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Abstract

This paper deals with the characterization of the operation modes of the 2-RUU parallel ma-

nipulator with an algebraic approach, namely the Study kinematic mapping of the Euclidean

group SE(3). The manipulator is described by a set of eight constraint equations and the

primary decomposition reveals that the mechanism has three 4-dof operation modes. The

singularity conditions are obtained by deriving the determinant of the Jacobian matrix of the

constraint equations with respect to the Study parameters. It is shown that there exist singular

configurations in which the 2-RUU parallel manipulator may switch from one operation mode

to another operation mode, which is known as constraint singularity. All the singular configu-

rations are mapped onto the joint space and are physically interpreted. Eventually, the 2-RUU

parallel manipulator may switch from the 1st Schönflies mode to the 2nd Schönflies mode, or

vice versa, through the additional 4-dof mode that contains self-motion.

1 Introduction

Schönflies Motion Generators (SMGs) are very suitable for wide range of applications that

require fewer that 6-dof . The Schönflies motion contains three independent translations and

one pure rotation about an axis of fixed direction, namely 3T1R. This set of motion was first

studied by German mathematician-mineralogist Arthur Moritz Schönflies (1853-1928). For this
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reason, the set of such motions is known to geometers as the Schönflies subgroup of the group of

rigid-body displacements [1]. A list of serial SMGs based on the Lie group-algebraic properties

of the displacement set was produced by Lee and Hervé in [2, 3]. While the type synthesis based

on the screw theory of the 3T1R parallel manipulators with four identical limb structures was

performed in [5]. The singularity analysis of parallel manipulators with identical limb structures

performing 3T1R motions based on the Grassmann-Cayley algebra is presented in [6, 7, 8].

In [9], Li and Hervé synthesized parallel manipulators whose moving platform can undergo a

bifurcation Schönflies modes. The synthesis is based upon the displacement group to generate

the kinematic chains. The authors continued in [10] to present a systematic approach to

synthesize the iso-constrained SMGs with two identical 5-dof legs. One of the SMGs composed

of two identical legs is the 2-RUU parallel manipulator. This manipulator is composed of two

RUU legs in which two joints are actuated in each leg.

The method of algebraic geometry, namely the Study kinematic mapping [11], has been

widely for the global kinematic analysis of either spatial parallel manipulators or planar parallel

manipulators in [12, 13, 14, 15]. Therefore, by using the Study kinematic mapping and the

algebraic description of the manipulator architecture, a characterization of the operation modes

of the 2-RUU parallel manipulator are discussed in more details in this paper. Due to the unique

topology of the RUU limb that comprises two links with one revolute actuator attached to the

base, the actuated joint angle always appears in every constraint equation. The constraint

equations of each leg are initially derived and the primary decomposition is computed. It turns

out that the 2-RUU parallel manipulator has three 4-dof operation modes. The singularities are

investigated by deriving the determinant of the Jacobian matrix of the constraint equations with

respect to the Study parameters. It reveals that the corresponding manipulator is able to change

from one operation mode to another operation mode by passing through the configurations that

belong to both modes, namely constraint singularity. The singularity conditions are mapped

onto the joint space. Finally, the changes of operation modes for the 2-RUU parallel manipulator

are illustrated.

This paper is organized as follows: A detailed description of the manipulator architecture

is given in Section 2. The constraint equations of the manipulators are expressed in Section 3.

These constraint equations are used to identify the operation modes in Section 4. In Section

5, the singularity conditions and self-motion are reviewed. Eventually, the operation modes

changing of the 2-RUU parallel manipulator is presented in Section 6.



Nurahmi, Caro, Wenger, submitted to Mech. and Rob. Systems 3

A1

A2

B1

B2

C1

C2

x0
y0

z0

x1
y1

z1

s1

s1 s2

s2
n1

n2

v1

v2

Σ0

Σ1

O

P

Figure 1: The 2-RUU parallel manipulator.

2 Manipulator architecture

The 2-RUU parallel manipulator shown in Fig. 1, consists of a base, a moving platform, and two

identical legs. Each leg is composed of five revolute joints such that the second and the third

ones, as well as the forth and the fifth ones, are built with intersecting and perpendicular axes.

