s
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Figure 4. Optimal control

Figure 3 depicts the fluid temperature (◦C) at times t = 100s, t = 200s, and t = T =
3600s, while the corresponding optimal control is plotted in figure 4. Figure 3 shows
that the fluid temperature gets close to the desired level Td = 400◦C within a short time
interval. At the final time T = 3600s, the average fluid temperature is about T̃ ≃ 390◦C.
As shown by the above simulations, the optimal fluid mass flow, obtained with our ap-
proach, drives the system close to the desired temperature profile. This is crucial for the
performance of the solar plant.
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