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A MICROSCOPIC MODEL FOR A ONE PARAMETER CLASS OF FRACTIONAL
LAPLACIANS WITH DIRICHLET BOUNDARY CONDITIONS

C.BERNARDIN, P. GONÇALVES, AND B. JIMÉNEZ OVIEDO

ABSTRACT. We prove the hydrodynamic limit for the symmetric exclusion process with
long jumps given by a mean zero probability transition rate with infinite variance and
in contact with infinitely many reservoirs with density α at the left of the system and
β at the right of the system. The strength of the reservoirs is ruled by κN−θ > 0.
Here N is the size of the system, κ > 0 and θ ∈ R. Our results are valid for θ ≤ 0.
For θ = 0, we obtain a collection of fractional reaction-diffusion equations indexed by
the parameter κ and with Dirichlet boundary conditions. Their solutions also depend
on κ. For θ < 0, the hydrodynamic equation corresponds to a reaction equation with
Dirichlet boundary conditions. The case θ > 0 is still open. For that reason we also
analyze the convergence of the unique weak solution of the equation in the case θ = 0
when we send the parameter κ to zero. Indeed, we conjecture that the limiting profile
when κ→ 0 is the one that we should obtain when taking small values of θ > 0.

1. INTRODUCTION

Normal (diffusive) transport phenomena are described by standard random walk
models. Anomalous transport, in particular transport phenomena giving rise to su-
perdiffusion, are nowadays encapsulated in the Lévy flights or Lévy walks framework
[7, 6] and appear in physics, finance, biology ... The term "Lévy flight" was coined
by Mandelbrot and is nothing but a random walk in which the step-lengths have a
probability distribution that is heavy tailed. A (one-dimensional) Lévy walker moves
with a constant velocity v for a heavy-tailed random time τ on a distance x = vτ in
either direction with equal probability and then chooses a new direction and moves
again. One then easily shows that for Lévy flights or Lévy walks, the space-time scaling
limit P(x , t) of the probability distribution of the particle position x(t) is solution of
the fractional diffusion equation

∂t P =−c(−∆)γ/2P (1.1)

where c is a constant and γ ∈ (1,2). In physics, the description of anomalous transport
phenomena by Lévy walks instead of Lévy flights is sometimes preferred despite the
two models have the same scaling limit form provided by (1.1) because the first ones
have a finite propagation of speed (see [6] for more details).

While Lévy walks and Lévy flights are today well known and popular models to
describe superdiffusion in infinite systems in various application fields, there has been
recently several physical studies pointing out that it would be desirable to have a better
understanding of Lévy walks in bounded domains. For bounded domains, boundary
conditions and exchange with reservoirs or environment have to be taken into account.
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A particular interest for this problem is related to the description of anomalous diffu-
sion of energy in low-dimensional lattices [8, 17] in contact with reservoirs [9, 10, 18].
It is for example argued in [18] that the density profiles of Lévy walkers in a finite box
with absorbtion-reflection-creation well reproduces the temperature profile of some
chains of harmonic oscillators with conservative momentum-energy noise and ther-
mostat boundaries. It is well established that superdiffusive systems are much more
sensitive to the reservoirs and boundaries than diffusive systems but quantitative in-
formations, like the form of the singularities of the profiles at the boundaries, are still
missing.

In this work, motivated by these studies, we propose a simple interacting particle
system which may be considered as a substitute to Lévy flights in bounded domains
with reservoirs when Lévy flights are moreover interacting. Indeed, the previous stud-
ies consider only non-interacting cases. The system considered here is composed of
interacting Lévy flights on a one-dimensional lattice. More exactly, the system is an
exclusion process on a finite lattice of size N with jumps having a distribution in the
form p(z) ∼ |z|−(1+γ), 1 < γ < 2, and which in contact with some reservoirs at density
α (resp. β) at its left (resp. right boundary). The reservoirs coupling is modulated by
a prefactor κN−θ , κ > 0, θ ∈ R. In this work we focus on the case θ ≤ 0 and the case
θ > 0 remains open.

