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Abstract

Computing the maximal pose error given an upper bound on model parame-
ters uncertainties, called perturbations in this paper, is challenging for parallel
robots, mainly because the direct kinematic problem has several solutions, which
become unstable in the vicinity of parallel singularities. In this paper, a local
uniqueness hypothesis that allows safely computing pose error upper bounds
using nonlinear optimization is proposed. This hypothesis, together with a cor-
responding maximal allowed perturbation domain and a certified crude pose
error upper bound valid over the complete workspace, will be proved numeri-
cally using a parametric version of Kantorovich theorem and certified nonlinear
global optimization. Then, approximate linearizations are used in order to de-
termine approximated tolerances reaching a prescribed maximal pose error over
a given workspace. Those tolerances are finally verified using optimal pose error
upper bounds, which are computed using global optimization techniques. Two
illustrative examples are studied in order to highlight the contributions of the
paper.

Keywords: Certified tolerance synthesis, parallel manipulators, parametric
Kantorovich theorem

1. Introduction

For two decades, parallel manipulators have attracted the attention of more
and more researchers who consider them as valuable alternative design for
robotic mechanisms. Parallel Kinematics Machines (PKM) offer essential ad-
vantages over their serial counterparts such as lower moving masses, higher stiff-
ness and payload-to-weight ratio, higher natural frequencies and better dynamic
performance.
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Stephane.Caro@irccyn.ec-nantes.fr (Stéphane Caro), Gilles.Chabert@mines-nantes.fr
(Gilles Chabert)

Preprint submitted to Elsevier March 17, 2016



However, PKM are not necessarily more accurate than their serial coun-
terparts. Indeed, even if the dimensional variations can be compensated with
PKM, they can also be amplified contrary to with their serial counterparts.
Wang et al. [1] studied the effect of manufacturing tolerances on the accuracy of
a Stewart platform. Kim et al. [2] used a forward error bound analysis to find
the error bound of the end-effector of a Stewart platform when the error bounds
of the joints are given, and an inverse error bound analysis to determine those of
the joints for the given error bound of the end-effector. Kim and Tsai [3] stud-
ied the effect of misalignment of linear actuators of a three Degree-of-Freedom
(DOF) translational parallel manipulator on the motion of its moving platform.
Han et al. [4] used a kinematic sensitivity analysis method to explain the gross
motions of a 3-UPU parallel mechanism, and showed that it is highly sensitive
to certain minute clearances. Fan et al. [5] analyzed the sensitivity of the 3-PRS
parallel kinematic spindle platform of a serial-parallel machine tool. Verner et
al. [6] presented a new method for optimal calibration of PKM based on the
exploitation of the least error sensitive regions in their workspace and geometric
parameters space. As a matter of fact, they used a Monte Carlo simulation to
determine and map the sensitivities to geometric parameters. Moreover, Caro
et al. [7] developed a tolerance synthesis method for mechanisms based on a
robust design approach. Ryu et al. derived a volumetric error model and a to-
tal error transformation matrix from a differential inverse kinematic equation,
which includes all kinematic error sources [8]. Liu et al. reported an approach
of geometric error modeling for lower mobility manipulators by explicitly sepa-
rating the compensatable and uncompensatable error sources affecting the pose
accuracy [9]. Briot and Bonev proposed a simple method based on a detailed
error analysis of 3-DOF planar parallel robots that brings valuable understand-
ing of the problem of error amplification [10]. Rolland used algebraic tools
in order to compute an upper bound of the moving platform pose error for a
Gough-Stewart platform while considering geometric and numerical errors [11].
Patel and Ehmann analyzed the volumetric error of a Gough-Stewart platform
too [12].

During the early design process of engineering systems, the analysis of the
performance sensitivity to uncertainties is an important task. High sensitivity
to parameters that are inherently noisy can lead to poor, or unexpected per-
formance. For that reason, it is important to analyze the sensitivity of their
performance to variations in their geometric parameters and to determine the
optimal dimensional tolerances.

To this end, some indices such as the dexterity and the manipulability have
been used to evaluate the sensitivity of robots performance to variations in their
actuated joints [13, 14, 15]. However, they are not suitable for the evaluation
of this sensitivity to other types of uncertainty such as variations in geometric
parameters. Two indices were proposed in [16] to evaluate the sensitivity of
the end-effector pose (position + orientation) of the Orthoglide 3-axis, a 3-
DOF translational PKM, to variations in its design parameters. In the same
vein, four 3-RPR planar parallel manipulators (PPMs) were compared in [17]
based on the sensitivity of their performance to variations in their geometric
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parameters. In [18], an interval linearization method is used for the sensitivity
analysis of some parallel manipulators. However, the foregoing research works
do not deal with the tolerance synthesis of parallel manipulators, which is a
critical issue.

In the present paper, we overcome two lacks in the literature: First, a fully
rigorous methodology is proposed to compute a certified upper bound for the
pose error due to bounded uncertainties in the model parameters of a PKM
throughout its workspace. Second, a methodology is proposed for the tolerance
synthesis of PKM, aiming at synthesizing the largest tolerances while keeping
the pose error of the moving-platform below a given limit. The proposed toler-
ance synthesis method is composed of three steps:

Step 1 A rigorous parametric pose error upper bound ε(p) is computed, which
depends on the value of the perturbation p, together with a perturbation
domain P where this upper bound is valid. Both are computed using
Kantorovich theorem, where Kantorovich constants are evaluated over the
full manipulator workspace using certified nonlinear global optimization.

Step 2 Since the previous upper bound is pessimistic, its usage for tolerance syn-
thesis may lead to some over design (i.e., too small tolerances are designed
leading to a better accuracy than the required one). Therefore, a non rigor-
ous linearization of the maximum pose error in the workspace is proposed
and used for synthesizing approximate tolerances.

Step 3 A rigorous sharp pose error upper bound is finally computed for the tol-
erance synthesized at Step 2 using certified nonlinear global optimization.
The cruder upper bound computed at Step 1 is necessary to make this
problem provably consistent.

Step 2 is actually optional: An accurate linear approximation can be obtained
by building a linear model using the sharp error upper bound computed at
Step 3 for different tolerances. However, the problem to be solved at Step 3 is
more difficult than ones to be solved at Step 2, therefore starting with the linear
approximation provided by Step 2 can turn out to be more efficient.

The paper is organized as follows. Step 3 motivates the necessity of Step 1,
and is therefore first detailed in Section 3: A uniqueness hypothesis is intro-
duced in order to compute a certified sharp pose error upper bound over a
given workspace by solving a nonlinear optimization problem. Step 1 is the
central contribution of the paper, and is addressed in Section 4: A parametric
version of Kantorovich theorem is proposed, which provides both a maximal
perturbation domain for which this uniqueness hypothesis holds, and a crude
certified pose error upper bound valid inside this perturbation domain as well
as in the manipulator workspace. Step 2 is finally developed in Section 5: An
approximate linearization of the maximal pose error of the moving-platform in
the workspace is proposed, which allows performing some approximate toler-
ance synthesis. These approximate tolerances can finally be corrected using the
results obtained in Section 3. Two illustrative examples are given in Section 6
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in order to highlight the potential and limits of the approach. The two exam-
ples deal with the tolerance synthesis of a RPRPR parallel manipulator and a
3–RPR parallel manipulator with a fixed orientation of this moving-platform,
respectively.

Notations

We use the ∞-norm throughout the paper. Let B(x, ε) be the open ball
{y ∈ Rk : ‖y − x‖< ε}, B(x, ε) be the closed ball {y ∈ Rk : ‖y − x‖≤ ε}, and
for short Bε := B(0, ε).