Thereby they are assimilated to U-joint. The origin O of the fixed frame Σ0 and the origin P

of the moving frame Σ1 are located at the center of the base and the moving platform.

The first revolute joint is attached to the base and is actuated. Its rotation angle is defined

by θ1i (i = 1, 2). The axes of the first and the second joints are directed along z0-axis. The

axis of the fifth joint is directed along z1-axis. The second axis and the fifth axis are denoted

by vi and ni (i = 1, 2), respectively. The second revolute joint is also actuated and its rotation

angle is defined by θ2i (i = 1, 2). The axes of the third and the forth joints are parallel. The

axis of the third joint is denoted by s2i (i = 1, 2) and it changes instantaneously as a function

of θ2i as shown in Fig. 2, such that:

si = ( 0, cos(θ2i), sin(θ2i), 0 )T , i = 1, 2 (1)
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The first revolute joint of the i-th limb is located at point Ai with distance a from the origin

of Σ0. The first U-joint is denoted by point Bi with distance l from point Ai. Link AiBi always

moves in a plane normal to vi. Hence the coordinates of points Ai and Bi expressed in the

fixed frame Σ0 are:

r0A1
= ( 1 a 0 0 )T , r0B1

= ( 1 l cos(θ11) + a l sin(θ11) 0 )T ,

r0A2
= ( 1 −a 0 0 )T , r0B2

= ( 1 l cos(θ12)− a l sin(θ12) 0 )T .
(2)

The moving frame Σ1 is located at the center of the moving platform. The moving platform

is connected to the limbs by two U-joints, of which the intersection point of the revolute joint

axes is denoted by Ci. The length of the moving platform from the origin of Σ1 to point Ci is

defined by b. The length of link BiCi is defined by r. The coordinates of point Ci expressed in

the moving frame Σ1 are:

r1C1
= ( 1 b 0 0 )T ,

r1C2
= ( 1 −b 0 0 )T .

(3)

As a consequence, there are four design parameters a, b, l, r; and four joint variables θ11, θ12,

θ21, θ22 that determine the motions of the 2-RUU parallel manipulator.

3 Constraint equations

In this section, the constraint equations are derived whose solutions illustrate the possible poses

of the moving platform (coordinate frame Σ1) with respect to Σ0. To obtain the coordinates

of points Ci and vectors ni expressed in Σ0, the Study parametrization of a spatial Euclidean

transformation matrix M ∈ SE(3) based on [11] is used.

M =

(

x2
0 + x2

1 + x2
2 + x2

3 0T
3×1

MT MR

)

(4)

whereMT andMR represent the translational and rotational parts of the transformation matrix

M, respectively, and are expressed as follows:

MT =





2(−x0y1 + x1y0 − x2y3 + x3y2)

2(−x0y2 + x1y3 + x2y0 − x3y1)

2(−x0y3 − x1y2 + x2y1 + x3y0)





MR =





x2
0 + x2

1 − x2
2 − x2

3 2(x1x2 − x0x3) 2(x1x3 + x0x2)

2(x1x2 + x0x3) x2
0 − x2

1 + x2
2 − x2

3 2(x2x3 − x0x1)

2(x1x3 − x0x2) 2(x2x3 + x0x1) x2
0 − x2

1 − x2
2 + x2

3





(5)

The parameters x0, x1, x2, x3, y0, y1, y2, y3, which appear in matrix M, are called Study pa-
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Figure 2: Parametrization of the first two joint angles in each leg from top view.

rameters. These parameters make it possible to parametrize SE(3) with dual quaternions. The

Study kinematic mapping maps each spatial Euclidean displacement of SE(3) via transforma-

tion matrix M onto a projective point X [x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3] in the 6-dimensional

Study quadric S ∈ P
7, such that:

SE(3)→ X ∈ P
7

(x0 : x1 : x2 : x3 : y0 : y1 : y2 : y3)
T 6= (0 : 0 : 0 : 0 : 0 : 0 : 0 : 0)T

(6)

