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ABSTRACT
This paper presents a classification of 3T1R parallel maaijpus based on the wrench graph. By using the
theory of reciprocal screws, the properties of the thremetisional projective space, the wrench graph and the su-
perbracket decomposition of Grassmann-Cayley algebretygical wrench graphs for 3T1R parallel manipulators
are obtained along with their singularity conditions. Faermore, the paper shows a way in which each of the ob-
tained typical wrench graphs can be used in order to syntieesew 3T1R parallel manipulator architectures with
known singularity conditions and with an understandinghafit geometrical properties and assembly conditions.

1 Introduction

Parallel Manipulators (PMs) whose moving platform perfer8T1R motions, namely, three independent translations
and one rotation about an axis of fixed direction [1], aresthchoenflies Motion Generators (SMGs). This set of displac
ments was first studied by the German mathematician-miogisal Arthur Moritz Schoenflies (1853-1928). Over the past
few decades, the creation of various designs of 3T1R PMs vaeglbn, especially after the huge success of the Quattro [2]
Gogu discovered an isotropic architecture (its Jacobiatnixria diagonal and constant), named the Isoglide4 [3, 4iiciv
is composed of four legs with prismatic actuators. Anotbpptogy within the same family was introduced by Gosseljn [5
named the Quadrupteron.

The symmetrical design was proposed by Angeles [1], narhelWcGill SMG, with two identical legs which, in turn,
decreases the number of joints. There exist two architectarieties of H4 family, either with revolute or with pristita
actuators [6—8]. The H4 robot designed by Pieetrl.[6, 7], is a fully-parallel mechanism with no passive kindimahain
between the base and the nacelle. This idea brought out thikamiem with four legs. Each revolute joint in the leg is
actuated. The H4 robot with prismatic actuators mountetiedobse, was presented by Whal. [8]. Another mechanism
constructed by three identical legs was proposed by BridtBonev [9, 10], called Pantopteron-4, having a pantograph

*Address all correspondence to this author.



linkage in each leg. Since it only employs three legs, thédpdaron-4 gains great advantage in terms of workspacesize
acceleration capacities. Xie and Liu [11] designed the Xabtpa high-speed 3T1R PM with high rotational capabilityy W
et al.[12] addressed the multi-objective design optimizatioa 8T 1R PM with consideration of the kinematic and dynamic
performance. Carricato [13] took advantage of the theorseoiprocal screws in order to design singularity-free SMGs
Actuation redundancy [14] is interesting for singularitydaobstacle avoidance, for improvement in force control famd
kinematic calibration. Recently, several parallel medcsras with actuation redundancy were proposed [15, 16].

The type synthesis approach based upon screw theory isywideld for generating lower-mobility PMs as shown
by Huang and Li [17, 18] and by Kong and Gosselin [19]. Baseahupe reciprocity condition, Ling and Huang [20] and
then Joshi and Tsai [21] developed a procedure to express/énall Jacobian matrig of limited degree of freedonrdf)
PMs, comprising both constraint and actuation wrencheg. rétvs ofJ are composed af linearly independent actuation
wrenches plus (8 linearly independent constraint wrenches. These wrencbeespond to six Btker lines, composing
J. The determinant of is equal to the superjoin of 6 &tker lines, named superbracket of Grassmann-Cayley ralgéb
allows a translation of synthetic geometric conditionsiintvariant (coordinate-free) algebraic expression.

The superbracket decomposition was employed by Ben-HarithShoham [22, 23] to analyse the singularity of 6-
dof PMs, for instance Gough-Stewart Platforms. However, thigdure does not consider the plane at infinity, which
obviously cannot represent a line at infinity. Indeed, a Anhénfinity correlates to a pure moment emerged from limited
dof PMs. Points at infinity were used initially in a superbrackgtKanaan et al [24]. This improvement enhanced the
application of Grassmann-Cayley algebra for limited PMs. The method was later expanded to represent the wreimches
a projective space, namedench graphby Amine et al [25—-28]. The wrench graph depicts all georogiroperties between
the constraint and actuation wrenches of manipulators aidights points at infinity in a superbracket.

This paper presents an extensive investigation of 3T1R Ridsrdroduces a procedure that can be followed to build
and validate new 3T1R parallel robot architectures by ugingmatic andor revolute joints. First, the list of limbs for
3T1R PMs obtained in [19] is reformulated by considering rthgationaldof of the moving platform to be about an axis
directed along. The constraint wrench systems for each limb are then iigagstl and the influence of the lindof and
topology on the constraint singularity of the 3T1R PM is expéd. Furthermore, some limb arrangements that can be
used to synthesize 3T1R PMs free of constraint singulardre highlighted. Second, the actuation wrenches geddgite
numerous types of limbs, with one actuated joint, are liskédreover, the validity rules for the actuation wrench systof
a proposed 3T1R PM are introduced. Those rules can be usatidate any assembly of limbs, namely, to check whether
a given assembly of limbs can result in a PM whose moving @iatfwould be able to generate a 3T1R PM in a general
non-singular configuration. Third, a classification of 3TRMs is presented and six typical wrench graphs are intrauce
This classification is based on the actuation wrenchesexgpply the limbs and on the resulting wrench graph. The concept
of wrench graph consequently completes the type synthesiegs (based on screw theory) at the conceptual design stag
This idea will be applied in this paper to illustrate all thenstraint and actuation wrenches. It allows to construet ne
architectures of 3T1R PMs based on the classification of etrgmaph and the singularity conditions. Finally, the resul
are verified on some existing 3T1R PMs and some other onexlinted in this paper based on the proposed procedure.
Accordingly, the paper shows how each of the six typical whegraphs can be used in order to build a valid 3T1R PM
architecture and allows the consideration of parallel gimgties at the conceptual design stage. In addition, s8R
PMs with reduced singularities are introduced.