2. Definitions related to perturbed kinematic models

We consider a kinematic model f(x,q,p) = 0 of a non-redundant parallel
manipulator, where f : Rn ×Rn′ ×Rm → Rn, x being the pose, q the actuated
joint coordinates and p a perturbation vector associated to some uncertain
model parameters, so that the nominal model is f(x,q,0) = 0. If n′ > n then
the robot is over-actuated, which can be handled by the method proposed in
this paper, although experiments presented in Section 6 are restricted to n = n′.
We also denote this nominal model by f(x,q) := f(x,q,0).

Example 1. The nominal model for a RPRPR is

(x1 + 1)2 + x2
2 − l21 = 0 (1)

(x1 − 1)2 + x2
2 − l22 = 0. (2)

Considering perturbations pi, i ∈ {1, . . . , 4}, on the position of the fixed revolute
joints, and pi, i ∈ {5, 6}, on the lengths of the actuated prismatic joints gives
rise to

(x1 + 1 + p1)2 + (x2 + p2)2 − (l1 + p5)2 = 0 (3)

(x1 − 1 + p3)2 + (x2 + p4)2 − (l2 + p6)2 = 0. (4)

We suppose that f is differentiable and has locally Lipschitz continuous first
derivatives with respect to pose and perturbation, e.g., f is twice differentiable
with respect to these variables. The Jacobian matrix of f with respect to vari-
ables x and p are denoted respectively as Fx(x,q,p), called the kinematic par-
allel Jacobian matrix, and Fp(x,q,p), called the sensitivity Jacobian matrix.

The nominal generalized workspace is defined by

G := {(x,q) ∈ Rn × Rn
′

: f(x,q) = 0 ∧ g(x,q) ≤ 0}, (5)

where g is a set of inequalities that defines the generalized workspace of interest.
We assume that G is bounded. We also require that G does not contain any
parallel singularity, but this will be checked by the proposed method.
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In some situations, the kinematic model can be solved for the pose coordi-
nates inside G, giving rise to a direct model d : Rn′ → Rn that provides an
explicit description of the nominal generalized workspace:

G = {(x,q) ∈ Rn × Rn
′

: x = d(q) ∧ g(x,q) ≤ 0}. (6)

When perturbations are to be taken into account, we expect to have a direct
model that depends of perturbations: x = d(q,p). Such a direct model is
generally not correct for arbitrarily large perturbations, and therefore has to be
associated to a perturbation domain P for which it is valid (for simplicity, the
perturbation domain P is supposed to contain 0 and to be convex). Although
such a direct model with explicit dependence on perturbations naturally arises
in the context of serial robots, it is usually quite difficult to obtain for parallel
robots, or even does not exists.

The pose error is the error between the nominal pose and the perturbed pose
for fixed actuated joint coordinates. When a direct kinematic model is available,
this can be expressed as e(d(q,0),d(q,p)), where e either the norm of the
positioning error or the norm of the orientation error, so e(x,x′) = ‖Π(x−x′)‖
where Π is a projection on a subset of the coordinates of the pose. When no
direct model is available, the situation is more complex since it becomes difficult
to associate perturbed poses to their nominal counterpart. This is investigated
in the next section.

3. Computing a sharp upper bound for maximal pose errors (Step 3)

When an explicit direct model x = d(q,p) is available, e.g., in the case of a
serial robot, finding the maximal pose error over the workspace can be modeled
by the following constrained optimization problem:

max
(x,q)∈G

p∈P
x′=d(q,p)

e(x,x′), (7)

see e.g. [19]. The variables are the joint coordinates q ∈ Rn′
, the nominal

pose x ∈ Rn, the perturbed pose x′ ∈ Rn and the perturbation p ∈ Rm. The
constraint (x,q) ∈ G states that (x,q) is a nominal configuration, while the
constraint x′ = d(q,p) states that x′ is the perturbed pose corresponding to
the same joint coordinates q.

The aim of this section is to generalize this approach to the case where the
direct model with explicit dependence on perturbations is not available. The
naive generalization

max
(x,q)∈G

p∈P
f(x′,q,p)=0

e(x,x′) (8)

raises two issues: First, it is difficult to define a domain for the perturbed pose
x′ unless we know an upper bound for the pose error a priori. Second, (8)

5



Figure 1: In black the nominal solutions of Example 2, in gray its perturbed solutions. Left:
Solutions of Problem (9). Right: Solutions of Problem (13).

is actually not correct because the direct kinematic problem may have several
solutions or no solution at all for a given perturbation. This means that the
maximum of e(x,x′) is likely to be reached for a x′ that does not corresponds
to a perturbation of x, i.e., the optimization problem (8) makes no sense in
general1. The following example illustrates this situation.

Example 2. Consider the equation x2 + q2 = (1 + p)2, and the domains x ∈
[−10, 10], q ∈ [−0.5, 0.7] and P = [−0.1, 0.1]. For each q ∈ q and p ∈ P, the
system has two solutions x = ±

√
(1 + p)2 − q2 (see Figure 1). In this simple

case, perturbed solutions are easily related to their nominal solution: positive
(respectively negative) perturbed solutions correspond to the positive (respectively
negative) nominal solution. The pose error maximization problem (8) is

max
x∈[−10,10],q∈[−0.5,0.7]

x2+q2=1,
p∈[−0.1,0.1]

x′2+q2=(1+p)2

|x− x′|. (9)

This simple maximization problem can be solved formally and the maximum
shown to be 2.1. This correspond to the worst distance between the negative
nominal solution and a positive perturbed solution (black disks on the left graphic
of Figure 1), or vice versa (black circles on the left graphic of Figure 1). Al-
though it is an upper bound for the pose error, it is so much overestimated, since

1Often, workspaces are designed so that the direct kinematic problem has only one solution
in the workspace. However, uncertainties may introduce other solutions, and it turns out to
be difficult to certify they actually do not (such a certification is provided by the methodology
proposed in the present paper). Furthermore, this may not always be the case, e.g. for cuspidal
robots [20, 21] or when singularities are allowed to be crossed for enlarging the workspace [22].
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perturbed solutions are compared to the two nominal solutions instead of being
compared only to its associated nominal solution, that it makes no senses.

Hence, the perturbed pose has to be somehow related only to its correspond-
ing nominal solution. We formalize this restriction as follows: For given ε > 0,
G ⊆ Rn × Rn and P ⊆ Rm, we say that G is ε-safe with respect to P if

∀(x,q) ∈ G,∀p ∈ P,∃! x′ ∈ B(x, ε), f(x′,q,p) = 0. (10)

The existence of a unique perturbed pose within B(x, ε) is crucial in this defini-
tion since it enforces a functional dependence between x′ and p ∈ P, which we
denote by x′ = dx,q(p). This function is continuous2, and dx,q(0) = x, which
makes x′ = dx,q(p) the perturbed pose associated to the nominal pose x with
no ambiguity. Therefore, under the hypothesis that G is ε-safe with respect to
P, we can safely use the kinematic model f(x′,q,p) = 0 in order to characterize
the perturbed pose:

(x,q) ∈ G,p ∈ P
x′ ∈ B(x, ε)

f(x′,q,p) = 0
⇐⇒ (x,q) ∈ G,p ∈ P

x′ = dx,q(p)
. (11)

As a consequence, even though no explicit expression of dx,q is available, the
maximal error inside the nominal workspace is given by

max
(x,q)∈G

p∈P
x′∈B(x,ε)

f(x′,q,p)=0

e(x,x′). (12)

Example 3. For the same problem as in Example 2, ε = 0.3 is an upper bound
for the pose error. Then the pose error maximization problem (12) is

max
x∈[−10,10],q∈[−0.5,0.7]

x2+q2=1,
p∈[−0.1,0.1]
|x−x′|≤0.3

x′2+q2=(1+p)2

|x− x′|. (13)

This problem can also be solved formally, leading to a maximal pose error of
0.23196. This now corresponds to the exact pose error upper bound shown on
the right graphic of Figure 1.