Every projective point X will represent a spatial Euclidean displacement, if it fulfils the follow-

ing equation and inequality:

x0y0 + x1y1 + x2y2 + x3y3 = 0,

x2
0 + x2

1 + x2
2 + x2

3 6= 0
(7)

Let us initially perform the tangent half-angle substitutions to rewrite the trigonometric
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functions of θij (i, j = 1, 2) in terms of rational functions of a new variable tij. However, the

tangent half-angle substitutions will increase the degree of variables and make the computation

quite heavy.

cos(θij) =
1− t2ij
1 + t2ij

, sin(θij) =
2t2ij

1 + t2ij
, i, j = 1, 2 (8)

where tij = tan(
θij
2
). The coordinates of points Ci and vectors ni expressed in the fixed frame

Σ0 are obtained by:

r0Ci
= M · r1Ci

, n0
i = M · n1

i , i = 1, 2 (9)

As the coordinates of all points are given in terms of the Study parameters and the design

parameters, the constraint equations can be derived by examining the design of RUU limb. The

link connecting points Bi and Ci is coplanar to the vectors vi and n0
i . Accordingly, the scalar

triple product of vectors (r0Ci
− r0Bi

), vi and n0
i vanishes, namely:

(r0Ci
− r0Bi

)T · (vi × n0
i ) = 0, i = 1, 2 (10)

After computing the corresponding scalar triple product and removing the common denom-

inators, the following constraint equations come out as stated in [14]:

g1 : (at211 − bt211 − lt211 + a− b+ l)x0x1 + 2lt11x0x2 − (2t211 + 2)x0y0 + 2lt11x3x1+

(−at211 − bt211 + lt211 − a− b− l)x3x2 + (−2t211 − 2)y3x3 = 0
(11a)

g2 : (at212 − bt212 + lt212 + a− b− l)x0x1 − 2lt12x0x2 + (2t212 + 2)x0y0 − 2lt12x1x3+

(−at212 − bt212 − lt212 − a− b+ l)x2x3 + (2t212 + 2)x3y3 = 0
(11b)

To derive the constraint equations corresponding to the link length r of link BiCi, the

distance equation can be formulated as: ‖(r0Ci
− r0Bi

)‖2 = r2. As a consequence, the following

two equations are obtained:

g3 : (a2t211 − 2abt211 − 2alt211 + b2t211 + 2blt211 + l2t211 − r2t211 + a2 − 2ab+ 2al + b2−

2bl + l2 − r2)x2
0 − 8blt11x0x3 + (4at211 − 4bt211 − 4lt211 + 4a− 4b+ 4l)... = 0

(12a)

g4 : (a2t212 − 2abt212 + 2alt212 + b2t212 − 2blt212 + l2t212 − r2t212 + a2 − 2ab− 2al + b2+

2bl + l2 − r2)x2
0 + 8blt12x0x3 + (−4at212 + 4bt212 − 4lt212 − 4a+ 4b+ 4l)... = 0

(12b)

To derive the constraint equations corresponding to the actuation of the second joint of each
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limb, the scalar product of vector (r0Ci
− r0Bi

) and vector si is expressed as: (r0Ci
− r0Bi

)T si = 0.

Hence, the following constraint equations are obtained:

g5 : (−at211t
2
21 + bt211t

2
21 + lt211t

2
21 + at211 − at221 − bt211 + bt221 − lt211 + 4lt11t21 − lt221+

a− b+ l)x2
0 − 4bt21(t

2
11 + 1)x0x3 − 2(t221 − 1)(t211 + 1)x0y1 + 4t21(t

2
11 + 1)... = 0

(13a)

g6 : (at212t
2
22 − bt212t

2
22 + lt212t

2
22 − at212 + at222 + bt212 − bt222 − lt212 + 4lt12t22 − lt222−

a+ b+ l)x2
0 + 4bt22(t

2
12 + 1)x0x3 − 2(t222 − 1)(t212 + 1)x0y1 + 4t22(t

2
12 + 1)... = 0

(13b)