2 Type Synthesis of 3T1R PMs
The moving platform of a 3T1R PM provides three independeamdlationadof and one rotationalof about an axis
of fixed direction. In this paper, it is considered that thetionaldof is about an axis directed alog

2.1 Constraint Wrench System

In a general configuration, the constraint wrench systeynof a 3T1R PM must be reciprocal to the 3T1R motion.
Therefore, it is a 2-$-system containing infinite-pitch wrenches (pure momewispse directions are orthogonal zo
Accordingly,W. can be written as:

We= Spar(Mcl» MCZ) (1)

whereMy = (0,zxmy), Mg = (0, zx my) andz, m; andmy are three mutually independent unit vectors.

The constraint momenlc; corresponds to a line at infinity passing through points (z,0) andi = (my, 0). There-
fore, M¢1 = ji. Likewise, Mg = jk wherek = (mgz, 0). As a result, the constraint wrench system= spar(l\?lcl, I\7I02)
corresponds (in a general configuration) to a flat pencilaiairtg all lines at infinity through point = (z, 0), z being parallel
to the axis of the allowed rotation of the PM’s moving platfor B



2.1.1 Constraint Singularities

The constraint singularities of a 3T1R PM correspond to goméitions in which the constraint wrench system fails to
be a 2-system corresponding to a flat pencil of lines at igfithitough pointj. In such configurations, the PM can switch
to another motion mode whose motion pattern is no longer &3Wation. The change in the motion type is a phenomenon
that is present in reconfigurable PMs [29] and metamorphis 34, 31].

However, if the constraint wrench system of a 3T1R PM cowesdp to the 2-system in any configuration, then the PM
will be free of constraint singularities. Therefore, it isgsible to avoid such configurations with an appropriatécehof
the PM’s architecture, as shown thereafter in this paper.

2.2 Actuation Wrench System

In a general configuration, by locking all the actuated piot a PM its moving platform must be fully constrained,
i.e., its actuation wrench system must span in additioneatnstraint wrench system a 6-system. Therefore, thetamtua
wrench systenii; of a 3T1R PM must be (in a general configuration) a 4-systentlaadinear combination of; andw,
must lead to a 6-system, otherwise the robot is permanentylsr.

2.2.1 Actuation Singularities
The actuation singularities occur when the actuation wresystem of the PM does not satisfy any longer the previous
condition while the PM is not in a constraint singularity.efafore, a 3T1R PM exhibits an actuation singularity whenev

e W, fails to be a 4-system;
e the linear combination di; andw, fails to be a 6-system whili; is a 2-system.

2.3 Comparison of Limbs for 3T1R PMs

A list of 4- and 5-dof limbs for 3T1R PMs withR- and/orP-joints was obtained in [19]. Since the rotatiodalf of the
3T1R PMs under study is considered to be about an axis ditedtegz, the following condition$ should necessarily be
satisfied:

e In a given limb, the axes of the-joints must lie in parallel planes;
o If the axes of all théR-joints in a limb are parallel, then they must necessarilgibected along;

In order to highlight the axis direction of a revolute joilgt;

1. R denote a revolute joint of axis parallelzp
2. R can be:

(a) arevolute jointﬁ, of axis parallel to the horizontal planedy);
(b) arevolute joinR whose axis is neither parallel mnor to the horizontal planxQy).

3. In theith limb, letm; denote the unit vector along the direction of the revoluietjaxes that are not parallel &

Therefore, alR-joints (all Ii—joints, respectively) in a given limb have parallel axeswNet us reformulate the list of limbs
for 3T1R PMs obtained in [19] under the above assumptiongoflingly, Table 1 is obtained. Here, this list is examined
by a comparative analysis of the limbs in terms of both canstand actuation wrench systems.

It is noteworthy that because of permutations, two revojabets that are required to be parallel may become not
adjacent. In particular, a revolute joiRt; on the moving platform may be required to be parallel to altgegoint R; on
the fixed base. Here, prismatic joints are not taken intoidenation because they do alter the orientation of the Ithias
they are connected to. R; andR; are parallel te, it will not cause any problem, sind®; will remain parallel toz for any
Schoenflies motion of the moving platform. HoweveiRifis not parallel taz, the parallelism withR; will not be preserved
for finite displacements. Accordingly, permutations leadio this situation should be excluded.

