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Stéphane Caro
Institut de Recherche en Communications

et Cybernétique de Nantes,
UMR CNRS no. 6597,

1 rue de la Noë, 44321,
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ABSTRACT
This paper presents a classification of 3T1R parallel manipulators based on the wrench graph. By using the

theory of reciprocal screws, the properties of the three-dimensional projective space, the wrench graph and the su-
perbracket decomposition of Grassmann-Cayley algebra; six typical wrench graphs for 3T1R parallel manipulators
are obtained along with their singularity conditions. Furthermore, the paper shows a way in which each of the ob-
tained typical wrench graphs can be used in order to synthesize new 3T1R parallel manipulator architectures with
known singularity conditions and with an understanding of their geometrical properties and assembly conditions.

1 Introduction
Parallel Manipulators (PMs) whose moving platform performs 3T1R motions, namely, three independent translations

and one rotation about an axis of fixed direction [1], are called Schoenflies Motion Generators (SMGs). This set of displace-
ments was first studied by the German mathematician-mineralogist Arthur Moritz Schoenflies (1853-1928). Over the past
few decades, the creation of various designs of 3T1R PMs was broaden, especially after the huge success of the Quattro [2].
Gogu discovered an isotropic architecture (its Jacobian matrix is diagonal and constant), named the Isoglide4 [3, 4], which
is composed of four legs with prismatic actuators. Another topology within the same family was introduced by Gosselin [5],
named the Quadrupteron.

The symmetrical design was proposed by Angeles [1], namely the McGill SMG, with two identical legs which, in turn,
decreases the number of joints. There exist two architecture varieties of H4 family, either with revolute or with prismatic
actuators [6–8]. The H4 robot designed by Pierrotet al. [6,7], is a fully-parallel mechanism with no passive kinematic chain
between the base and the nacelle. This idea brought out the mechanism with four legs. Each revolute joint in the leg is
actuated. The H4 robot with prismatic actuators mounted to the base, was presented by Wuet al. [8]. Another mechanism
constructed by three identical legs was proposed by Briot and Bonev [9, 10], called Pantopteron-4, having a pantograph
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linkage in each leg. Since it only employs three legs, the Pantopteron-4 gains great advantage in terms of workspace sizeand
acceleration capacities. Xie and Liu [11] designed the X4 robot, a high-speed 3T1R PM with high rotational capability. Wu
et al. [12] addressed the multi-objective design optimization ofa 3T1R PM with consideration of the kinematic and dynamic
performance. Carricato [13] took advantage of the theory ofreciprocal screws in order to design singularity-free SMGs.
Actuation redundancy [14] is interesting for singularity and obstacle avoidance, for improvement in force control andfor
kinematic calibration. Recently, several parallel mechanisms with actuation redundancy were proposed [15,16].

The type synthesis approach based upon screw theory is widely used for generating lower-mobility PMs as shown
by Huang and Li [17, 18] and by Kong and Gosselin [19]. Based upon the reciprocity condition, Ling and Huang [20] and
then Joshi and Tsai [21] developed a procedure to express theoverall Jacobian matrixJ of limited degree of freedom (dof)
PMs, comprising both constraint and actuation wrenches. The rows ofJ are composed ofn linearly independent actuation
wrenches plus (6-n) linearly independent constraint wrenches. These wrenches correspond to six Plücker lines, composing
J. The determinant ofJ is equal to the superjoin of 6 Plücker lines, named superbracket of Grassmann-Cayley algebra. It
allows a translation of synthetic geometric conditions into invariant (coordinate-free) algebraic expression.

The superbracket decomposition was employed by Ben-Horin and Shoham [22, 23] to analyse the singularity of 6-
dof PMs, for instance Gough-Stewart Platforms. However, this procedure does not consider the plane at infinity, which
obviously cannot represent a line at infinity. Indeed, a lineat infinity correlates to a pure moment emerged from limited
dof PMs. Points at infinity were used initially in a superbracketby Kanaan et al [24]. This improvement enhanced the
application of Grassmann-Cayley algebra for limiteddof PMs. The method was later expanded to represent the wrenchesin
a projective space, namedwrench graphby Amine et al [25–28]. The wrench graph depicts all geometric properties between
the constraint and actuation wrenches of manipulators and highlights points at infinity in a superbracket.

This paper presents an extensive investigation of 3T1R PMs and introduces a procedure that can be followed to build
and validate new 3T1R parallel robot architectures by usingprismatic and/or revolute joints. First, the list of limbs for
3T1R PMs obtained in [19] is reformulated by considering therotationaldof of the moving platform to be about an axis
directed alongz. The constraint wrench systems for each limb are then investigated and the influence of the limbdof and
topology on the constraint singularity of the 3T1R PM is explained. Furthermore, some limb arrangements that can be
used to synthesize 3T1R PMs free of constraint singularities are highlighted. Second, the actuation wrenches generated by
numerous types of limbs, with one actuated joint, are listed. Moreover, the validity rules for the actuation wrench system of
a proposed 3T1R PM are introduced. Those rules can be used to validate any assembly of limbs, namely, to check whether
a given assembly of limbs can result in a PM whose moving platform would be able to generate a 3T1R PM in a general
non-singular configuration. Third, a classification of 3T1RPMs is presented and six typical wrench graphs are introduced.
This classification is based on the actuation wrenches applied by the limbs and on the resulting wrench graph. The concept
of wrench graph consequently completes the type synthesis process (based on screw theory) at the conceptual design stage.
This idea will be applied in this paper to illustrate all the constraint and actuation wrenches. It allows to construct new
architectures of 3T1R PMs based on the classification of wrench graph and the singularity conditions. Finally, the results
are verified on some existing 3T1R PMs and some other ones introduced in this paper based on the proposed procedure.
Accordingly, the paper shows how each of the six typical wrench graphs can be used in order to build a valid 3T1R PM
architecture and allows the consideration of parallel singularities at the conceptual design stage. In addition, some3T1R
PMs with reduced singularities are introduced.