As a conclusion, the constrained optimization problem (12) allows comput-
ing a sharp pose error upper bound, provided that the nominal generalized
workspace G is proved to be ε-safe with respect to P. The next subsection deals
with the determination of P and ε using Kantorovich theorem.

2Indeed, if it was not continuous at some p∞ ∈ P then there would exist a sequence
pk ∈ P converging to p∞, such that xk := dx,q(pk) does not converge to x∞ := dx,q(p∞).
Since, the sequence xk is bounded, this implies that it has an accumulation point x∗ different
of x∞. However, by continuity of f , we have f(x∗,q,p∞) = 0 and the perturbation p∞ gives
rise to two different perturbed poses x∗ and x∞ inside B(x, ε), a contradiction.
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Remark 1. The error function in (12) can be chosen to be either the norm
of the position error or the norm of the orientation error, which is mandatory
since aggregating these errors is often difficult or irrelevant. However, both
position and orientation errors are aggregated in the norm condition x′ ∈ B(x, ε)
of (10), (11) and (12). Although lacking physical meaning, this aggregation is
necessary to obtain a first crude upper bound. The impact of this aggregation is
on the size of the perturbation domain P.

4. Parametric Kantorovich theorem for ε-safety (Step 1)

In this section, we show how Kantorovich theorem can be used in a para-
metric way within the whole generalized workspace and perturbation space in
order to provide both a perturbation domain for which the above uniqueness
condition holds, and a pose error upper bound valid within the whole workspace
and for all considered perturbations.

4.1. Informal presentation

Kantorovich theorem [23, 24, 15, 25] (see Appendix Appendix A) is applied
in order to both provide a perturbation domain P and an error upper bound ε
for which G is ε-safe with respect to P.

The basic idea is, for an arbitrary nominal configuration (x0,q) ∈ G and
an arbitrary perturbation p ∈ P, to apply Kantorovich theorem for solving the
perturbed direct kinematic problem h(x) := f(x,q,p) = 0, with the nominal
pose x0 as an initial condition. Both q and p are thus considered as parameters
of a square system of equations in x. They are however handled in two different
ways: The constants of Kantorovich theorem are maximized with respect to q,
leading to worst case existence and uniqueness domains over the whole gener-
alized workspace. The dependance of Kantorovich constants w.r.t. p is more
accurately handled by computing second order derivatives with w.r.t. p, hence
providing existence and uniqueness domains that explicitly depend on p. The
key feature of Kantorovich theorem that allows applying it over the whole gen-
eralized workspace and perturbation space is that when the constants involved
in Kantorovich theorem are sharper, the size of the existence ball decreases and
the size of the uniqueness ball increases. Therefore, worst case constants over
G and P will provide a greatest existence domain and a smallest uniqueness
domain valid over both G and P.

Finally, the perturbation domain P is going to be defined so that the hy-
potheses of Kantorovich theorem are satisfied for every perturbation it contains.
As a consequence, the existence and uniqueness regions provided by Kantorovich
theorem are going to enforce G to be ε-safe with respect to P, for a given ε also
provided by Kantorovich theorem.

Remark 2. The interval Newton also allows performing a parametric existence
proof (see e.g. [26, 27] where parallelotopes where used to enclose one manifolds,
and [28, 29] where boxes where used to enclose higher dimensional manifolds,
in particular in the context of computing generalized workspaces), and could be
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used here. Although the interval Newton has been shown to be more efficient in
terms of proving power in [30], its usage in the context of parametric error bound
estimation would require to apply it everywhere on the generalized workspace.
On the other hand, the parametric usage of Kantorovich theorem presented in
the next subsection only requires that some upper bounds are computed over
the generalized workspace, which is much less time consuming since branch and
bound algorithms do not explore the whole feasible set for computing such upper
bounds.

4.2. The main theorem

Choose an apriori maximal tolerance ∆ > 0 so that only perturbations
satisfying ‖p‖∈ B∆ will be considered3. Then define the constants κ, χ and
γ(i) such that:

κ ≥ max
(x,q)∈G
p∈B∆

‖f(x,q,p)‖ (14)

χ ≥ max
(x,q)∈G
p∈B∆

‖Fx(x,q,p)−1‖ (15)

γ(i) ≥ max
(x,q)∈G
p∈B∆

‖Fx(x,q,p)−1Fp(i)(x,q,0)‖ (16)

where p(i) form a partition of the perturbation vector p. This partition will
allow to do a separate tolerance synthesis for each type of parameters, see ex-
amples in Section 6. Define

r := κχ, (17)

and suppose the two following Lipschitz conditions hold for constants λ and µ:

∀(x0,q) ∈ G,∀p ∈ B∆,∀x
′,x′′ ∈ B(x0, (2r)

+),

‖Fx(x′,q,p)− Fx(x′′,q,p)‖≤ λ‖x′ − x′′‖, (18)

where (2r)+ is strictly greater than 2r (in practice we choose (2r)+ as the
smallest representable floating point number greater that 2r), and

∀(x,q) ∈ G,∀p,p′ ∈ B∆, ‖Fp(x,q,p)− Fp(x,q,p′)‖≤ µ‖p− p′‖. (19)

Theorem 1. Let ∆ > 0, and κ, χ, γ ≥ 0 be such that (14), (15) and (16) are
satisfied, and define r := κχ as in (17). Consider λ, µ ≥ 0 such that (18)
and (19) are satisfied. Define furthermore

η(p) :=
∑
i

γ(i)‖p(i)‖+1

2
µχ‖p‖2, (20)

3Fixing the value of ∆ can be done with successive adjustments when necessary: Too large
or too small values of ∆ will result in small perturbation domain, see Footnote 8 page 14.
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and the perturbation domain

P := {p ∈ B∆ : 2λχη(p) ≤ 1}. (21)

Then G is ε-safe with respect to P for

ε := min{2r, 1

χλ
}. (22)

Furthermore, the distance between the nominal and the perturbed poses is at
most

ε(p) :=
2η(p)

1 +
√

1− 2χλη(p)
. (23)

Preliminary remarks. Both r and η(p) are going to be proved to be up-
per bounds of the (norm of the) first Newton step performed for solving the
perturbed system starting at a nominal solution. The first is crude because
independent of p, and will used mostly to define the domain where to evalu-
ate the Lipschitz constant λ in (18). The second bounds the first Newton step
accurately w.r.t. p.

The perturbation domain P is then defined exactly so that the hypothesis
2χλδ ≤ 1 of Kantorovich theorem is satisfied. Therefore, Kantorovich theo-
rem will naturally apply to these perturbations. The existence domain will be
sharply depending on the perturbation, while the uniqueness domain will be
crude and independent of the parameters, though large enough to be used in
Step 3. Finally, the sharp pose error upper bound ε(p) is just t∗(χ, λ, η(p)), i.e.,
the radius of the existence domain provided by Kantorovich theorem.

Proof. Consider an arbitrary nominal pose (x0,q) ∈ G. We just need to
prove that for an arbitrary fixed p ∈ P there exists a unique solution x∗ to
h(x) = 0, with h(x) := f(x,q,p), inside B(x0, ε), and that this solution satisfies
‖x0 − x∗‖≤ ε(p).