2.4 Limb Constraint Wrench System
The constraint wrench system of a given limb only depend$erjdint types and the joint axes. However, the arrange-
ment of the joints within the limb may affect the constraiiniguilarities of the obtained 3T1R PM.

INote that these conditions rely on the assumption that thedioels not contain idle joints, i.e., joints whose kinematisrents do not undergo relative
motions for finite displacements of the mechanism



Table 1. Limbs for 3T1R PMs.

dof Class Type

4 3R-1P  Permutation oPRRR
2R-2P  Permutation oPPRR
1R-3P  Permutation oPPPR

5 5R Permutation oRRRRR
Permutation oRRRRR

4R-1P  Permutation oPRRRR
Permutation oPRRRR

Permutation oPRRRR

3R-2P  Permutation oPPRRR
Permutation oPPRRR

2R-3P  Permutation oPPPRR

2.4.1 Fourdof Limbs

Any 4-dof limb of Table 1 applies a 2:$system of constraint wrenches reciprocal to Expints of the limb that
are directed along. Therefore, such a limb applies, in any configuration, amitgfinumber of constraint moments that
correspond to lines at infinity passing through pgigt (z, 0). It can be concluded that a 3T1R PM having at least odef4-
limb of Table 1 is over-constrained and free of constraingslarity.

It should be noted that for the diof limbs given in Table 1 the directions of thjoints are defined in such a way
that the limb generates a 3T1R motion. For example, let usidenthePRRR limb type. The thredi-joints generate, in
a general configuration, one rotation about an axis direakedlg z and two translations along directions orthogonat.to
Therefore, the direction of thie-joint needs a nonzero component alap@therwise the limb cannot provide the required
3-dof translational motions.

2.4.2 Fivedof Limbs

A 5-dof limb used in the topology of a 3T1R PMs must apply one condtn@ioment that corresponds to a line at
infinity passing through point = (z, 0). Accordingly, the 3T1R PM must be assembled such that ashyf%mb of the PM
provides a 3T2R motion in the starting configuration. ThaoB{imbs given in Table 1 can be classified into two types:

Type 1 There exist within the limb two revolute joints of paralledes that are neither successive nor separatedhjoant.
Such a limb is not generally a 3T2R limb. The 3T1R PM contarimbs of this type is obtained by imposing some
geometric constraints on the assembly.

Type 2 Two revolute joints of parallel axes within the limb are eittsuccessive or separated bipgoint. Moreover, the
revolute joints that are not parallel zare assembled on the platform. Such a limb is generally a 3ifaiR

In order to highlight the difference between the two typedimbs let us consider two 3T1R PMs with identical limb
structures, namely, aBRRRRR PM and a 4RRRRR PM shown in\lfig._l\. Clearly, for BRRRR limb, the last revolute
joint axis is not necessarily parallel to the first two. THere, the 4RRRRR 3T1R PM is obtained by assembling the PM
such that:

¢ the condition of parallelism between the last revolutetjaixis and the first two is satisfied for all limbs;
e vectorsm;,i=1,...,4, are not all parallel.

In that case, the limbs apply altogether four constraintneines that correspond to four lines at infinity passing thhou
point j and span a 2-system of constraint wrenches. However, ifateviectorsm; become parallel, the PM will exhibit
a constraint singularity and can switch to another motioenia which the motion of the moving platform will no longer
be a 3T1R motion. In such a configuration, the last revollite faxis in each limb of the KRRRR PM will no longer be
parallel toz and the moving platform will no longer be parallel to the korital plane XQOy).

Now let us consider the RRRRR PM. Clearly, its limbs do not need geometric assembly cambtin order to provide
a 3T2R motion for the limb and a 3T1R motion for the moving folah. This PM is free of constraint singularities and the
moving platform is always parallel to planedy). Moreover, it can be concluded that if a 3T1R PM containgast two



(@) 4RRRRR (b) 4RRRRR
Fig. 1. Two 3T1R PMs [19].

limbs of type 2, its moving platform will always be parallel plane & Oy). Therefore, the PM will be free of constraint
singularities. However, if all the limbs of the 3T1R PM aretyffe 1, then the PM may have some constraint singularities.

2.5 Limb Actuation Wrench System

For a given type of limbs given in Table 1, the actuation whescdo not depend on the arrangement of the joints within
the limb but on the actuated joints. The constraint wrenchesyw® of a limb is reciprocal to all the twists associated with
the limb’s kinematic joints. If the actuated joint of the lins locked, then the wrench system reciprocal to the othetgo
of the limb will be given byu® such that: diniu®) = dim(w®) 4+ 1 andu® containsi® plus a set of some additional wrenches.
Then, the corresponding actuation wrench can be selectekasf these additional wrenches.

Table 2 characterizes the locus of the actuation wrenchdoi ¢y/pe of limbs obtained in Table 1 and for each type of
actuated joints. For convenience, it is considered thajaineper limb is actuated.