2 Type Synthesis of 3T1R PMs
The moving platform of a 3T1R PM provides three independent translationaldof and one rotationaldof about an axis

of fixed direction. In this paper, it is considered that the rotationaldof is about an axis directed alongz.

2.1 Constraint Wrench System
In a general configuration, the constraint wrench system,Wc, of a 3T1R PM must be reciprocal to the 3T1R motion.

Therefore, it is a 2-$∞-system containing infinite-pitch wrenches (pure moments)whose directions are orthogonal toz.
Accordingly,Wc can be written as:

Wc = span(M̂c1, M̂c2) (1)

whereM̂c1 = (0, z×m1), M̂c2 = (0, z×m2) andz, m1 andm2 are three mutually independent unit vectors.
The constraint moment̂Mc1 corresponds to a line at infinity passing through pointsj = (z, 0) andi = (m1, 0). There-

fore, M̂c1 = ji. Likewise,M̂c2 = jk wherek = (m2, 0). As a result, the constraint wrench systemWc = span(M̂c1, M̂c2)
corresponds (in a general configuration) to a flat pencil containing all lines at infinity through pointj= (z, 0), z being parallel
to the axis of the allowed rotation of the PM’s moving platform.



2.1.1 Constraint Singularities
The constraint singularities of a 3T1R PM correspond to configurations in which the constraint wrench system fails to

be a 2-system corresponding to a flat pencil of lines at infinity through pointj. In such configurations, the PM can switch
to another motion mode whose motion pattern is no longer a 3T1R motion. The change in the motion type is a phenomenon
that is present in reconfigurable PMs [29] and metamorphic PMs [30,31].

However, if the constraint wrench system of a 3T1R PM corresponds to the 2-system in any configuration, then the PM
will be free of constraint singularities. Therefore, it is possible to avoid such configurations with an appropriate choice of
the PM’s architecture, as shown thereafter in this paper.

2.2 Actuation Wrench System
In a general configuration, by locking all the actuated joints of a PM its moving platform must be fully constrained,

i.e., its actuation wrench system must span in addition to the constraint wrench system a 6-system. Therefore, the actuation
wrench systemWa of a 3T1R PM must be (in a general configuration) a 4-system andthe linear combination ofWc andWa

must lead to a 6-system, otherwise the robot is permanently singular.

2.2.1 Actuation Singularities
The actuation singularities occur when the actuation wrench system of the PM does not satisfy any longer the previous

condition while the PM is not in a constraint singularity. Therefore, a 3T1R PM exhibits an actuation singularity whenever:

• Wa fails to be a 4-system;
• the linear combination ofWa andWc fails to be a 6-system whileWc is a 2-system.

2.3 Comparison of Limbs for 3T1R PMs
A list of 4- and 5-dof limbs for 3T1R PMs withR- and/orP-joints was obtained in [19]. Since the rotationaldof of the

3T1R PMs under study is considered to be about an axis directed alongz, the following conditions1 should necessarily be
satisfied:

• In a given limb, the axes of theR-joints must lie in parallel planes;
• If the axes of all theR-joints in a limb are parallel, then they must necessarily bedirected alongz;

In order to highlight the axis direction of a revolute joint,let:

1. R̀ denote a revolute joint of axis parallel toz;
2. Ŕ can be:

(a) a revolute joint,̄R, of axis parallel to the horizontal plane (xOy);
(b) a revolute jointR̃ whose axis is neither parallel toz nor to the horizontal plane (xOy).

3. In theith limb, letmi denote the unit vector along the direction of the revolute joint axes that are not parallel toz;

Therefore, allR̄-joints (all R̃-joints, respectively) in a given limb have parallel axes. Now let us reformulate the list of limbs
for 3T1R PMs obtained in [19] under the above assumptions. Accordingly, Table 1 is obtained. Here, this list is examined
by a comparative analysis of the limbs in terms of both constraint and actuation wrench systems.

It is noteworthy that because of permutations, two revolutejoints that are required to be parallel may become not
adjacent. In particular, a revolute jointR j on the moving platform may be required to be parallel to a revolute joint Ri on
the fixed base. Here, prismatic joints are not taken into consideration because they do alter the orientation of the linksthat
they are connected to. IfRi andR j are parallel toz, it will not cause any problem, sinceR j will remain parallel toz for any
Schoenflies motion of the moving platform. However, ifR j is not parallel toz, the parallelism withRi will not be preserved
for finite displacements. Accordingly, permutations leading to this situation should be excluded.

2.4 Limb Constraint Wrench System
The constraint wrench system of a given limb only depends on the joint types and the joint axes. However, the arrange-

ment of the joints within the limb may affect the constraint singularities of the obtained 3T1R PM.