To this end, we apply Corollary 1 to the system h(x) = 0, starting from the
initial guess x0. By (15), Γ0 := Hx(x0)−1 is defined and

‖Γ0‖≤ χ. (24)

Define
δ(p) := min{r, η(p)}. (25)

We prove now that
‖Γ0h(x0)‖≤ δ(p). (26)

First, ‖Γ0h(x0)‖≤ ‖Γ0‖‖h(x0)‖≤ κχ = r, the second inequality resulting
of (14) and (15). Second, defining M := Fp(x0,q,0), M(i) := Fp(i)(x0,q,0)
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and z := h(x0)−Mp,

‖Γ0h(x0)‖ = ‖Γ0(Mp + z)‖ (27)

= ‖Γ0

(∑
i

M(i)p(i) + z
)
‖ (28)

≤
∑
i

‖Γ0M
(i)‖‖p(i)‖+‖Γ0‖‖z‖ (29)

≤
∑
i

γ(i)‖p(i)‖+χ‖z‖, (30)

where the last inequality follows from (15) and (16). Finally, following the
classical argument given in [23, 25] and using (19)4, we have ‖z‖≤ 1

2µ‖p‖
2,

which proves (26).
Second, We have r ≥ δ(p) by the definition (25) of δ(p), soD0 := B(x0, (2r)

+)
satisfies Corollary 1 hypothesis. The Lipschitz condition of Corollary 1 is valid
inside D0 by (18). Finally,

h = 2χλδ(p) ≤
(25)

2λχη(p) ≤
(21)

1. (31)

Therefore all hypothesis of Corollary 1 are verified, and there exists a solution
of h(x) = 0 inside

B
(
x0, t

∗(χ, λ, δ(p))
)
⊆ B

(
x0, t

∗(χ, λ, η(p))
)

= B(x0, ε(p)), (32)

the first inclusion holding by (25) and Lemma 1, the second equality holding by
definition of t∗ and ε(p). This solution is unique inside B(x0,min{2r, 1

χλ}) =

B(x0, ε). �

Remark 3. The perturbation domain P provided by Theorem 1 is convex. In-
deed, it has the form aTp + b‖p‖2≤ 1, with b > 0, so aTp + b‖p‖2 is the sum
of two convex functions.

Remark 4. Kantorovich theorem also proves that for every perturbation in the
interior of P, the perturbed pose is not a parallel singularity, which can be of
great practical interest5. This property is not included in the statement of the

4Defining g(t) = f(x0,q, tp) we have g(0) = f(x0,q,0) = 0, g(1) = f(x0,q,p) = h(x0),

and therefore z = g(1)−Fp(x0,q,0)p. Then g(1) = g(0) +
∫ 1
0 g
′(t) dt =

∫ 1
0 Fp(x0,q, tp)p dt.

Now using (19), Fp(x0,q, tp) ∈ Fp(x0,q,0)+ tµ‖p‖[−1, 1], leading to g(1) ∈ Fp(x0,q,0)p+
1
2
µ‖p‖[−1, 1]p, and finally ‖g(1)− Fp(x0,q,0)p‖≤ 1

2
µ‖p‖2.

5For perturbation on the boundary of P, we have 2λχδ = 1 in Kantorovich theorem, which
nevertheless proves the existence and uniqueness, but fail at proving the non-singularity.
Indeed, consider the equation f(x) = x2 = 0 with a positive initial condition x0. In this case,
χ = 1

2x0
, δ = x0

1
and λ = 2. Therefore 2λχδ = 1, and the Newton iteration indeed converges

toward the singular solution x = 0.
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theorem, but is used in its proof. It can be summarized as follows: Let xp be the
unique perturbed pose associated to the nominal pose x0. Then,

‖Hx(x0)−1Hx(xp)− I‖ (33)

= ‖Hx(x0)−1(Hx(xp)−Hx(x0))‖ (34)

≤ χλ ‖xp − x0‖ (35)

≤ χλ ε(p) (36)

≤ 2χλ η(p). (37)

Now, for p ∈ intP we have 2χλ η(p) < 1, which proves that Hx(x0)−1Hx(xp)
is nonsingular6, and hence Hx(xp) is also nonsingular.

If the absence of parallel singularities is to be proved then one can synthe-
size tolerances inside a slightly smaller perturbation domain, e.g., {p ∈ B∆ :
2λχη(p) ≤ 0.99999} with no practical impact, but enforcing the perturbed pose
not to be a parallel singularity.

Remark 5. An asymptotic analysis for small perturbations brings interesting
insights: It can be seen from the definition (20) that

η(p) ≈
∑
i

γ(i)‖p(i)‖ (38)

provided that

‖p‖2� 2

µχ

∑
i

γ(i)‖p(i)‖, (39)

which is satisfied as soon as ‖p‖ is small enough. If furthermore χλη(p) ≈
2χλ

∑
i γ

(i)‖p(i)‖ is small with respect to 1 then ε(p) ≈ η(p) =
∑
i γ

(i)‖p(i)‖.
Another interesting observation is that, under the validity of the approxi-

mation η(p) ≈
∑
i γ

(i)‖p(i)‖, the size of the perturbation domain {p ∈ B∆ :
λχη(p) ≤ 1} is proportional to the inverse of χ, λ and γ(i).

4.3. An academic example: The PRRP robot

In order to illustrate the usage of Theorem 1, we consider a simple academic
one degree of freedom robot, the PRRP robot [29], represented in Figure 2a.
Obviously, the kinematic model of this robot take the following form:

(x− a)2 + (q − b)2 = l2, (40)

whose solution set is represented in Figure 2b (serial and parallel singularities are
represented by circles and black disks respectively). The geometric parameters
value are supposed to be a = 1, b = 1 and l = 3, and the nominal generalized
workspace is expressed as:

G = {(x, q) ∈ R2 : (40) ∧ 2 ≤ x ≤ 3 ∧ 3 ≤ q ≤ 4}, (41)

6It is well known that ‖M − I‖< 1 implies M nonsingular, which can be seen, e.g., using
Neumann series.
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(a) Robot representation (b) Nominal generalized workspace

Figure 2: The PRRP robot.

which is the intersection of the solution set of (40) and the gray rectangle
depicted on Figure 2b.

We consider three perturbations p = (p1, p2, p3) which acts respectively on a,
b and l (we consider no partition of the perturbations), and an apriori maximal
tolerance ∆ = 0.1. The upper bounds κ, χ and γ are computed by solving the
optimization problems (14), (15) and (16):

κ ≥ max
(x,q)∈G
p∈B∆

| (x− a− p1)2 + (q − b− p2)2 − (l + p3)2 | (42)

χ ≥ max
(x,q)∈G
p∈B∆

1

2 |x− a− p1|
(43)

γ ≥ max
(x,q)∈G
p∈B∆

|x− a− p1| + |q − b− p2| + |l + p3|
|x− a− p1|

. (44)

The upper bounds κ = 1.48, χ = 0.56 and γ = 7.75 have been computed
using the global solver IBEX7 [31, 32, 33] in less than 0.1 second on a standard
laptop for each of them. Since the kinematic model of the robot is quadratic
with respect to its variables and perturbations, we can obtain the Lipschitz
constants λ = 2 and µ = 2 without solving the optimization problems (18)
and (19).

7Optimization problems to be solved are non-convex, non-smooth and equality and inequal-
ity constrained, and we require rigorous upper bounds. Up to our knowledge, IBEX, which
implements interval based constraint programming within a standard branch and bound al-
gorithm, is currently the only software available that is able to solve such problems.
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Figure 3: Upper bounds ε and ε(p) resulting of the application of Theorem 1, as well as sharp
upper bounds for the tolerances ‖p‖≤ ∆ ∈ {0.057, 0.05, 0.04, 0.03, 0.02, 0.01}.

Applying Theorem 1, we obtain:

η(p) = 15.5‖p‖+1.12‖p‖2, (45)

P = {p ∈ R3 : ‖p‖≤ 0.057}, (46)

ε = 0.90, (47)

ε(p) =
η(p)

1 +
√

1− 1.12η(p)
. (48)

These results are depicted in Figure 3. The perturbation domain for ε-safety is
approximately 2% of l, which is realistic8.