2.6 Validity Rules for the Actuation Wrench System

In what follows, let us assume that the limbs apply a 2-systéonstraint wrenches spanned B, and Mg and
satisfying Eqgn. (1). In this section, we develop some rutegxamine the validity of the actuation wrench system of
a 3T1R PM. For instance, we consider that an actuation wrapphed by a given limb of a PM is a zero- or an infinite-pitch
wrench namely, a pure force or a pure moment.Fet. ., F, denote actuation forces ath, Ma andMg, denote actuation
moments. In a general configuration of a 3T1R PM, one can stat®llowing rules.

R1 2 A basis of the actuation wrench syst@fhcan contain at most one actuation moment.
Proof Let us consider that a basis @f contains two actuation momenk8,; and M. In that casew? + WS =
spar{Fi, F2, Ma1, Ma, Mc1, Me2). Since dinfspariMat, Maz, Mc1, Mc2)) < 3, the dimension of2 + W€ will be lower
than or equal to 5 in any robot configuration and therefore ptioposed PM will be permanently singular.

R2 If a basis ofw2 contains one actuation momeM, then the line at infinity corresponding k&, should not pass through
pointj = (z, 0).
Proof Let us assume that a basiswfcontains one actuation momevi, that corresponds to a line at infinity passing
through pointj, in a general configuration. In that case, the actuation momg belongs to the constraint wrench
system in a general configuration. Clearly in that case(@fim W) < 5.

R3 Ifthe basis ofi® contains one actuation momeWi, and three actuation forc@@, ey F5, then none of the three actuation
forces can be parallel to another.
Proof Indeed, ifF; andF, are parallel, then spéFy, F>) is equivalent to spaift1, M12), M12 being the line at infinity
of the finite plane containing; andF. Accordingly, one can find a basis @ containing two actuation moments, and
therefore, ruleR1 is not satisfied in that case.

R4 If a basis ofw? contains one actuation momevit, and three actuation forcé%, A Fs, then the three actuation forces
cannot be coplanar.
Proof For instance, if;, F> andFs are coplanar and do not pass through the same finite poimt,syretF;, P, F3)
will be equivalent to spalfr;, P>, Ma1), Ma1 being the line at infinity of the finite plane containifg(i = 1,...,3).
Accordingly, ruleR1 is not satisfied in that case.
On the other hand, i1, F; andFs are coplanar and do pass through the same finite point, thaFspF,, F3) will fail
to be a 3-system.

2R1 stands for rule 1



Table 2. Actuation Wrench of Limbs for 3T1R PMs With one Actuated Joint.

dof  Type Actuated Actuated wrench
joint
4 Permutation ofPRRR P A force directed along
(the P-joint being
alongz) R A force orthogonal ta and lying in the plane containing the axes of two unactuated
R-joints
Permutation oPPRR P A force not orthogonal to the direction of the actuaRebint, orthogonal to the
direction of the actuateB-joint and lying in the plane containing the axes of two
unactuatedr-joints
R A force not parallel tez, orthogonal to the directions of tw-joints and crossing the
axis of the unactuate-joint
Permutation oPPPR P A force orthogonal to the directions of tWyjoints and crossing the axis of the
unactuatedr-joint
R A moment corresponding to a line at infinity that does not pass throuig pe- (z, 0)
5 Permutation oBRRRRR R A force collinear with the intersection line of two planes: the first containingates of
two R-joints and the second containing the axes of two unactuRints
R A force parallel taz and intersecting the axis of unactuatdoint
Permutation oRRRRR R A force parallel tom; and intersecting the axis of the unactualiegbint
R A force collinear with the intersection line of two planes: one cpntaining the akivo
R-joints and the second one containing the axes of two unactiajeuhts
Permutation oPRRRR P A force parallel toz and intersecting the axis of ttijoint
(the P-joint being R The determination of the actuation wrench requires further details on tmeejey of
the limb
alongz) R A force directed along
Permutation oPRRRR P A force collinear with the intersection line of two planes: the first containingates of
two R-joints and the second containing the axes of Rvjpints
R The determination of the actuation wrench requires further details on tmeeaggy
R of the limb
Permutation oPRRRR P A force parallel tom; and intersecting the axis of tfi&joint
(the P-joint being R A force parallel tom;
alongm;) R
Permutation oPPRRR P
R
R The determination of the actuation wrench requires further details on tmeeajgy
Permutation oPPRRR P of the limb
R
R
Permutation oPPPRR P
R A moment corresponding to a line at infinity that does not pass throuig pe- (z, 0)
R A moment corresponding to a line at infinity that does not pass throuighmpe- (m;, 0)




R5 If a basis ofwW? is composed of four actuation forces, then it can contain@ttrone pair of parallel actuation forces,
provided that their plane does not contain the unit veztor
Proof Clearly, if a basis ofi? contains more than one pair of parallel actuation force= thne can compute another
basis ofi® with more than one actuation moment, and therefore, Rdl&vill not be satisfied.