1Note that these conditions rely on the assumption that the limbdoes not contain idle joints, i.e., joints whose kinematic elements do not undergo relative
motions for finite displacements of the mechanism



Table 1. Limbs for 3T1R PMs.

dof Class Type

4 3R-1P Permutation ofPR̀R̀R̀

2R-2P Permutation ofPPR̀R̀

1R-3P Permutation ofPPPR̀

5 5R Permutation of̀RR̀R̀ŔŔ

Permutation of̀RR̀ŔŔŔ

4R-1P Permutation ofPR̀R̀R̀Ŕ

Permutation ofPR̀R̀ŔŔ

Permutation ofPR̀ŔŔŔ

3R-2P Permutation ofPPR̀R̀Ŕ

Permutation ofPPR̀ŔŔ

2R-3P Permutation ofPPPR̀Ŕ

2.4.1 Four-dof Limbs
Any 4-dof limb of Table 1 applies a 2-$∞-system of constraint wrenches reciprocal to theR̀-joints of the limb that

are directed alongz. Therefore, such a limb applies, in any configuration, an infinite number of constraint moments that
correspond to lines at infinity passing through pointj= (z, 0). It can be concluded that a 3T1R PM having at least one 4-dof
limb of Table 1 is over-constrained and free of constraint singularity.

It should be noted that for the 4-dof limbs given in Table 1 the directions of theP-joints are defined in such a way
that the limb generates a 3T1R motion. For example, let us consider thePR̀R̀R̀ limb type. The threèR-joints generate, in
a general configuration, one rotation about an axis directedalongz and two translations along directions orthogonal toz.
Therefore, the direction of theP-joint needs a nonzero component alongz, otherwise the limb cannot provide the required
3-dof translational motions.

2.4.2 Five-dof Limbs
A 5-dof limb used in the topology of a 3T1R PMs must apply one constraint moment that corresponds to a line at

infinity passing through pointj= (z, 0). Accordingly, the 3T1R PM must be assembled such that any 5-dof limb of the PM
provides a 3T2R motion in the starting configuration. The 5-dof limbs given in Table 1 can be classified into two types:

Type 1 There exist within the limb two revolute joints of parallel axes that are neither successive nor separated by aP-joint.
Such a limb is not generally a 3T2R limb. The 3T1R PM containing limbs of this type is obtained by imposing some
geometric constraints on the assembly.

Type 2 Two revolute joints of parallel axes within the limb are either successive or separated by aP-joint. Moreover, the
revolute joints that are not parallel toz are assembled on the platform. Such a limb is generally a 3T2Rlimb.

In order to highlight the difference between the two types oflimbs let us consider two 3T1R PMs with identical limb
structures, namely, a 4-R̀R̀R̄R̄R̀ PM and a 4-̀RR̀R̀R̄R̄ PM shown in Fig. 1. Clearly, for àRR̀R̄R̄R̀ limb, the last revolute
joint axis is not necessarily parallel to the first two. Therefore, the 4-̀RR̀R̄R̄R̀ 3T1R PM is obtained by assembling the PM
such that:

• the condition of parallelism between the last revolute joint axis and the first two is satisfied for all limbs;
• vectorsmi , i = 1, . . . ,4, are not all parallel.

In that case, the limbs apply altogether four constraint wrenches that correspond to four lines at infinity passing through
point j and span a 2-system of constraint wrenches. However, if the four vectorsmi become parallel, the PM will exhibit
a constraint singularity and can switch to another motion mode in which the motion of the moving platform will no longer
be a 3T1R motion. In such a configuration, the last revolute joint axis in each limb of the 4-̀RR̀R̄R̄R̀ PM will no longer be
parallel toz and the moving platform will no longer be parallel to the horizontal plane (xOy).

Now let us consider the 4-R̀R̀R̀R̄R̄ PM. Clearly, its limbs do not need geometric assembly conditions in order to provide
a 3T2R motion for the limb and a 3T1R motion for the moving platform. This PM is free of constraint singularities and the
moving platform is always parallel to plane (xOy). Moreover, it can be concluded that if a 3T1R PM contains at least two
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(a) 4-R̀R̀R̄R̄R̀ (b) 4-R̀R̀R̀R̄R̄

Fig. 1. Two 3T1R PMs [19].

limbs of type 2, its moving platform will always be parallel to plane (xOy). Therefore, the PM will be free of constraint
singularities. However, if all the limbs of the 3T1R PM are oftype 1, then the PM may have some constraint singularities.

2.5 Limb Actuation Wrench System
For a given type of limbs given in Table 1, the actuation wrenches do not depend on the arrangement of the joints within

the limb but on the actuated joints. The constraint wrench systemWc of a limb is reciprocal to all the twists associated with
the limb’s kinematic joints. If the actuated joint of the limb is locked, then the wrench system reciprocal to the other joints
of the limb will be given byUc such that: dim(Uc) = dim(Wc)+1 andUc containsWc plus a set of some additional wrenches.
Then, the corresponding actuation wrench can be selected asone of these additional wrenches.

Table 2 characterizes the locus of the actuation wrench for each type of limbs obtained in Table 1 and for each type of
actuated joints. For convenience, it is considered that onejoint per limb is actuated.

2.6 Validity Rules for the Actuation Wrench System
In what follows, let us assume that the limbs apply a 2-systemof constraint wrenches spanned byM̂c1 andM̂c2 and

satisfying Eqn. (1). In this section, we develop some rules to examine the validity of the actuation wrench system of
a 3T1R PM. For instance, we consider that an actuation wrenchapplied by a given limb of a PM is a zero- or an infinite-pitch
wrench namely, a pure force or a pure moment. LetF̂1, . . . , F̂4 denote actuation forces and̂Ma, M̂a1 andM̂a2 denote actuation
moments. In a general configuration of a 3T1R PM, one can statethe following rules.