All solutions have to be within the Study quadric, thus the Study-equation and the normal-

ization equation are added as the constraint equations, as follows:

g7 : x0y0 + x1y1 + x2y2 + x3y3 = 0 (14a)

g8 : x2
0 + x2

1 + x2
2 + x2

3 − 1 = 0 (14b)

4 Operation mode

Firstly, the design parameters are assigned as a = 2, b = 1, l = 1, r = 2. The set of eight

constraint equations is written as a polynomial ideal with variables {x0, x1, x2, x3, y0, y1, y2, y3}

over the coefficient ring C[t11, t12, t21, t22], defined as:

I = 〈g1, g2, g3, g4, g5, g6, g7, g8〉 (15)

At this point, the following ideal is examined: J = 〈g1, g2, g7〉. The primary decomposition

is computed to verify if the ideal J is the intersection of several smaller ideals. Indeed, the

ideal J is decomposed into three components as follows:

J =
3
⋂

n=1

Jn (16)

with the results of primary decomposition:

J1 = 〈x0, x3, x1y1 + x2y2〉

J2 = 〈x1, x2, x0y0 + x3y3〉

J3 = 〈(t211t13 + 2t11t
2
13 + t11 + 2t13)x3y0 + (t211t

2
13 − 1)x1y1 + ...〉

(17)

Accordingly, the 2-RUU parallel manipulator under study has three operation modes. The

computation of the Hilbert dimension of ideal Jn with t11, t12, t21, t22 treated as variables shows
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that:

dim(Jn) = 4 n = 1, ..., 3 (18)

where dim denotes the dimension over C[a, b, l, r]. To complete the analysis, the remaining

equations are added by writing:

Kn : Jn ∪ 〈g3, g4, g5, g6, g8〉, n = 1, ..., 3 (19)

It follows that the 2-RUU parallel manipulator has three 4-dof operation modes. This type of

manipulator is called variable-dof parallel manipulator in [16]. Each system Ki(I) associated

with a specific operation mode that will be discussed in the following.

4.1 System K1: 1st Schönflies mode

In this operation mode, the moving platform is reversed about an axis parallel to the x0y0-plane

of Σ0 by 180 degrees from the identity condition. The identity condition is when the moving

frame and the fixed frame are coincident, i.e. Σ1 ≡ Σ0 and the transformation matrix becomes

an identity matrix. The condition x0 = 0, x3 = 0, x1y1 + x2y2 = 0 are valid for all poses and

are substituted into the transformation matrix M defined in Eq. (4), such that:

M1 =













1 0 0

2(x1y0 − x2y3) x2
1 − x2

2 2x1x2 0

2(x1y3 + x2y0) 2x1x2 −x2
1 + x2

2 0

−
2y2
x1

0 0 −1













(20)

From the transformation matrix M1, it can be seen that the 2-RUU parallel manipulator has

3-odf translational motions, which are parametrized by y0, y2, y3 and 1-dof rotational motion,

which is parametrized by x1, x2 in connection with x2
1 + x2

2 − 1 = 0 [17]. The z1-axis of frame

Σ1 attached to the moving platform is always pointing downward in this operation mode and

the moving platform remains parallel to the base.

4.2 System K2: 2nd Schönflies mode

In this operation mode, the condition x1 = 0, x2 = 0, x0y0 + x3y3 = 0 are valid for all poses.

The transformation matrix in this operation mode is written as:
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M2 =













1 0 0 0

−2(x0y1 − x3y2) x2
0 − x2

3 −2x0x3 0

−2(x0y2 + x3y1) 2x0x3 x2
0 − x2

3 0

−
2y3
x0

0 0 1













(21)

From the transformation matrix M2, it can be seen that the 2-RUU parallel manipulator has

3-dof translational motions, which are parametrized by y1, y2, y3 and 1-dof rotational motion,

which is parametrized by x0, x3 in connection with x2
0 + x2

3 − 1 = 0 [17]. In this operation

mode, the z1-axis of frame Σ1 attached the moving platform is always pointing upward and the

moving platform remains parallel to the base.