We can now solve the optimization problem (12), which provides a sharp
upper bound of the end-effector pose error for ‖p‖≤ ∆ ≤ 0.057:

max
(x−a)2+(q−b)2=l2

(x′−a−p1)2+(q−b−p2)2=(l−p3)2

2≤x≤3, 3≤q≤4
‖p‖≤∆
|x′−x|≤ε

|x− x′|. (49)

The variables of this optimization problem are x, x′, q and p. The results
obtained with IBEX for various values of ∆ are computed in less than 0.1
second for each value of ∆, and are displayed in Figure 3 using black dots. We
can see that the actual error behaves approximately linearly with respect to
‖p‖, which motivates a linearization of the worst case pose error studied in the
next section.

8Since maxp∈P‖p‖= 0.057 < ∆ = 0.1, we can enlarge P by decreasing ∆. E.g., fixing

∆ = 0.07 leads to {p ∈ R3 : ‖p‖≤ 0.062}.
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5. Tolerance synthesis using linearization of the worst case pose error
(Step 2)

Let P be the perturbation domain provided by Theorem 1. Our aim is to
determine a vector of tolerances ∆ = (∆i) such that

S∆ := {p ∈ Rm : ‖p(i)‖≤ ∆i} (50)

is contained inside P, and that the error e(x,x′) is less than a given threshold
e for all perturbations in S∆.

In Subsection 5.1, we propose a non-rigorous linear approximation of the
maximal error in the workspace. In Subsection 5.2, we formulate the Tolerance
synthesis as a multi-objective optimization problem, aiming to maximize the
different tolerances ∆i. Finally, a certified upper bound for the pose error
corresponding to the tolerances synthesized by this process is computed by
solving the optimization problem described Section 3.

5.1. Approximate linearization of the pose error

Theorem 1 involves several overestimations, which leads to an overestimated
error upper bound for the considered perturbation domain. We make the as-
sumption that a linear approximation is going to be accurate within the pertur-
bation domain provided by Theorem 1:

x− x′ ≈ Fx(x,q,0)−1Fp(x,q,0)p. (51)

We obtain an approximate workspace worst case error e(∆) in the following
way: Using (51), we obtain that (12) is approximately

max
(x,q)∈G
p∈S∆

‖Π(x− x′)‖ ≈ max
(x,q)∈G
p∈S∆

‖ΠFx(x,q,0)−1Fp(x,q,0)p‖, (52)

which we approximate by

max
(x,q)∈G
p∈S∆

‖ΠFx(x,q,0)−1Fp(x,q,0)‖‖p‖. (53)

We finally approximate (53) by

max
p∈S∆

∑
i

γ
(i)
0 ‖p(i)‖ =

∑
i

γ
(i)
0 ∆i =: e(∆), (54)

where
γ

(i)
0 = max

(x,q)∈G
‖ΠFx(x,q,0)−1Fp(i)(x,q,0)‖. (55)

The constants γ
(i)
0 can be computed using global optimization, resulting in a

nonlinear problem similar but simpler than (16). Although it is difficult to
assess the accuracy of this linear approximation in general, it turns out to be
very accurate in the preliminary experiments presented in Section 6.
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5.2. Approximate tolerance synthesis

In order to be able to compute a rigorous pose error upper bound using
Theorem (1), we need to choose ∆i using (54) under the additional constraint
that S∆ is a subset of P. Therefore, admissible tolerances ∆ satisfy∑

i

γ
(i)
0 ∆i ≤ e (56)

2
∑
i

γ(i)∆i + µχ‖∆‖2 ≤ 1

λχ
(57)

‖∆‖ ≤ ∆, (58)

where (57) and (58) encode S∆ ⊆ P (the constraint (57) comes from (20)
and (21), while (58) is the a priori maximal perturbation norm). As mentioned
earlier, the domain (57) is convex, and so is the set of admissible tolerances
defined by (56), (57) and (58). Finally, we want to select tolerances satisfy-
ing (56), (57) and (58) that maximizes each ∆i in a multi-objective sense, i.e.,
that are Pareto optimal for these objectives. Since objectives and constraints
are convex and almost linear, this multi-objective optimization problem can be
easily solved using weighted-sum or ε-constraint methods [34, 35].

5.3. Rigorous validation of the approximate tolerance synthesis

Finally, solving the optimization problem (12) provides a rigorous upper
bound for the pose error over the workspace for the synthesized tolerances.
Two cases arise: Either the rigorous upper bound (12) is close enough to the
approximate one (54) so that the synthesized tolerances can be used, or the
process can be repeated for neighbor tolerances in order to achieve better tol-
erances. In the experiments presented in the next section, the approximate
upper bound (54) is very accurate. However, it is less accurate in the case of
the academic example of Section 4.3, where γ0 ≈ 6.82 while the linear model
corresponding to points in Figure 3 is e(∆) ≈ 8.52∆.

6. Preliminary experiments

In this section, we provide some first simulations to assess the usefulness of

the proposed method. The upper bounds κ, χ, γ(i) and γ
(i)
0 have been rigorously

computed solving the optimization problems (14), (15), (16) and (55) using the
global solver IBEX [31, 32, 33]. It allows computing an arbitrarily sharp certified
upper bound of these optimization problems, and we stopped the computations
when the relative precision of the maximum is 1% (all presented upper bounds
are therefore certified and accurate). All computations have been performed on
an Intel i7 2.80GHz, the code has not been parallelized, and all timing are given
in seconds (a 1 hour timeout has been enforced).

Two different robots are investigated: A RPRPR in Subsection 6.1, and
a 3–RPR, with constant orientation in Subsection 6.2. We consider no joint
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Figure 4: Left: The RPRPR robot. Right: Sensitivity index and the three workspaces consid-
ered for the RPRPR robot (white curves are drawing artefacts due to the non-differentiability
of the sensitivity index).

limits, i.e. qi ∈ [0,+∞). The generalized workspace of interest is defined by a
rectangular domain in the cartesian space: x ∈ [x,x] =:W. Therefore,

G = {(x,q) ∈ R2n : f(x,q) = 0,x ≤ x ≤ x}. (59)

Several workspaces Wi are going to be investigated for each robot.

Remark 6. We formally invert the matrix Fx(x,q,p) in order to solve (15)
and (16). Tackling higher dimensional problems will require investigating some
rigorous numerical inverse enclosure methods.

6.1. The RPRPR robot

In this subsection, we study the simple parallel robot RPRPR with 6 per-
turbations, 4 of them acting on the anchor points, and 2 of them are con-
trolled, which is represented in the left graphic of Figure 4. Its kinematic model
F(x,q,p) is therefore

(1 + p1 + x1)2 + (p2 + x2)2 − (p3 − q1)2 (60)

(−1 + p4 + x1)2 + (p5 + x2)2 − (p6 − q2)2. (61)

Since there is not orientation error, we use e(x,x′) = ‖x − x′‖, i.e. Π is the
identity matrix. Perturbations are partitioned in two classes: The geometric
perturbations p(1) = (p1, p2, p4, p5) and control perturbations p(2) = (p3, p6).
The three different workspacesWi, i ∈ {1, 2, 3}, to be investigated are displayed
on the right graphic of Figure 4. This figure also shows the level-sets of the
sensitivity index

‖Fx(x,q(x),0)−1Fp(x,q(x),0)‖, (62)

where q(x) is the inverse kinematic model. We expect from Figure 4 that W1

is the best in term of sensitivity and tolerance synthesis.
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Figure 5: In gray, the perturbation domain given by Theorem 1 for W1 (note that it is
truncated by ‖∆‖≤ ∆). Dashed lines represent the error isocontours obtained with the
linearization approximation (54).