R1 2 A basis of the actuation wrench systemWa can contain at most one actuation moment.
Proof Let us consider that a basis ofWa contains two actuation momentŝMa1 and M̂a2. In that case,Wa + Wc =
span(F̂1, F̂2, M̂a1, M̂a2, M̂c1, M̂c2). Since dim(span(M̂a1, M̂a2, M̂c1, M̂c2)) ≤ 3, the dimension ofWa+ Wc will be lower
than or equal to 5 in any robot configuration and therefore, the proposed PM will be permanently singular.

R2 If a basis ofWa contains one actuation momentM̂a, then the line at infinity corresponding tôMa should not pass through
pointj= (z, 0).
Proof Let us assume that a basis ofWa contains one actuation momentM̂a that corresponds to a line at infinity passing
through pointj, in a general configuration. In that case, the actuation moment M̂a belongs to the constraint wrench
system in a general configuration. Clearly in that case: dim(Wa+Wc)≤ 5.

R3 If the basis ofWa contains one actuation momentM̂a and three actuation forceŝF1, . . . , F̂3, then none of the three actuation
forces can be parallel to another.
Proof Indeed, ifF̂1 andF̂2 are parallel, then span(F̂1, F̂2) is equivalent to span(F̂1, M̂12), M̂12 being the line at infinity
of the finite plane containinĝF1 andF̂2. Accordingly, one can find a basis ofWa containing two actuation moments, and
therefore, ruleR1 is not satisfied in that case.

R4 If a basis ofWa contains one actuation momentM̂a and three actuation forceŝF1, . . . , F̂3, then the three actuation forces
cannot be coplanar.
Proof For instance, ifF̂1, F̂2 andF̂3 are coplanar and do not pass through the same finite point, then span(F̂1, F̂2, F̂3)
will be equivalent to span(F̂1, F̂2, M̂a1), M̂a1 being the line at infinity of the finite plane containinĝFi (i = 1, . . . ,3).
Accordingly, ruleR1 is not satisfied in that case.
On the other hand, if̂F1, F̂2 andF̂3 are coplanar and do pass through the same finite point, then span(F̂1, F̂2, F̂3) will fail
to be a 3-system.

2R1 stands for rule 1



Table 2. Actuation Wrench of Limbs for 3T1R PMs With one Actuated Joint.

dof Type Actuated Actuated wrench

joint

4 Permutation ofPR̀R̀R̀
(theP-joint being

P A force directed alongz

alongz) R̀ A force orthogonal toz and lying in the plane containing the axes of two unactuated
R̀-joints

Permutation ofPPR̀R̀ P A force not orthogonal to the direction of the actuatedP-joint, orthogonal to the
direction of the actuatedP-joint and lying in the plane containing the axes of two
unactuated̀R-joints

R̀ A force not parallel toz, orthogonal to the directions of twoP-joints and crossing the
axis of the unactuated̀R-joint

Permutation ofPPPR̀ P A force orthogonal to the directions of twoP-joints and crossing the axis of the
unactuated̀R-joint

R̀ A moment corresponding to a line at infinity that does not pass through point j= (z, 0)

5 Permutation of̀RR̀R̀ŔŔ R̀ A force collinear with the intersection line of two planes: the first containing theaxes of
two Ŕ-joints and the second containing the axes of two unactuatedR̀-joints

Ŕ A force parallel toz and intersecting the axis of unactuatedŔ-joint

Permutation of̀RR̀ŔŔŔ R̀ A force parallel tomi and intersecting the axis of the unactuatedR̀-joint

Ŕ A force collinear with the intersection line of two planes: one containing the axes of two
R̀-joints and the second one containing the axes of two unactuatedŔ-joints

Permutation ofPR̀R̀R̀Ŕ P A force parallel toz and intersecting the axis of théR-joint

(theP-joint being R̀ The determination of the actuation wrench requires further details on the geometry of
the limb

alongz) Ŕ A force directed alongz

Permutation ofPR̀R̀ŔŔ P A force collinear with the intersection line of two planes: the first containing theaxes of
two R̀-joints and the second containing the axes of twoŔ-joints

R̀ The determination of the actuation wrench requires further details on the geometry

Ŕ of the limb

Permutation ofPR̀ŔŔŔ P A force parallel tomi and intersecting the axis of thèR-joint

(theP-joint being R̀ A force parallel tomi

alongmi) Ŕ

Permutation ofPPR̀R̀Ŕ P

R̀

Ŕ The determination of the actuation wrench requires further details on the geometry

Permutation ofPPR̀ŔŔ P of the limb

R̀

Ŕ

Permutation ofPPPR̀Ŕ P

R̀ A moment corresponding to a line at infinity that does not pass through point j= (z, 0)

Ŕ A moment corresponding to a line at infinity that does not pass through point m= (mi , 0)



R5 If a basis ofWa is composed of four actuation forces, then it can contain at most one pair of parallel actuation forces,
provided that their plane does not contain the unit vectorz.
Proof Clearly, if a basis ofWa contains more than one pair of parallel actuation forces, then one can compute another
basis ofWa with more than one actuation moment, and therefore, ruleR1 will not be satisfied.