The systems K1 and K2 perform the same motion type, i.e. 3T1R, however they do not have

configurations in common since the orientation of the moving platform is not the same from

one operation mode to the other. The z1-axis of frame Σ1 attached to the moving platform in

system K1 is always pointing downward (the moving platform is always titled by 180 degrees),

while in the system K2, the z1-axis of frame Σ1 attached to the moving platform is always

pointing upward.

4.3 System K3: Third mode

In this operation mode, the moving platform is no longer parallel to the base. The variables

x3, y0, y1 can be solved linearly from the ideal J3 and are shown in Eq. (22). Since solving the

inverse kinematics of t11, t12 are quite computationally expensive, the joint variables t12, t12 are

considered to be the independent parameters of this mode. Then the parameters y2, y3 can be

solved in terms of (x0, x1, x2, t11, t12). Substituting back the parameters y2, y3 into Eq. (22), then

the Study parameters x3, y0, y1, y2, y3 are now parametrized by (x0, x1, x2, t11, t12). Accordingly,

the 2-RUU parallel manipulator will perform two translational motions, which are parametrized

by variables t11, t12 and two rotational motions, which are parametrized by variables x0, x1, x2

in connection with the normalization equation g8, which is known as 2T2R motion.
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x3 =
(t211t

2
13x1 − t211t13x2 + t11t

2
13x2 + 2t213x1 + t11x2 − t13x2 + x1)x0

(3t211t
2
13x2 + t211t13x1 − t11t213x1 + 2t211x2 + 4t213x2 − t11x1 + t13x1 + 3x2)

y0 = −
1

3t211t
2
13x2 + t211t13x1 − t11t213x1 + 2t211x2 + 4t213x2 − t11x1 + t13x1 + 3x2

(t211t
2
13x1x2+

t211t
2
13x1y3 − t211t13x

2
2 − t211t13x2y3 − t11t

2
13x

2
1 − 2t11t

2
13x

2
2 + t11t

2
13x2y3 + 2t213x1y3 − t11

x2
2 + t11x2y3 − t13x

2
1 − 2t13x

2
2 − t13x2y3 − x1x2 + x1y3)

y1 =
1

(3t211t
2
13x2 + t211t13x1 − t11t213x1 + 2t211x2 + 4t213x2 − t11x1 + t13x1 + 3x2)x1

(t211t
2
13x0

x1x2 − 3t211t
2
13x

2
2y2 − t211t13x0x

2
2 − t211t13x1x2y2 − t11t

2
13x0x

2
1 − 2t11t

2
13x0x

2
2 + t11t

2
13x1

x2y2 − 2t211x
2
2y2 − 4t213x

2
2y2 − t11x0x

2
2 + t11x1x2y2 − t13x0x

2
1 − 2t13x0x

2
2 − t13x1x2y2

−x0x1x2 − 3x2
2y2)

(22)

Under this operation mode, the joint angles t21 and t22 can be computed from the equations

g5, g6. It turns out that no matter the value of the first actuated joints (t11, t12) in each leg,

these equations vanish for two real solutions, namely:

1. t21 = −
1

t22
: (θ21 = π + θ22)

2. t21 = t22 : (θ21 = θ22)

As a consequence, in this operation mode, the links BiCi (i = 1, 2) from both legs are always

parallel to the same plane. Likewise, the axes si (i = 1, 2) from both limbs are always parallel

as well, i.e. s1‖s2, as shown in Fig. 3.

5 Singularity conditions and self-motion

The 2-RUU parallel manipulator reaches a singularity condition when the determinant of its

Jacobian matrix vanishes. The Jacobian matrix is the matrix of all first order partial derivatives

of the eight constraint equations with respect to the eight Study parameters. Since the 2-RUU

parallel manipulator has more than one operation mode, the singular configurations can be

classified into two different types, i.e. the configurations that belong to a single operation

mode and the singularity configurations that belong to more than one operation mode. The

common configurations that belong to more than one operation mode allow the 2-RUU parallel

manipulator to switch from one mode to another mode, which will be discussed in Section 6.