R6 If a basis ofii? is composed of four actuation forces where two foréeandF are parallel, then the plane containing
these forces must not contain the unit veaor
Proof If the plane containing the two parallel actuation forcestams the unit vectaz, it follows that the two actuation
forcesF; andF, and the two constraint moment; andMc, will belong altogether to the union of two flat pencils of
lines. Accordingly, dinispar{Fi, 2, Mc1, Mc2)) < 3 and the dimension 6f2 + wC will be lower than or equal to 5 in
any robot configuration.

R7 If a basis ofW® is composed of four actuation forces, then at most threeesfettiorces can be coplanar.
Proof Indeed, if the four forces are coplanar, then the actuaticeneh system fails to be a 4-system in a general
configuration, since four coplanar forces can span at mostyst@m.

R8 A basis ofi? can contain at most one actuation force paralle.to
Proof Indeed, if two actuation force$; andF,, are directed along, then spafFy, i) is equivalent to spairy, M12)
whereM;, corresponds to a line at infinity that necessarily passesigfr pointj = (z, 0). Accordingly, in that case,
rule R2 will not be satisfied. B

R9 If a basis ofW? is composed of four actuation forces, these forces cannoithegonal to a common direction.
Proof Indeed, if the four actuation forces are (in a general condition) orthogonal to a common direction, then they
will intersect a common line at infinity, which necessarityarsects all the wrenches of the constraint wrench system.
Therefore, in that case, the four actuation forces plus #ig-8ystem of constraint wrenches form a singular complex.

3 Typical Classes of SMGs

Based on the properties presented in the previous seatiormain classes of 3T1R PMs can be identified. For PMs of
the first class, the limbs apply, in a general configuratiorg actuation moment and three actuation forces on the moving
platform. On the other hand, the actuation wrenches appli¢de limbs of PMs of the second class in a general configumati
are pure forces.

The first class contains only one case. However, by followigsR1. . .R9, some sub-classes of the second class can
be obtained.

In this section, the wrench graphs corresponding to thediasts and to the five sub-classes of the second class will be
represented. It is noteworthy that the sub-classes areeddiinthe types of the actuation wrenches applied by the lamds
the geometric relations between these wrenches, the aorisirench system being the same for any 3T1R PM.

3.1 Class A: One pure actuation moment is applied by the limhs
Class A.1 One actuation moment plus three actuation forces. In thsa, ¢he three actuation forces cannot be coplanar and
none of these forces can be parallel to another.

The corresponding wrench graph is given in Table 3.

3.2 Class B: The actuation wrenches applied by the limbs areyve forces.

Class B.1 Two parallel actuation forces plus two other actuationésrc

Class B.2 Three coplanar actuation forces plus a fourth actuatioceftihat does not belong to the plane of the first three
ones.

Class B.3 Four actuation forces that are mutually skew where noneeofdbr forces is parallel t@;

Class B.4 Four actuation forces that are mutually skew where one ofthieforces is parallel ta;

Class B.5 Two pairs of concurrent actuation forces.

A wrench graph for each sub-class is given in Table 3.

3.3 Superbracket Decomposition
A.1- One actuation moment plus three actuation forces
Let us consider a PM of class A.1. A basis of the actuation ahresystermiv? of the PM can be composed of three
actuation force$, F, andFs and one actuation momeht,. Now let M; and Mg, be two constraint moments that
form a basis of the constraint wrench systéhof the PM. Accordingly, the overall Jacobian matrix of thitbsclass of



Table 3. Wrench Graph and Superbracket Decomposition for SMGs of Classes A and B.

sub-class Al B.1
wrench graph
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B.1-

B.2-

SMGs takes the form:

[FA FAZ IfB Ma Mcl MCZ} (2)

From ruleR1, the actuation momenil, must correspond to a line at infinity that does not pass thrqint j, in a
general configuration of the PM. Moreover, in a general coméition, the three actuation forces cannot be coplanar
and none of these forces can be parallel to another. Let usidmnthe general case satisfying these conditions by
considering that the three actuation forces are skew (innargé configuration). It is known that three moments are
always mutually concurrent. Therefore, the six wrenchesmsng can be written asFl = (f1, ra, x f1) = ab,

Fz (fz, a, X fz) = cd, F3 (f3, I'ag X f3) =ef, Ma = (O ma) = ik, Mcl = 1J = (0 mcl) Mcz = k] (0 mcg) The
corresponding superbracket is then expressed and sird@siéollows:

S=[abcdef ik ij kj| = [abdf][cikj|[eik]] ®3)

Such a PM has two singularity conditions:

(@) (f1xf2)-f3=0
(b) (Mez xMe)-my=0

Two parallel actuation forces plus two other skew actution forces
The overall Jacobian matrix of this sub-class of SMGs takeddrm:

T = [lf]_ FA2 FA3 |f4 Mcl MCZ] (4)

whereF is parallel toF,. Let Fy = (f1,ra, x f1) = ab, Fo = (f1,ra, x f1) = cb, Fs = (f3, ra, x f3) = ef andFy =
(fa, ra, x f4) = gh be the four actuation forces. In turn, N, — (0,me1) =1ij and Me = (0, me2) =kj be the two
constraint moments.