R6 If a basis ofWa is composed of four actuation forces where two forcesF̂1 andF̂2 are parallel, then the plane containing
these forces must not contain the unit vectorz.
Proof If the plane containing the two parallel actuation forces contains the unit vectorz, it follows that the two actuation
forcesF̂1 andF̂2 and the two constraint momentŝMc1 andM̂c2 will belong altogether to the union of two flat pencils of
lines. Accordingly, dim(span(F̂1, F̂2, M̂c1, M̂c2)) ≤ 3 and the dimension ofWa+ Wc will be lower than or equal to 5 in
any robot configuration.

R7 If a basis ofWa is composed of four actuation forces, then at most three of these forces can be coplanar.
Proof Indeed, if the four forces are coplanar, then the actuation wrench system fails to be a 4-system in a general
configuration, since four coplanar forces can span at most a 3-system.

R8 A basis ofWa can contain at most one actuation force parallel toz.
Proof Indeed, if two actuation forces,̂F1 andF̂2, are directed alongz, then span(F̂1, F̂2) is equivalent to span(F̂1, M̂12)
whereM̂12 corresponds to a line at infinity that necessarily passes through pointj = (z, 0). Accordingly, in that case,
ruleR2 will not be satisfied.

R9 If a basis ofWa is composed of four actuation forces, these forces cannot beorthogonal to a common direction.
Proof Indeed, if the four actuation forces are (in a general configuration) orthogonal to a common direction, then they
will intersect a common line at infinity, which necessarily intersects all the wrenches of the constraint wrench system.
Therefore, in that case, the four actuation forces plus the 2-$∞-system of constraint wrenches form a singular complex.

3 Typical Classes of SMGs
Based on the properties presented in the previous section, two main classes of 3T1R PMs can be identified. For PMs of

the first class, the limbs apply, in a general configuration, one actuation moment and three actuation forces on the moving
platform. On the other hand, the actuation wrenches appliedby the limbs of PMs of the second class in a general configuration
are pure forces.

The first class contains only one case. However, by followingrulesR1. . .R9, some sub-classes of the second class can
be obtained.

In this section, the wrench graphs corresponding to the firstclass and to the five sub-classes of the second class will be
represented. It is noteworthy that the sub-classes are defined by the types of the actuation wrenches applied by the limbsand
the geometric relations between these wrenches, the constraint wrench system being the same for any 3T1R PM.

3.1 Class A: One pure actuation moment is applied by the limbs.
Class A.1 One actuation moment plus three actuation forces. In that case, the three actuation forces cannot be coplanar and

none of these forces can be parallel to another.

The corresponding wrench graph is given in Table 3.

3.2 Class B: The actuation wrenches applied by the limbs are pure forces.
Class B.1 Two parallel actuation forces plus two other actuation forces;
Class B.2 Three coplanar actuation forces plus a fourth actuation force that does not belong to the plane of the first three

ones.
Class B.3 Four actuation forces that are mutually skew where none of the four forces is parallel toz;
Class B.4 Four actuation forces that are mutually skew where one of thefour forces is parallel toz;
Class B.5 Two pairs of concurrent actuation forces.

A wrench graph for each sub-class is given in Table 3.

3.3 Superbracket Decomposition
A.1- One actuation moment plus three actuation forces

Let us consider a PM of class A.1. A basis of the actuation wrench systemWa of the PM can be composed of three
actuation forceŝF1, F̂2 and F̂3 and one actuation moment̂Ma. Now let M̂c1 andM̂c2 be two constraint moments that
form a basis of the constraint wrench systemWc of the PM. Accordingly, the overall Jacobian matrix of this sub-class of



Table 3. Wrench Graph and Superbracket Decomposition for SMGs of Classes A and B.
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SMGs takes the form:

JT = [F̂1 F̂2 F̂3 M̂a M̂c1 M̂c2] (2)

From ruleR1, the actuation moment̂Ma must correspond to a line at infinity that does not pass through pointj, in a
general configuration of the PM. Moreover, in a general configuration, the three actuation forces cannot be coplanar
and none of these forces can be parallel to another. Let us consider the general case satisfying these conditions by
considering that the three actuation forces are skew (in a general configuration). It is known that three moments are
always mutually concurrent. Therefore, the six wrenches composingJ can be written as:F̂1 = (f1, rA1 × f1) = ab,
F̂2 = (f2, rA2 × f2) = cd, F̂3 = (f3, rA3 × f3) = ef, M̂a = (0, ma) = ik, M̂c1 = ij = (0, mc1) M̂c2 = kj = (0, mc2) The
corresponding superbracket is then expressed and simplified as follows:

S= [ab cd ef ik ij kj] = [abdf][cikj][eikj] (3)

Such a PM has two singularity conditions:

(a) (f1× f2) · f3 = 0
(b) (mc1×mc2) ·ma = 0

B.1- Two parallel actuation forces plus two other skew actuation forces
The overall Jacobian matrix of this sub-class of SMGs takes the form:

JT = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (4)

whereF̂1 is parallel toF̂2. Let F̂1 = (f1, rA1 × f1) = ab, F̂2 = (f1, rA2 × f1) = cb, F̂3 = (f3, rA3 × f3) = ef and F̂4 =
(f4, rA4 × f4) = gh be the four actuation forces. In turn, letM̂c1 = (0, mc1) = ij andM̂c2 = (0, mc2) = kj be the two
constraint moments.