κ χ γ(1) (γ(1)
0 ) γ(2) (γ(2)

0 )
upper bound 1.39 0.64 3.5 (3.01) 2.97 (2.43)
solving time 2.6 5.1 0.5 (0.1) 0.2 (0.1)

∆ linearized certified time
(0.101,0.012) 0.33 0.33 1.11
(0.025,0.101) 0.32 0.31 1.23
(0.063,0.056) 0.33 0.32 0.79

Table 1: Results for the workspace W1 of the RPRPR robot.

The kinematic model involves only quadratic constraints, for which we can
easily obtain tight Lipschitz constants for the derivatives λ = 2 and µ = 2
without solving problems (18) and (19).

6.1.1. Workspace W1

The first workspace we consider is defined by −1 ≤ x1 ≤ 0 and 1 ≤ x2 ≤ 2.
The constants upper bounds computed for this workspace using ∆ = 0.1 are
given in Table 1, as well as the time needed to compute them.

The corresponding error upper bound given by Theorem 1 is ε = 0.79. The
perturbation domain given by Theorem 1 is shown on Figure 5, as well as the
isocontours of the linearized error

e(∆1,∆2) ≈ 3.01∆1 + 2.43∆2. (63)
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Figure 6: In gray, the perturbation domain given by Theorem 1 for W2. Dashed lines
represent the error isocontours obtained with the linearization approximation (54).

The three points represent three different tradeoffs of tolerance design, which
maximize the tolerances inside the perturbation domain provided by Theorem 1.
Table 1 shows for each of them the linearized error, the error upper bound ob-
tained solving (12) using IBEX, as well as the solving time. We see that the lin-
earized error is accurate inside the perturbation domain provided by Theorem 1.
The tolerance synthesis can therefore be performed inside this perturbation do-
main using the linearized errors by solving the bi-objective problem consisting of
maximizing ∆1 and ∆2 subject to (56), (57) and (58), and eventually checking
the chosen tolerances a posteriori solving (12).

6.1.2. Workspace W2

The second workspace we consider is defined by 1 ≤ x1 ≤ 2 and 3 ≤ x2 ≤ 4.
The constants upper bounds computed for this workspace using ∆ = 0.1 are
given in Table 2, as well as the time needed to compute them:

The corresponding error upper bound given by Theorem 1 is ε = 0.83. The
perturbation domain given by Theorem 1 is shown on Figure 6, as well as the
isocontours of the linearized error

e(∆1,∆2) ≈ 6.01∆1 + 4.57∆2. (64)

The three points represent three different tradeoffs of tolerance design, which
maximize the tolerances inside the perturbation domain provided by Theorem 1.
Table 2 shows for each of them the linearized error, the error upper bound ob-
tained solving (12) using IBEX, as well as the solving time. We see that the lin-
earized error is accurate inside the perturbation domain provided by Theorem 1.
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κ χ γ(1) (γ(1)
0 ) γ(2) (γ(2)

0 )
upper bound 2.44 0.61 7.05 (6.01) 5.48 (4.57)
solving time 0.8 0.1 0.1 (0.1) 0.1 (0.1)

∆ linearized certified time
(0.055,0.005) 0.35 0.35 1.13
(0.005,0.069) 0.34 0.34 1.71
(0.03,0.037) 0.35 0.34 1.34

Table 2: Results for the workspace W2 of the RPRPR robot.

Figure 7: In gray, the perturbation domain given by Theorem 1 for W3. Dashed lines
represent the error isocontours obtained with the linearization approximation (54).

The tolerance synthesis can therefore be performed inside this perturbation do-
main using the linearized errors by solving the bi-objective problem consisting of
maximizing ∆1 and ∆2 subject to (56), (57) and (58), and eventually checking
the chosen tolerances a posteriori solving (12).

When compared with W1, we see that the linearized error is approximately
twice bigger, while the perturbation domain provided by Theorem 1 is twice
smaller. The workspace W1 is therefore better with respect to sensitivity and
tolerance synthesis.

6.1.3. Workspace W3

The third workspace we consider is defined by −0.5 ≤ x1 ≤ 0.5 and 0.1 ≤
x2 ≤ 1.1. The constants upper bounds computed for this workspace using
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κ χ γ(1) (γ(1)
0 ) γ(2) (γ(2)

0 )
upper bound 0.05 5.28 11.66 (11.09) 10.72 (10.07)
solving time 115.8 0.1 0.1 (0.1) 0.1 (0.1)

∆ linearized certified time
(0.004,0.001) 0.05 0.04 6.55
(0.001,0.005) 0.05 0.04 4.37
(0.003,0.003) 0.05 0.04 6.81

Table 3: Results for the workspace W3 of the RPRPR robot.

∆ = 0.0059 are given in Table 3, as well as the time needed to compute them.
The corresponding error upper bound given by Theorem 1 is ε = 0.1. The

perturbation domain given by Theorem 1 is shown on Figure 7, as well as the
linearized error e(∆1,∆2) ≈ 11.09∆1 + 10.07∆2 isocontours.

The three points represent three different tradeoffs of tolerance design, which
maximize the tolerances inside the perturbation domain provided by Theorem 1.
Table 3 shows for each of them the linearized error, the error upper bound ob-
tained solving (12) using IBEX, as well as the solving time. We see that the lin-
earized error is accurate inside the perturbation domain provided by Theorem 1.
The tolerance synthesis can therefore be performed inside this perturbation do-
main using the linearized errors by solving the bi-objective problem consisting of
maximizing ∆1 and ∆2 subject to (56), (57) and (58), and eventually checking
the chosen tolerances a posteriori solving (12).

When compared with W1, we see that the linearized error is now approxi-
mately 4 times bigger, while the perturbation domain provided by Theorem 1
is now 20 times smaller. The workspace W3 is therefore the worst with respect
to sensitivity and tolerance synthesis.

6.2. The 3–RPR robot

We now study the parallel robot 3–RPR with 9 perturbations, 6 of them
acting on the anchor points, and 3 of them on the control. Its kinematic model
F(x,q,p) is

(p1 − x1)2 + (p2 − x2)2 − (p3 + q1)2 (65)

(
L+ p4 − x1 − l sin(

π

6
+ x3)

)2

+
(
p5 − x2 + l cos(

π

6
+ x3)

)2

− (p6 + q2)2 (66)

9This workspace is closer to parallel singularities, and sensibly larger ∆ leads to perturbed
poses with parallel singularities.
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Figure 8: The 3–RPR robot.

(L
2

+ p7 − x1 − l cos(x3)
)2

+
(L√3

2
+ p8 − x2 − l sin(x3)

)2

− (p9 + q3)2, (67)

with L = 1 and l = 0.5. We study both the position error eP(x,x′) =
‖ΠP(x− x′)‖= max{|x1 − x′1|, |x2 − x′2|} and the orientation error eO(x,x′) =
‖ΠO(x − x′)‖= |x3 − x′3|. Perturbations are partitioned in two classes: The
geometric perturbations p(1) = (p1, p2, p4, p5, p7, p8) and control perturbations
p(2) = (p3, p6, p9). The two different workspaces to be investigated are displayed
on Figure 9, where only x1 and x2 are represented because the orientation is
fixed to x3 = 0 for each considered workspace. This figure also shows the
level-sets of the sensitivity index

‖ΠFx(x,q(x),0)−1Fp(x,q(x),0)‖, (68)

where q(x) is the inverse kinematic model, Π = ΠP for the left graphic, and
Π = ΠO for the right graphic. We expect from Figure 9 that W1 is the best in
term of sensitivity and tolerance synthesis.

The kinematic model is not quadratic anymore with respect to x, therefore
we solve the following optimization problem, whose upper bound provides a
second derivatives based Lipschitz constant satisfying (18):

λ ≥ max
(x,q)∈G
p∈B∆

max
i

∑
jk

∣∣∣ ∂fi
∂xjxk

(x,q,p)
∣∣∣. (69)

The kinematic model is quadratic with respect to p, and we can obtain the
sharp Lipschitz constant µ = 2.