The corresponding superbracket is expressed and decothaese

S=

[abcbef ghijk
— [eikj] ([apcm [bef j] — [abet] [behs) )
=
=

eikj] ([abeh]bet j)) (5)

eikj]((abe) A (bej) A (nt))

Let ugc be the unit vector of the finite line joining the projectiveiqts a andc. This sub-class of SMGs has two main
singularity conditions:

(@) (m¢1 x mMe2)-z=0. Clearly, this is the condition for constraint singuligst
(b) ((f1xUac) x (f1 x2)) - (faxf3) =0 =

1. f1 || Uac;

2. f1] z

3. f3 || fa.

Three coplanar actuation forces plus a fourth actuatio force
The overall Jacobian matrix of this sub-class of SMGs takegdrm:

[lf lf2 lfS I:’\4 Mcl MCZ] (6)

whereF; F, andF; intersect each one another at a finite point. Eet= ac, > = ae, Fs = ce andF, = gh be the four
actuation forces. Inturn, léfl; = ij andMc; = kj be the two constraint moments.



B.3-

The corresponding superbracket is expressed and devedsdetlows:
S=[ac ae ce ghij kj] = [aceh|[ace]][gik]] @)

This sub-class of SMGs has three singularity conditions:

(@) (Mg xme)-z=0
(b) plane(ace) || f4
(c) plane(ace) || z

Four skew lines none of which being directed along z
The overall Jacobian matrix of this sub-class of SMGs takesdrm:

J' = [FL R R By Mg Mo 8

whereF, K, Fs andFy correspond to four finite lines that are mutually skew andenafithem is directed alorg There
exists (in a general configuration) a finite ling parallel toz that crosses any couple of actuation forBeand FJ Let
Fl = (f1,r1 x fl) B = (f2,r2 x f2), F= (f3,r3 x f3) and Fr= (f4, r4 x f4) be the four actuation forces. In turn, let
M1 = ij andMg = kj be the two constraint moments. The superbracket then isteejpand developed as:

S=l[abcdef ghij ki

— [gikj] [abaf][cghj] (9)
— [gikj] ((abd) A (cg3) A (£0))

This sub-class of SMGs has two main singularity conditions:

(@) (M xme2)-z=0.
(b) ((Z X ch) X (fl X fz)) . (f4 X f3) =0

whereucg is the unit vector of a finite line non-parallel zaand crossing lines,,> and Lz4.

Four skew lines one of which being directed along z
The overall Jacobian matrix of this sub-class of SMGs take$drm:

= R R R R Mg M) (10)

whereF; F», F3 andF,4 correspond to four finite lines that are mutually skew &gk parallel toz. We know that, in a
general configuration, there exists a finite lig parallel toz that crosses any couple of actuation forces anﬁn@z
andFs. Therefore, let’;, || z= ac be the finite line parallel ta that crosses, in a general conﬂguratlﬁpansz at the
finite pointsa andc, respectively. Therefore, poings c andj are aligned.

LetFy = ab, /> = cd, Fs = ef andF; = gj be the four actuation forces. In turn, M, = ij andMc =kj be the two
constraint moments.

The corresponding superbracket is expressed and simpsiéollows:

S=[abcdef gj 1j kj]
— [gikj] [abéj][det]] (11)
— [gikj]((abj) A (e£3) A (cd))

This sub-class of SMGs has two singularity conditions:



(@) (me1 xme2)-z=0.
(b) (fix2)x (fax2))-f2=0

B.5- Two pairs of intersecting actuation forces
The overall Jacobian matrix of this sub-class of SMGs hasatms:

JT = [F R R Fy My M) (12)

whereFy = (f1,r1 x f1) = ab, Fo = (f2, 11 x f2) = ad, Fs = (f3,r3 x f3) = ef, Fq = (f4, 14 x f4) = eh, Mgz = ij
and Mcz = kj.

The corresponding superbracket is expressed and simasiéollows:

— [eikj] ([abaf][achj] (13)

— [edkj]((abd) A (ae3) A (£1))

This sub-class of SMGs has two main singularity conditions:

(@) (me1 xme2)-z=0.
(b) ((zx Uag) x (f1 xf2)) - (fax f3) =0

whereu,, is the unit vector of the finite line joining pointsande.