The corresponding superbracket is expressed and decomposed as:

S= [ab cb ef gh ij kj]

= [eikj]
(

[abch][befj]− [abcf][behj]
)

= [eikj]
(

[abc
•
h][be

•
fj]

)

= [eikj]
(

(abc)∧ (bej)∧ (hf)
)

(5)

Let uac be the unit vector of the finite line joining the projective points a andc. This sub-class of SMGs has two main
singularity conditions:

(a) (mc1×mc2) ·z= 0. Clearly, this is the condition for constraint singularities.
(b)

(

(f1×uac)× (f1×z)
)

· (f4× f3) = 0 ⇒

1. f1 ‖ uac;
2. f1 ‖ z;
3. f3 ‖ f4.

B.2- Three coplanar actuation forces plus a fourth actuation force
The overall Jacobian matrix of this sub-class of SMGs takes the form:

JT = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (6)

whereF̂1 F̂2 andF̂3 intersect each one another at a finite point. LetF̂1 = ac, F̂2 = ae, F̂3 = ce andF̂4 = gh be the four
actuation forces. In turn, let̂Mc1 = ij andM̂c2 = kj be the two constraint moments.



The corresponding superbracket is expressed and developedas follows:

S= [ac ae ce gh ij kj] = [aceh][acej][gikj] (7)

This sub-class of SMGs has three singularity conditions:

(a) (mc1×mc2) ·z= 0
(b) plane(ace) ‖ f4

(c) plane(ace) ‖ z

B.3- Four skew lines none of which being directed along z
The overall Jacobian matrix of this sub-class of SMGs takes the form:

JT = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (8)

whereF̂1 F̂2, F̂3 andF̂4 correspond to four finite lines that are mutually skew and none of them is directed alongz. There
exists (in a general configuration) a finite lineLi j parallel toz that crosses any couple of actuation forcesF̂i andF̂j . Let
F̂1 = (f1, r1× f1), F̂2 = (f2, r2× f2), F̂3 = (f3, r3× f3) andF̂4 = (f4, r4× f4) be the four actuation forces. In turn, let
M̂c1 = ij andM̂c2 = kj be the two constraint moments. The superbracket then is depicted and developed as:

S= [ab cd ef gh ij kj]

= [gikj]
(

[abd
•
f][cg

•
hj]

)

= [gikj]
(

(abd)∧ (cgj)∧ (fh)
)

(9)

This sub-class of SMGs has two main singularity conditions:

(a) (mc1×mc2) ·z= 0.
(b)

(

(z×ucg)× (f1× f2)
)

· (f4× f3) = 0

whereucg is the unit vector of a finite line non-parallel toz and crossing linesL12 andL34.

B.4- Four skew lines one of which being directed along z
The overall Jacobian matrix of this sub-class of SMGs takes the form:

JT = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (10)

whereF̂1 F̂2, F̂3 andF̂4 correspond to four finite lines that are mutually skew andF̂4 is parallel toz. We know that, in a
general configuration, there exists a finite lineLi j parallel toz that crosses any couple of actuation forces amongF̂1, F̂2

andF̂3. Therefore, letL12 ‖ z= ac be the finite line parallel toz that crosses, in a general configuration,F̂1 andF̂2 at the
finite pointsa andc, respectively. Therefore, pointsa, c andj are aligned.

Let F̂1 = ab, F̂2 = cd, F̂3 = ef andF̂4 = gj be the four actuation forces. In turn, letM̂c1 = ij andM̂c2 = kj be the two
constraint moments.

The corresponding superbracket is expressed and simplifiedas follows:

S= [ab cd ef gj ij kj]

= [gikj]
(

[ab
•
cj][

•
defj]

)

= [gikj]
(

(abj)∧ (efj)∧ (cd)
)

(11)

This sub-class of SMGs has two singularity conditions:



(a) (mc1×mc2) ·z= 0.
(b)

(

(f1×z)× (f3×z)
)

· f2 = 0

B.5- Two pairs of intersecting actuation forces
The overall Jacobian matrix of this sub-class of SMGs has theform:

JT = [F̂1 F̂2 F̂3 F̂4 M̂c1 M̂c2] (12)

where F̂1 = (f1, r1 × f1) = ab, F̂2 = (f2, r1 × f2) = ad, F̂3 = (f3, r3 × f3) = ef, F̂4 = (f4, r4 × f4) = eh, M̂c1 = ij

and M̂c2 = kj.

The corresponding superbracket is expressed and simplifiedas follows:

S= [ab ad ef eh ij kj]

= [eikj]
(

[abd
•
f][ae

•
hj]

)

= [eikj]
(

(abd)∧ (aej)∧ (fh)
)

(13)

This sub-class of SMGs has two main singularity conditions:

(a) (mc1×mc2) ·z= 0.
(b)

(

(z×uae)× (f1× f2)
)

· (f4× f3) = 0

whereuae is the unit vector of the finite line joining pointsa ande.

4 Applications
4.1 The Quadrupteron PM (Class B.1)

The Quadrupteron PM [5] illustrated in Fig. 2, is composed ofthree identical limbs:Li = PiR̄
i
1R̄

i
2R̄

i
3R̀

i
, i = 1, 2, 3, plus

one limbL4 = P4R̀
4
1R̀

4
2R̀

4
3.