IBEX resolution timings are quite higher than for the RPRPR robot, because
more variables are involved and expressions are more complex. On the other
hand, the standard version of IBEX has been used, and specific tuning may turn
out to significantly reduce the resolution timings.
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Figure 9: Sensitivity indices and the two workspaces considered for the 3–RPR robot (the
green circle represents parallel singularities; the white curves are drawing artefacts due to
the non-differentiability of the sensitivity index). The left graphic and the right graphics
correspond to position and orientation sensitivities respectively.

κ χ λ γ(1) (γ(1)
0 ) γ(2) (γ(2)

0 )

upper bound
(pos.)
(ori.)

0.1 4.49 9.08 5.95
(5.69)
(5.68)

5.2
(4.31)
(4.72)

solving time
(pos.)
(ori.)

9.7 1.1 0.1 49.4
(0.7)
(1.7)

4.8
(0.5)
(1.7)

1000∆ linearized certified time

(2,0.1)
(pos.)
(ori.)

0.012
0.012

0.013
0.012

606.7
657.4

(1,1)
(pos.)
(ori.)

0.011
0.012

0.011
0.012

579.9
92.7

(0.1,2)
(pos.)
(ori.)

0.011
0.012

0.012
0.012

621.7
47.1

Table 4: Results for the workspace W1 of the 3–RPR robot.

6.2.1. Workspace W1

The first workspace we consider is defined by −0.55 ≤ x1 ≤ 0.05, 1.2 ≤ x2 ≤
1.8 and x3 = 0. The constants upper bounds computed for this workspace using
∆ = 0.01 are given in Table 4, as well as the time needed to compute them.

The corresponding error upper bound given by Theorem 1 is ε = 0.03. The
perturbation domain given by Theorem 1 is shown on Figure 10, as well as the
isocontours of the linearized position (blue dashed lines) and orientation (green
dashed lines) errors

eP(∆1,∆2) ≈ 5.69∆1 + 4.31∆2 (70)

eO(∆1,∆2) ≈ 5.68∆1 + 4.72∆2. (71)
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Figure 10: In gray, the perturbation domain given by Theorem 1 for W1. Dashed lines
represent the error isocontours obtained with the linearization approximation (54).

The three points represent three different tradeoffs of tolerance design, which
maximize the tolerances inside the perturbation domain provided by Theorem 1.
Table 4 shows for each of them the linearized error, the error upper bound ob-
tained solving (12) using IBEX, as well as the solving time. We see that the lin-
earized error is accurate inside the perturbation domain provided by Theorem 1.
The tolerance synthesis can therefore be performed inside this perturbation do-
main using the linearized errors by solving the bi-objective problem consisting of
maximizing ∆1 and ∆2 subject to (56), (57) and (58), and eventually checking
the chosen tolerances a posteriori solving (12).

6.2.2. Workspace W2

The second workspace we consider is defined by 0.45 ≤ x1 ≤ 1.05, 1.2 ≤
x2 ≤ 1.8 and x3 = 0. The constants upper bounds computed for this workspace
using ∆ = 0.01 are given in Table 5, as well as the time needed to compute
them.

The corresponding error upper bound given by Theorem 1 is ε = 0.03. The
perturbation domain given by Theorem 1 is shown on Figure 11, as well as the
isocontours of the linearized position (blue dashed lines) and orientation (green
dashed lines) errors

eP(∆1,∆2) ≈ 4.7∆1 + 3.85∆2 (72)

eO(∆1,∆2) ≈ 12.16∆1 + 9.13∆2. (73)

The three points represent three different tradeoffs of tolerance design, which
maximize the tolerances inside the perturbation domain provided by Theorem 1.
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Figure 11: In gray, the perturbation domain given by Theorem 1 for W2. Dashed lines
represent the error isocontours obtained with the linearization approximation (54).

κ χ λ γ(1) (γ(1)
0 ) γ(2) (γ(2)

0 )

upper bound
(pos.)
(ori.)

0.11 5.73 8.58 12.7
(4.7)
(12.1)

9.8
(3.8)
(9.1)

solving time
(pos.)
(ori.)

6.6 0.9 0.2 3.1
(0.7)
(0.6)

6.7
(0.8)
(0.9)

1000∆ linearized certified time

(0.76,0.07)
(pos.)
(ori.)

0.0038
0.0097

0.0038
0.0098

2333
91

(0.07,0.97)
(pos.)
(ori.)

0.004
0.0096

0.005
0.0097

2112
85

(0.41,0.52)
(pos.)
(ori.)

0.004
0.0097

N.A.
0.0097

T.O.
79

Table 5: Results for the workspace W2 of the 3–RPR robot.

Table 5 shows for each of them the linearized error, the error upper bound ob-
tained solving (12) using IBEX, as well as the solving time. We see that the lin-
earized error is accurate inside the perturbation domain provided by Theorem 1.
The tolerance synthesis can therefore be performed inside this perturbation do-
main using the linearized errors by solving the bi-objective problem consisting of
maximizing ∆1 and ∆2 subject to (56), (57) and (58), and eventually checking
the chosen tolerances a posteriori solving (12).

As predicted by Figure 9, we see that the position linearized error is approx-
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imately the same as W1 (actually slightly better for W2) but the orientation
error is now twice worst. The perturbation domain provided by Theorem 1 is
twice smaller as well. The workspace W1 is therefore better with respect to
sensitivity and tolerance synthesis.

7. Conclusion

The three step approach proposed in this paper was successfully applied to
a 2-DOF and a 3-DOF parallel robot. Theorem 1 was able to compute safe
domains of perturbations at Step 1, whose size is a few percents of the length of
the longest link in the case of the 2-DOF robot, and a few per thousand of the
length of the longest link in the case of the 3-DOF robot, which are realistic for
the purpose of synthesizing tolerances. The approximate linearization computed
at Step 2 provided accurate approximations, which have been confirmed by the
sharp upper bound computed at Step 3.

However, these preliminary experiments also clearly show that the more
complex the robot, the smaller the safe domain of perturbation computed by
Theorem 1 and the longer computation time. Therefore, those two issues should
be solved for the method to be applicable to robots with more DOF. First, larger
safe domains of perturbations could be obtained by improving the expressions of
problems (14), (15), and (16), where there is a loss of correlation due to the fact
that global maximum may be reached at different poses in the workspace, as well
as by investigating the usage of other norms that can enlarge the convergence
domain provided by Kantorovich theorem. Second, improving computation tim-
ings for more complex robots entails tuning and specializing the optimization
software IBEX, as well as handling numerically the inverse Jacobian, which is
currently formally inverted.
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Appendix A. Kantorovich theorem

Theorem 2 ([24]). Let D0 be an open convex subset of Rn, and h : D0 → Rn
be differentiable on D0 with its derivative Hx satisfying

‖Hx(x)−Hx(x′)‖≤ λ‖x− x′‖ (A.1)

for all x,x′ ∈ D0
10. Assume that x0 ∈ D0 is such that Γ0 := Hx(x0)−1 exists,

‖Γ0‖≤ χ, ‖Γ0h(x0)‖≤ δ, h := 2χλδ ≤ 1 (A.2)

and

B(x0, t
∗) ⊆ D0, t

∗ :=
2

h
(1−

√
1− h)δ. (A.3)

Then:

1. The Newton iterates xn+1 = xn−Hx(xn)−1h(xn) exists and xn ∈ B(x0, t
∗) ⊆

D0 for all n ≥ 0.

2. x∗ := lim xn exists, x∗ ∈ B(x0, t
∗) ⊆ D0 and h(x∗) = 0.