However, the 1st Schönflies mode and the 2nd Schönflies mode do not have configurations in

common, since the variables x0, x1, x2, x3 can never vanish simultaneously. Furthermore, in
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Figure 3: A pose in the third mode K3.

certain condition of the actuated joints, the moving platform can exhibit full cycle motion (one

or more dof) while the actuated joints are locked, thus it is referred as self-motion. Some

researchers investigated the self-motion of parallel manipulators in [18, 19].

The singular poses are examined by taking the Jacobian matrix from each system of poly-

nomial Kn and computing its determinant.

Sn : det(Jn) = 0, n = 1, ..., 3 (23)

From practical point of view, the singularity surface is desirable also in the joint space. Hence

the expression of the Jacobian determinant is added into each system Kn and all Study pa-

rameters are eliminated to obtain a single polynomial in the joint variables t11, t12, t21, t22. The

detail analysis of the singularity conditions in each operation mode is discussed in the following.

5.1 Singularities in 1st Schönflies mode (K1)

For the 1st Schönflies mode, the determinant of Jacobian matrix S1 : det(J1) = 0 has four

factors. The first factor is y2 = 0, when the moving platform is coplanar to the base, the

mechanism is always in a singular configuration. The second factor shows the singularity

configurations that lie in the intersection with K2. However, this factor is neglected since

systems K1 and K2 do not have configurations in common.

The inspection of the third factor yields the singularity configurations that belong to the 1st
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Schönflies mode K1 and the third mode K3, which will be discussed in Section 6. Eventually,

the last factor of the determinant of Jacobian matrix S1 : det(J1) = 0 is analysed. This factor

is added to the system K1 and all Study parameters are eliminated. The elimination yields a

polynomial degree 12 in terms of joint angles, as follows:

−3t1211t
12
12t

6
21t

5
22−3t1211t

12
12t

5
21t

6
22+3t1211t

11
12t

6
21t

6
22−3t1111t

12
12t

6
21t

6
22+10t1211t

12
12t

6
21t

3
22+45t1211t

12
12t

5
21... = 0 (24)

Let us consider one singularity configuration of the 2-RUU parallel manipulator in the 1st

Schönflies mode by solving Eq. (24) with t11 = 1, t12 = 1/2, t21 = −1, t22 = −0.0993. Hence, the

direct kinematics of at least one singularity configuration can be obtained with θ11 = 90◦, θ12 =

53.157◦, θ21 = −90
◦, θ22 = −11.347

◦, as shown in Fig. 4.

x0

y0

z0

A1

A2

O

Figure 4: A singularity configuration in the 1st Schönflies mode K1.

5.2 Singularities in 2nd Schönflies mode (K2)

For the 2nd Schönflies mode, the determinant of Jacobian matrix S2 : det(J2) = 0 has four

factors too. The first factor is y3 = 0 in which the moving platform is coplanar to the base,

hence the mechanism is always in a singular configuration. The second factor gives the condition

in which the mechanism is in the intersection of systems K1 and K2. As explained in Section 5,

this factor is removed.

The analysis of the third factor yields the singularity configurations that belong to the 2nd
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Schönflies mode K2 and the third mode K3, which will be discussed in Section 6. Finally, the

last factor of the determinant of Jacobian matrix S2 : det(J2) = 0 is analysed. This factor

is added to the system K2 and all Study parameters are eliminated. The elimination yields a

polynomial degree 12 in terms of joint angles, as follows:

−3t1211t
12
12t

6
21t

5
22−3t

12
11t

12
12t

5
21t

6
22+3t1211t

11
12t

6
21t

6
22−3t

11
11t

1
122t

6
21t

6
22+10t1211t

12
12t

6
21t

3
22+45t1211t

12
12t

5
21... = 0 (25)

Let us consider one singularity configuration of the 2-RUU parallel manipulator in the 2nd

Schönflies mode by solving Eq. (25) with t11 = 1, t12 = −1/6, t21 = −2/3, t22 = −2.71. Hence,

the direct kinematics of at least one singularity configuration can be obtained with θ11 =

90◦, θ12 = −18.93
◦, θ21 = −67.41

◦, θ22 = −139.56
◦, as shown in Fig. 5.

x0 y0

z0

A1

A2

O

Figure 5: A singularity configuration in the 2nd Schönflies mode K2.