The actuated jointPi of the ith limb (i = 1, 2, 3) is directed alongmi which is parallel to the axes of the limb’s three

R̄
i
-joints such thatm1 ‖ m3 ‖ x andm2 ‖ y. In turn, the actuated jointP4 of the fourth limb is directed alongz which is

parallel to the axes of the limb’s threèR
i
-joints. It is noteworthy that vectorsx, y andz have fixed directions.

Limb L4 is a 4-dof limb of Table 1. This limb is sufficient to make the Quadrupteron PM free of constraint singularities.
From Table 2, it follows that the four limbs of the Quadrupteron PM apply four actuation forceŝF1 = (x, rA1 × x),

F̂2 = (y, rA2 ×y), F̂3 = (x, rA3 ×x) andF̂4 = (z, rA4 ×z). According to class B.1, the Quadrupteron PM exhibits an actuation
singularity whenever:

1. f1 ‖ uac

2. f1 ‖ z
3. f3 ‖ f4

For the Quadrupteron PM,f1 ≡ f3 ≡ x, f2 ≡ y, f4 ≡ z anduac is the unit vector of lineA1A3. As a result, the second and
the third singularity conditions are impossible. Consequently, the only possible singularity condition is:(A1A3 ‖ x), which
is illustrated in Fig. 3.

4.2 A 2-PRRU-PRRR-PRPP PM (class A.1)
Now let us modify the architecture of the Quadrupteron PM in order to obtain a PM of the sub-classA.1. Accordingly,

we should replace the third limbL3 of the Quadrupteron PM with a limb generating an actuation moment. From Table 2,
the limbPR̀PP satisfies the required condition. As a result, the 2-PRRU-PRRR-PRPP PM, shown in Fig. 4, is obtained.
It is noteworthy that this architecture is introduced as an example of the sub-classA.1. However, compared to the original
Quadrupteron PM, the 2-PRRU-PRRR-PRPP PM is less interesting regarding the stiffness and accuracy.

It can be noticed that the proposed PM is free of constraint singularities. The condition for actuation singularities is
given by: (f1× f2) · f3 = 0. Since, for the proposed 2-PRRU-PRRR-PRPP PM, f1 ≡ x, f2 ≡ y andf3 ≡ z, this PM is also
free of actuation singularities.
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4.3 The 3-URU-SPS PM (class B.2)

The 3-URU-SPS PM [32] is composed of four limbsLi = R̀
i
1R̄

i
1R̄

i
2R̄

i
3R̀

i
2, i = 1, 2, 3, andL4 =SPS. Vectorsmi (that

correspond to the directions of the limb’s̄R-joints) are parallel to the horizontal plane (xOy).
From Table 2, the actuation force of theith limb (i = 1, 2, 3) is parallel to plane (xOy). Therefore, from ruleR.9, we

cannot obtain a valid 3T1R PM with four limbs of this type.
The actuation force of limbL4 =SPS is directed along the actuatedP-joint. The actuation forceŝFi of limbs Li

(i = 1, 2, 3) can be selected to be coplanar, as shown in Fig. 5.
A constraint singularity of the 3-URU-SPS PM occurs if the three constraint momentsM̂ci = (0, mi × z), i = 1, 2, 3,

applied by the three limbsL1, L2 andL3 form ac≤ 1-system. Therefore, the constraint singularities correspond to config-
urations in which the three vectorsmi , i = 1, 2, 3, become parallel.

Let F̂1 = ac, F̂2 = ae, F̂3 = ce and F̂4 = gh. From Sec. 3.1, the 3-URU-SPS PM exhibits an actuation singularity
whenever:

1. [aceh] = 0. This occurs if planeace degenerates or if the actuation forceF̂4 is parallel to planeace.
2. [acej] = 0. This occurs if planeace degenerates or ifz is parallel to planeace. The latter condition cannot occur as

long as the PM is in the 3T1R motion mode since in this mode, planeace is parallel to plane (xOy).
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4.4 The 4-UPU PM (class B.3)

The 4-UPU PM [32], shown in Fig. 6 is composed of four limbsLi = R̀
i
1R̄

i
1PR̄

i
2R̀

i
2, i = 1, . . . ,4. Vectorsmi (that

correspond to the directions of the limb’s̄R-joints) are parallel to the horizontal plane (xOy).
The axes of the first and the second (respectively of the thirdand the fourth) revolute joints of theith limb are arranged

with intersecting and perpendicular axes and are thus assimilated to aU-joint centered at pointAi (respectively at pointBi).
Therefore, the actuation force of theith limb is collinear with lineAiBi . Let F̂i = (f i , rBi × f i) denote the actuation force of
the ith limb.

Theith limb applies one constraint momentM̂i =(0, mi ×z). In a general configuration, the four actuation forces applied
by the four limbs of the 4-UPU PM correspond to four skew finite lines. Therefore, according to Sec. 3.1, the 4-UPU PM
exhibits:

• a constraint singularity whenever the four vectorsmi are parallel;
• an actuation singularity whenever

(

(f i × f j)× (fk× f l )
)

· (ukl
i j ×z) = 0 (14)

where(i, j, k, l), is a permutation of(1, 2, 3, 4) and vectorukl
i j is defined in Sec. 3.1.
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Fig. 6. The 4-UPU PM.

4.5 The 3-UPU-PRRR PM (class B.4)

Fig. 7. The 3-UPU-PRRR PM.