3. x∗ is the only solution of h(x) = 0 in the set

B(x0, t
′) ∩D0, t

′ :=
2

h
(1 +

√
1− h)δ (A.4)

if h < 1, and in B(x0, t
′) if h = 1.

Kantorovich theorem involves three constants: χ and δ are directly related to the
computation of the first Newton step applied to solve the system (δ is an upper
bound of the norm of the first Newton step, χ provides a distance to singularity
of the Jacobian matrix), while λ is related to the strength of nonlinearity of the
system (the system is linear for λ = 0, while the derivative may change quicker as
λ increases). Kantorovich theorem provides both an existence domain B(x0, t

∗)
and a uniqueness domain B(x0, t

′)∩D0. Of course, a smaller existence domain
is more accurate, while a larger uniqueness domain is better. The following
lemma clarifies the behavior of t∗ and t′ with respect to Kantorovich constants.

Lemma 1. t∗ is increasing w.r.t. each Kantorovich constants, while t′ is de-
creasing w.r.t. each Kantorovich constants. Furthermore, t∗ is strictly increas-
ing w.r.t. δ, while t′ is strictly decreasing w.r.t. δ.

Proof. The proof is simply conducted by studying the sign of the derivatives

10It is then elementary, using completeness, that h and Hx have unique continuous exten-
sions to the closure D0 of D0, and (A.10) is satisfied for all x,x′ ∈ D0.
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of t∗ and t′ with respect to Kantorovich constants. E.g.,

∂t∗

∂χ
=

δ

χ
√

1− h
− 1−

√
1− h

λχ2
(A.5)

=
1− 1

2h−
√

1− h
λχ
√

1− h
(A.6)

≥ 1− h−
√

1− h
λχ
√

1− h
(A.7)

≥ 0. (A.8)

The other cases are conducted similarly. �

As a consequence, the worst existence and uniqueness domains are obtained
for h = 2χλδ = 1, in which case t∗ = t′ = 2δ = 1

χλ . This is formalized

in Equation (A.11) and Equation (A.13). The following corollary simplifies
Theorem 2 by fixing D0 so that B(x0, t

∗) ⊆ D0 and provides a less accurate but
easier to use uniqueness domain by using the smaller uniqueness domain for all
cases h = 1 and h < 1. Furthermore, aiming an application to a parametric
system of equations, two upper bounds r and δ for the first Newton step are
used: The first being meant to be crude (independent of the parameters), the
second accurate (depending on the parameters).

Corollary 1. Let h : D ⊆ Rn → Rn and x0 ∈ D be such that Γ0 := Hx(x0)−1

exists. Suppose that
‖Γ0‖≤ χ, ‖Γ0h(x0)‖≤ δ. (A.9)

For a given r ≥ δ, consider D0 := B(x0, (2r)
+), where (2r)+ is any number

strictly greater than 2r, and suppose that h is defined and differentiable in D0

with
‖Hx(x)−Hx(x′)‖≤ λ‖x− x′‖ (A.10)

for all x,x′ ∈ D0. Finally assume that h := 2χλδ ≤ 1. Then h(x) = 0 has
one solution x∗ inside B(x0, t

∗), t∗ := 2
h (1 −

√
1− h)δ, which is unique inside

B(x0,min{2r, 1
χλ}) ⊇ B(x0, t

∗).

Proof. We first need to prove that B(x0, t
∗) ⊆ D0, i.e., t∗ ≤ (2r)+, so that all

hypotheses of Theorem 2 are satisfied. By Lemma 1, t∗ is increasing w.r.t. χ
and λ, therefore for an arbitrary fixed δ we have

max
χ,λ≥0

2χλδ≤1

t∗(χ, λ, δ) = max
χ,λ≥0

2χλδ=1

t∗(χ, λ, δ) = max
χ,λ≥0

2χλδ=1

2δ = 2δ ≤ 2r. (A.11)

Therefore, Theorem 2 applies and proves the existence of a solution x∗ inside
B(x0, t

∗) ⊆ D0.
The uniqueness of the solution inside B(x0,min{2r, 1

χλ}) is proved in two

steps: First, if h = 1 then t′ = 1
χλ = 2δ, which is less than 2r by hypothesis.
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Therefore min{2r, 1
χλ} = 1

χλ and Theorem 2 proves the uniqueness inside

B(x0, t
′) = B(x0,

1

χλ
) = B(x0,min{2r, 1

χλ
}). (A.12)

Second, if 0 ≤ h < 1 then Theorem 2 proves uniqueness inside B(x0, t
′)∩D0. We

now prove that 0 ≤ h < 1 entails t′ > 1
χλ : By hypothesis h < 1, or equivalently

δ < 1
2χλ . By Lemma 1, t′ is strictly decreasing w.r.t. δ, therefore

t′(χ, λ, δ) > t′(χ, λ,
1

2χλ
) =

1

χλ
. (A.13)

As a consequence,

B(x0, t
′) ∩D0 ⊇ B(x0,

1

χλ
) ∩B(x0, 2r) = B(x0,min{2r, 1

χλ
}), (A.14)

the first inclusion holding because t′ > 1
χλ and D0 = B(x0, (2r)

+) ⊇ B(x0, 2r).
�

Of course, Corollary 1 can also be applied to a non-parametric system of
equations by setting r = δ, in which case the uniqueness domainB(x0,min{2r, 1

χλ})
can be simplified to B(x0, 2δ) (since 2r = 2δ ≤ 1

χλ ).

Appendix B. Minibex code for the PRRP robot

Minibex is a simple language that allows describing constrained optimization
problems to be solved by IBEX. Such files can be solved directly by IBEX. In
the Minibex codes below, the maximization of each quantity is performed by
minimizing its opposite.

Appendix B.1. Minibex code for κ

Constants

dmax =0.07;

Variables

x1 in [2. ,3.];

q1 in [3. ,4.];

d1 in [-dmax ,dmax];

d2 in [-dmax ,dmax];

d3 in [-dmax ,dmax];

Minimize

-( abs(-(3 + d3)^2 + (-1 - d2 + q1)^2 + (-1 - d1 + x1)^2)

)
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Constraints

-9 + (-1 + q1)^2 + (-1 + x1)^2=0;

end

Appendix B.2. Minibex code for χ

Constants

dmax =0.07;

Variables

x1 in [2. ,3.];

q1 in [3. ,4.];

d1 in [-dmax ,dmax];

d2 in [-dmax ,dmax];

d3 in [-dmax ,dmax];

Minimize

-( 1/(2.* abs(-1 - d1 + x1)) )

Constraints

-9 + (-1 + q1)^2 + (-1 + x1)^2=0;

end

Appendix B.3. Minibex code for γ

Constants

dmax =0.07;

Variables

x1 in [2. ,3.];

q1 in [3. ,4.];

d1 in [-dmax ,dmax];

d2 in [-dmax ,dmax];

d3 in [-dmax ,dmax];

Minimize

-( (2* abs(3 + d3) + 2*abs(-1 - d2 + q1) + 2*abs(-1 - d1 +

x1))/(2.* abs(-1 - d1 + x1)) )

Constraints
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-9 + (-1 + q1)^2 + (-1 + x1)^2=0;

end

Appendix B.4. Minibex code for the sharp error estimate

constants

dmax =0.05736589646776045;

emax =0.892857;

Variables

x1 in [2. ,3.];

x1p in [-oo ,+oo];

q1 in [3. ,4.];

d1 in [-dmax ,dmax];

d2 in [-dmax ,dmax];

d3 in [-dmax ,dmax];

Minimize

-abs(x1 - x1p)

Constraints

-9 + (-1 + q1)^2 + (-1 + x1)^2=0;

-(3 + d3)^2 + (-1 - d2 + q1)^2 + (-1 - d1 + x1p)^2=0;

abs(x1 - x1p)<=emax;

end
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