4  Applications
4.1 The Quadrupteron PM (Class B.1) o

The Quadrupteron PM [5] illustrated in Fig. 2, is composethoée identical limbsZi —p! ﬁil '2 '3I‘?', i=1 2 3, plus
one limb£, = P'RjR;5R5.
~ The actuated joinP' of theith limb (i = 1, 2, 3) is directed alongn; which is parallel to the axes of the limb’s three
R'5joints such thatm; || m3 || x andm, || y. In turn, the actuated joire* of the fourth limb is directed along which is

parallel to the axes of the limb’s thréé-joints. It is noteworthy that vectors y andz have fixed directions.
Limb L4 is a 4dof limb of Table 1. This limb is sufficient to make the QuadruptePM free of constraint singularities.
From Table 2, it follows that the four limbs of the QuadrupterPM apply four actuation force = (X, rag xX),
Fo= (Y, ra, XY), F3= (X, ray xX) andFy = (2, ra, x 2). According to class B.1, the Quadrupteron PM exhibits anain
singularity whenever:

1. fl H Usc
2. fl H z
3. fa || fa

For the Quadrupteron PN, = f3 = x, f, =y, f4 = z andu,. is the unit vector of linédAz. As a result, the second and
the third singularity conditions are impossible. Consexlyethe only possible singularity condition i§A;1A;z || x), which
is illustrated in Fig. 3.

4.2 A2PRRU-PRRR-PRPP PM (class A.1)

Now let us modify the architecture of the Quadrupteron PMrifeo to obtain a PM of the sub-claésl. Accordingly,
we should replace the third limb3 of the Quadrupteron PM with a limb generating an actuatiomert. From Table 2,
the limb PRPP satisfies the required condition. As a result, theRRU-PRRR-PRPP PM, shown in Fig. 4, is obtained.
It is noteworthy that this architecture is introduced as xemgple of the sub-class.1. However, compared to the original
Quadrupteron PM, the PRRU-PRRR-PRPP PM is less interesting regarding the stiffness and accuracy

It can be noticed that the proposed PM is free of constrangudarities. The condition for actuation singularities is
given by: (f1 x fp) -f3 = 0. Since, for the proposedPRRU-PRRR-PRPP PM, f; = x, f, =y andf3 = z, this PM is also
free of actuation singularities.
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Fig. 3. Acutation Singularity of the Quadrupteron PM.

4.3 The 3URU-SPS PM (class B.2)

The 3URU-SPS PM [32] is composed of four limbg; = R;R;R,R5Ry, i = 1, 2, 3, andL4 =SPS. Vectorsm; (that
correspond to the directions of the limiRsjoints) are parallel to the horizontal planedy).

From Table 2, the actuation force of tht limb (i = 1, 2, 3) is parallel to planeXOy). Therefore, from rulk.9, we
cannot obtain a valid 3T1R PM with four limbs of this type.

The actuation force of limk{4 =SPS is directed along the actuatdttjoint. The actuation forces; of limbs £;
(i=1, 2, 3) can be selected to be coplanar, as shown in Fig. 5.

A constraint singularity of the RU-SPS PM occurs if the three constraint momes; = (0,mjxz),i=1,23,
applied by the three limb§4, £, and L3 form ac < 1-system. Therefore, the constraint singularities cpoad to config-
urations in which the three vectons, i = 1, 2, 3, become parallel.

Let F; = ac, > = ae, F3 = ce andF4 = gh. From Sec. 3.1, the BRU-SPS PM exhibits an actuation singularity
whenever:

1. [aceh] = 0. This occurs if planece degenerates or if the actuation fofegis parallel to planece.
2. [acej] = 0. This occurs if planece degenerates or i is parallel to planexce. The latter condition cannot occur as

long as the PM is in the 3T1R motion mode since in this modegiae is parallel to planexOy).



Fig. 5. The 3-URU-SPS pPwm.

4.4 The 4UPU PM (class B.3) _ _

The 4UPU PM [32], shown in Fig. 6 is composed of four limis = RyR;PRLRS, i = 1,...,4. Vectorsm; (that
correspond to the directions of the limi&sjoints) are parallel to the horizontal planedy).

The axes of the first and the second (respectively of the #riddthe fourth) revolute joints of théh limb are arranged
with intersecting and perpendicular axes and are thus datéohto aU-joint centered at poind; (respectively at poinB;).
Therefore, the actuation force of tith limb is collinear with lineAB;. LetF = (fi, rg x fi) denote the actuation force of
theith limb.

Theith limb applies one constraint momevit = (0, m; x z). In a general configuration, the four actuation forces &gpli
by the four limbs of the 4JPU PM correspond to four skew finite lines. Therefore, accagdnSec. 3.1, the YPU PM
exhibits:

e a constraint singularity whenever the four vectarsare parallel;
e an actuation singularity whenever

((fi xf,—)x(kaﬁ)) (W x2)=0 (14)

where(i, j, k, 1), is a permutation of1, 2, 3, 4) and vectoru}j-' is defined in Sec. 3.1.



Fig. 6. The 4-UPU PM.

4.5 The 3UPU-PRRR PM (class B.4)

Fig. 7. The 3-UPU-PRRR PMm.

Now let us modify the architecture of theldPU PM in order to obtain a PM of the sub-claBs4. Accordingly, we
should replace one of the foWtPU limbs with a limb applying an actuation force alongnamely, with @RRR limb. Since
this limb is a 4eof limb of Table 1, it follows from Sec. 2.4 that the proposetdBU-PRRR PM, shown in Fig. 7, is free
of constraint singularities.