Now let us modify the architecture of the 4-UPU PM in order to obtain a PM of the sub-classB.4. Accordingly, we
should replace one of the fourUPU limbs with a limb applying an actuation force alongz, namely, with aPR̀R̀R̀ limb. Since
this limb is a 4-dof limb of Table 1, it follows from Sec. 2.4 that the proposed 3-UPU-PRRR PM, shown in Fig. 7, is free
of constraint singularities.

Let F̂1 = (f1, rB1 × f1) = ab, F̂2 = (f2, rB2 × f2) = cd andF̂3 = (f3, rB3 × f3) = ef be the three actuation forces applied
by the threeUPU limbs and letF̂4 = (z, r4×z) = gj be the actuation force of thePRRR limb. Since there exists a finite line
L12 parallel toz that crosses the two actuation forcesF̂1 andF̂2, pointsa andc are selected on this line. The wrench graph of
this PM is shown in Table 3 and described in Sec. 3.1. Accordingly, the 3-UPU-PRRR PM exhibits an actuation singularity
whenever:

1. [abdj] = 0⇒ (f1× f2) ·z= 0.
2. [cefj] = 0⇒ (uce× f3) ·z= 0 whereuce is the unit vector of a line joining pointsc ande.
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4.6 Simplified design of a 4-RPUR PM (class B.5)
A RPUR limb defined by aR̀PR̀R̄R̄ limb is a 3T2R limb of type 2 (see Sec. 2.4). Therefore, by using a special

arrangement of four such limbs, similarly to the simplified 3T2R AA PM presented in [26], the simplified 4-RPUR PM,
shown in Fig. 8, is obtained.

Generally, a limbLi = R̀
i
1PiR̀

i
2R̄

i
1R̄

i
2 is characterized as follows:

• thePi-joint is directed alongpi ;
• the axes of the first two revolute joints are parallel toz and lie in a planePi of normal vectorz×pi ;
• the second and the third revolute joints are built with perpendicular axes and are thus assimilated to aU-joint centered

at pointBi ;
• the axes of the last two revolute joints are parallel tomi and lie in a planeVi of normal vectormi ×vi . Moreover,mi is

parallel to the horizontal plane (xOy).

The simplified 4-RPUR PM is obtained with a special arrangementLi = R̀
i
1PiR̀

i
2R̄

i
1R̄

i
2 (i = 1, 2, 3, 4) such that:B1 ≡

B2 ≡B12, B3 ≡B4 ≡B34, V1 ≡ V2 ≡ V12, V3 ≡ V4 ≡ V34, m1 ≡m2 ≡m12 andm3 ≡m4 ≡m34. Moreover, vectorv1 ≡ v2 ≡ v12

(respectivelyv3 ≡ v4 ≡ v34) lies in planeV12 (respectivelyV34) and is orthogonal tom12 (respectivelym34).
From the results in [26], it can be revealed that the limbs of the proposed 3T1R PM apply two pairs of actuation forces

intersecting in pointsB12 andB34, respectively. The actuation forces are given by:

• F̂1 = (f1, rB12 × f1), wheref1 = (z×p1)× (m12×v12);
• F̂2 = (f2, rB12 × f2), wheref2 = (z×p2)× (m12×v12);
• F̂3 = (f3, rB34 × f3), wheref3 = (z×p3)× (m34×v34);
• F̂4 = (f4, rB34 × f4), wheref4 = (z×p4)× (m34×v34);

Since aR̀PR̀ŔŔ corresponds to a 5-dof limb of type 2 as defined in Sec. 2.4, the proposed PM is free of constraint singular-
ities. From Sec. 3.1, it follows that the condition for the actuation singularities of the simplified 4-RPUR PM is:

(

(f1× f2)× (f3× f4)
)

· (u×z) = 0 (15)

whereu is the unit vector of lineB12B34.

5 Discussion and Conclusions
This paper presents a new approach for classifying 3T1R parallel manipulators based on the relations between the

wrenches applied by the manipulators’ limbs. Six typical wrench graphs were presented and investigated. The geometric
properties of these classes were highlighted in order to determine and compare the singularities of 3T1R parallel manipulators
at the conceptual design stage. It is noteworthy that other classes can be derived by following the rules presented in Sec. 2.6.
Moreover, the proposed approach does not directly apply to redundantly actuated parallel manipulators. However, GCA and
the superbracket decomposition can be used to solve for the singularities of redundant parallel manipulators, which constitute
an interesting case study for future work.



The limbs obtained by Kong and Gosselin were compared based on the resulting limb constraint wrench system and its
effect on the overall manipulator constraint wrench systemand on the constraint singularities as well. The assembly oflimbs
and the actuation wrench system were also investigated and Sec. 2.6 presents some rules for the assembly of limbs in order
to obtain a valid 3T1R parallel manipulator.

The proposed classification of 3T1R parallel manipulators is illustrated in Table 3, which presents the wrench graph
for each of the six classes along with the corresponding simplified superbracket decomposition. It is noteworthy that only
classB.3 was studied in previous works [27]. As a result, all the otherclasses are new and first presented in this paper. On
the other hand, Table 2 was introduced in order to provide a mapping between the six classes and possible realizations of a
manipulator corresponding to a given class.

Section 4 provides an example of a possible robot structure for each class and shows how a given robot architecture can
be modified in order to form a manipulator belonging to another class. Finally, the manipulators presented in Figures 4, 7
and 8 are first presented in this paper and were obtained by following the proposed classification.

The proposed approach developed for 3T1R parallel manipulators can be applied to consider the singularities at the
conceptual design stage of other classes of lower-mobilityparallel manipulators.
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