5.3 Self-motion in Third mode (K3)

The determinant of the Jacobian matrix is computed in the system K3, which consists of five

constraint equations over five variables. Hence the 5×5 Jacobian matrix can be obtained. The

determinant of this Jacobian matrix S3 : det(J3) = 0 consists of 10 factors. Surprisingly, two of

ten factors are the necessary conditions for the 2-RUU parallel manipulator to be in the system

K3, i.e. s1‖s2, as explained in Section 4.3, namely:

1. t21 = −
1

t22
: (θ21 = π + θ22)
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2. t21 = t22 : (θ21 = θ22)

It shows that every configuration in the system K3 is always singular. When the actuators

are locked, the moving platform can exhibit 1-dof full cycle motion, which is referred as a

self-motion. Therefore, every configuration in the third mode K3 amounts to self-motion.

6 Operation mode changing

There exist common configurations where the mechanism, i.e. the 2-RUU parallel manipulator,

can switch from one operation mode to another operation mode. These configurations are well

known as transition configurations. Transition configuration analysis is an important issue in

the design process and control of the parallel manipulators with multiple operation modes [20].

However, the 1st Schönflies mode and the 2nd Schönflies mode do not have configurations

in common, since the variables x0, x1, x2, x3 can never vanish simultaneously. It means that the

2-RUU parallel manipulator cannot switch from the 1st Schönflies mode to the 2nd Schönflies

mode, or vice versa, directly. To change from the 1st Schönflies mode to the 2nd Schönflies

mode, or vice versa, the 2-RUU parallel manipulator should pass through the third mode,

namely system K3. There exist some configurations in which the mechanism can change from

the 1st Schönflies mode to the third mode or vice versa, and these configurations belong to

both operation modes. Noticeably, these configurations are also singular configurations since

they lie in the intersection of two operation modes, which are referred as constraint singularity.

In the following, the conditions on the actuated joint angles for the 2-RUU parallel ma-

nipulator to change from one operation mode to another are presented. Each pair of ideals

{Kn ∪ Km} is analysed and the Study parameters are eliminated to find common solutions.

6.1 1st Schönflies Mode (K1) ←→ Third Mode (K3)

To switch from the 1st Schönflies mode (K1) to the third mode (K3) or vice versa, one should

find the configurations of the 2-RUU parallel manipulator that fulfil the condition of both

operation modes, namely (K1∪K3). This condition is derived by computing the determinant of

Jacobian which is presented in Section 5.1. It turns out that the third factor of the determinant

yields the singularity configurations that belong to the 1st Schönflies mode K1 and the third

mode K3. Then, all Study parameters are eliminated. The elimination yields two polynomials

of degree eight and degree nine in t11, t12, t21, t22, respectively. The factorization splits both

polynomials into four factors as follows:

f1 : (t21t22 + 1)(t21 − t22)(t12 + t11)(3t
2
11t

2
12 − 2t11t12 + 8t212 + 3)

f2 : (t21t22 + 1)(t21 − t22)(t
2
12 + 1)(3t211t

2
12 − 2t11t12 + 8t212 + 3)

(26)



Nurahmi, Caro, Wenger, submitted to Mech. and Rob. Systems 15

x0
y0

z0

A1

A2
s1

s1

s2

s2

O

Figure 6: Transition configuration between K1 and K3.

The polynomial equations f1, f2 vanish simultaneously when they fulfil one of the conditions

stated below:

1. t21 = −
1

t22
: (θ21 = π + θ22)

2. t21 = t22 : (θ21 = θ22)

These conditions mean that when the second link BiCi (i = 1, 2) from both legs are parallel

to the same plan, i.e. s1‖s2, and the moving platform is twisted about an axis parallel to the

x0y0-plane of the frame Σ0 by 180 degrees, the 2-RUU parallel manipulator is in the intersection

of the 1st Schönflies mode and the third mode, as shown in Fig. 6. Moreover, these two

conditions are contained in the determinant of Jacobian of the third mode S3 : det(J3) = 0, as

described in Section 5.1. As a consequence, the transition configurations between K1 and K3

amount to self-motion.