LetFy = (f1, rg, x f1) = ab, Fo = (f2, 1, x f2) = cd andFs = (f3, g, x f3) = ef be the three actuation forces applied
by the thredJPU limbs and letft, = (z,rax z) = gj be the actuation force of tHRRRR limb. Since there exists a finite line
L1 parallel toz that crosses the two actuation foréesand, pointsa andc are selected on this line. The wrench graph of
this PM is shown in Table 3 and described in Sec. 3.1. Accgigithe 31UPU-PRRR PM exhibits an actuation singularity
whenever:

1. [abdj] = 0= (f; xfp) - z=0.

2. [Cefl] = 0= (U X f3)-z= 0 whereu,. is the unit vector of a line joining pointsande.



Fig. 8. Simplified Design 44 of a 4RPUR PM.

4.6 Simplified design of a 4/RPUR PM (class B.5)

A RPUR limb defined by aRPRRR limb is a 3T2R limb of type 2 (see Sec. 2.4). Therefore, by gisinspecial
arrangement of four such limbs, similarly to the simplifiel2® 42 PM presented in [26], the simplified RPUR PM,
shown in Fig. 8, is obtained.

Generally, a limbC; = Ry P'R,R R} is characterized as follows:

e theP'-joint is directed along;;

e the axes of the first two revolute joints are parallet tand lie in a plane? of normal vectoz x p;;

¢ the second and the third revolute joints are built with pedieular axes and are thus assimilated td-pint centered
at pointB;;

e the axes of the last two revolute joints are parallelcand lie in a planel} of normal vectom; x vj. Moreover,m; is
parallel to the horizontal planeQy).

The simplified 4ARPUR PM is obtained with a special arrangemént= I\?'lgil\?lzR'lR'z (i=1,2, 3,4) such thatB; =
By =B12, B3 = B4 =Bgyg, V1 =V = Vyp, V3 = V4 = Va4, M1 = Mo = Myo andms = my = M34. Moreover, vectov; = vy =Vio
(respectivelyws = v4 = vay) lies in planevi (respectivelys,) and is orthogonal tens, (respectivelymay).

From the results in [26], it can be revealed that the limbsefgroposed 3T1R PM apply two pairs of actuation forces
intersecting in point8;, andBs4, respectively. The actuation forces are given by:

o b= (f1, 1By, x f1), wheref; = (2 x pg) x (M12 x V12);
° Ez (fz, By, X fz) wheref; = (Z X p2) (mlz X VlZ),
e 3= (f3, Iy, x f3), Wherefz = (z x p3) x (m34 X V34);
o 4= (fa, gy, xfa), wherefs = (2 x py) x (M3s X V34);

Since aRPRRR corresponds to a Bef limb of type 2 as defined in Sec. 2.4, the proposed PM is freewstraint singular-
ities. From Sec. 3.1, it follows that the condition for théustion singularities of the simplified RPUR PM is:

((f1 x f2) x (f3 x f4)) (Ux2)=0 (15)

whereu is the unit vector of lind81,B34.

5 Discussion and Conclusions

This paper presents a new approach for classifying 3T1Rllpbraanipulators based on the relations between the
wrenches applied by the manipulators’ limbs. Six typicaémeh graphs were presented and investigated. The geometric
properties of these classes were highlighted in order &raghe and compare the singularities of 3T1R parallel maatprs
at the conceptual design stage. It is noteworthy that otlasses can be derived by following the rules presented inZS@c
Moreover, the proposed approach does not directly applgdondantly actuated parallel manipulators. However, GGd\ a
the superbracket decomposition can be used to solve foirthelarities of redundant parallel manipulators, whichstitute
an interesting case study for future work.



The limbs obtained by Kong and Gosselin were compared bas#teaesulting limb constraint wrench system and its
effect on the overall manipulator constraint wrench syst@chon the constraint singularities as well. The assemUiynbis
and the actuation wrench system were also investigated end?$ presents some rules for the assembly of limbs in order
to obtain a valid 3T1R parallel manipulator.

The proposed classification of 3T1R parallel manipulatsriiustrated in Table 3, which presents the wrench graph
for each of the six classes along with the corresponding Ifieg superbracket decomposition. It is noteworthy thdion
classB.3 was studied in previous works [27]. As a result, all the ottlasses are new and first presented in this paper. On
the other hand, Table 2 was introduced in order to provide pping between the six classes and possible realizations of a
manipulator corresponding to a given class.

Section 4 provides an example of a possible robot structuredch class and shows how a given robot architecture can
be modified in order to form a manipulator belonging to anotiiass. Finally, the manipulators presented in Figures 4, 7
and 8 are first presented in this paper and were obtained loyvfob the proposed classification.

The proposed approach developed for 3T1R parallel marigmsl@an be applied to consider the singularities at the
conceptual design stage of other classes of lower-molpititallel manipulators.
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