6.2 2nd Schönflies Mode (K2) ←→ Third Mode (K3)

To switch from the 2nd Schönflies mode (K2) to the third mode (K3) or vice versa, one should

find the configurations of the 2-RUU parallel manipulator that fulfil the condition of both

operation modes, namely (K2 ∪K3). This condition is obtained by computing the determinant

of Jacobian which is presented in Section 5.2. It is shown that the third factor of the determinant

yields the singularity configurations that belong to the 2nd Schönflies mode K2 and the third
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x0 y0

z0

A1

A2

s1

s1

s2

s2

O

Figure 7: Transition configuration between K1 and K3.

mode K3. Then, all Study parameters are eliminated. The elimination yields two polynomials

of degree eight and degree nine in t11, t12, t21, t22, respectively. The factorization splits both

polynomials into four factors as follows:

f1 : (t21t22 + 1)(t21 − t22)(t12 + t11)(3t
2
11t

2
12 − 2t11t12 + 8t212 + 3)

f2 : (t21t22 + 1)(t21 − t22)(t
2
12 + 1)(3t211t

2
12 − 2t11t12 + 8t212 + 3)

(27)

The polynomial equations f1, f2 vanish simultaneously when they fulfil one of the conditions

stated below:

1. t21 = −
1

t22
: (θ21 = π + θ22)

2. t21 = t22 : (θ21 = θ22)

These two conditions mean that when the second link BiCi (i = 1, 2) from both limbs are

parallel to the same plane, i.e. s1‖s2, and the moving platform is parallel to the base, the

2-RUU parallel manipulator is in the intersection of the 2nd Schönflies mode and the third

mode, as shown in Fig. 7. Furthermore, these two conditions are contained in the determinant

of Jacobian of the third mode S3 : det(J3) = 0, as described in Section 5.2. It reveals that the

transition configurations between K1 and K3 amount to self-motion. The transition between

the 1st Schönflies mode K1 and the 2nd Schönflies mode K2 are possible and it occurs if and



Nurahmi, Caro, Wenger, submitted to Mech. and Rob. Systems 17

only if the moving platform passes through the third mode K3 that contains self-motion, as

depicted in Fig. 8(a)-8(f).

7 Conclusions

In this paper, the method of algebraic geometry was applied to characterize the type of operation

modes of the 2-RUU parallel manipulator. The set of eight constraint equations are firsly derived

and the primary decomposition is computed. It reveals that the 2-RUU parallel manipulator

has three 4-dof operation modes, namely the 1st Schönflies mode, the 2nd Schönflies mode, and

the additional 2T2R mode. The physical interpretation of each operation mode was provided.

The singularity conditions were computed and represented in the joint space, i.e. the actuated

joint angles (θ11, θ12, θ21, θ22). It turns out that every configuration in the third mode amounts

to self-motion. Eventually, the 2-RUU parallel manipulator is able to switch from the 1st

Schönflies mode to the 2nd Schönflies mode, or vice versa, by passing through the third mode

that contains self-motions.
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[11] Husty, M., Pfurner, M., Shröcker, H-P., and Brunnthaler, K. (2007). “Algebraic Methods

in Mechanism Analysis and Synthesis.”, Robotica, 25(6), pp. 661–675.

[12] Schadlbauer, J., Walter, D.R., and Husty, M. (2014). “The 3-RPS Parallel Manipulator

from an Algebraic Viewpoint.”, Mechanism and Machine Theory, 75, pp. 161–176.

[13] Nurahmi, L., Schadlbauer, J., Husty, M., Wenger, P., and Caro, S. (2015). “Motion Capa-

bility of the 3-RPS Cube Parallel Manipulator.”, In: Lenarčič, J and Khatib, O., Advance
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