Our main result is the derivation of the hydrodynamic limit for the density of parti-
cles for this system. The limiting PDE depends 1 on the value of κ and takes the form
of a fractional heat equation with a singular reaction term, see (2.10). The singular
reaction term fixes the density on the left to be α and on the right to be β . In our opin-
ion this singular reaction term, which is due to the presence of the reservoirs, should
be more considered as a boundary condition than as a reaction term. We obtain in
this way a new family of regional fractional Laplacians on [0, 1] with zero Dirichlet
boundary conditions indexed by κ and taking the form

Lκ = L−κV1, V1(u) = cγγ
−1(u−γ + (1− u)−γ), (1.2)

where cγ is a constant depending on γ. These operators are symmetric non-positive
when restricted to the set of smooth functions compactly supported in (0, 1). For κ= 1,
we recover the so-called restricted fractional Laplacian while in the limit κ→ 0 we get
the so-called regional fractional Laplacian. We recall that since the fractional Laplacian
is a non-local operator, the definition of a fractional Laplacian with Dirichlet boundary
conditions is not obvious from a modeling point of view. In the PDE’s literature several
candidates have been proposed, for instance, "restricted fractional Laplacian", "spec-
tral fractional Laplacian", "Neumann Fractional Laplacian " [1, 21], but often with-
out a clear physical interpretation. A probabilistic interpretation of these operators is
sometimes possible and may enlighten their meaning. The restricted fractional Lapla-
cian (κ = 1) corresponds to the generator of a γ-Lévy stable process killed outside of
(0,1), while the regional fractional Laplacian (κ = 0) corresponds to the generator of
a censored γ-Lévy stable process on (0, 1) [4, 14]. For κ 6= 0,1 we could rely on the
Feynman-Kac formula but we do not pursue this issue here. As mentioned above our
reservoirs are regulated by the parameters κN−θ , κ > 0 and in this work we focus on
the case θ ≤ 0. The case θ > 0 is quite interesting and we conjecture that for small
values of θ > 0 it is given by (2.10) for the choice κ= 0. To support this conjecture, in

1In the diffusive case γ > 2 the limiting PDE is given by the heat equation with Dirichlet boundary conditions
[3]. It does nod depend of κ.
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Theorem 2.13, we analyse the convergence of the profile that we obtained for θ = 0
and which is indexed in κ, when κ → 0 (we also analyse the case κ → ∞ confirm-
ing the behaviour obtained from the microscopic system when θ < 0) and indeed, we
obtain that the limiting profiles are weak solution of the conjectured equation. We
remark that the main problem in analysing the behavior of the microscopic system in
this case is at the level of the derivation of the Dirichlet boundary conditions, since
the two-blocks estimate does not work. We leave this open problem for a future work.
After having obtained the hydrodynamic limits, we have studied their stationary solu-
tions ρ̄κ, which are not explicit apart from the case κ = 1 and the case κ = ∞, i.e.
ρ̄∞ = limκ→∞ ρ̄

κ. These profiles coincide with the profiles of the microscopic system
in their non-equilibrium stationary states (see [2] for the κ = 1 case). The bounded
continuous function ρ̄κ has α and β as boundary conditions and is such that it solves
in a distributional sense the equation

Lκρ̄κ =−κV0, V0(u) = cγγ
−1(αu−γ + β(1− u)−γ). (1.3)

There are many recent studies focusing on the regularization properties of fractional
operators in bounded domains. Even in this one dimensional setup, the question is in
general non trivial. For κ = 1, ρ̄κ can be computed explicitly and it appears that it
is smooth in the interior of [0, 1] but has only Hölder regularity equal to γ/2 at the
boundaries. For κ 6= 1, it should be possible to prove the interior regularity of ρ̄κ by
some existing methods ([20]) but the boundary regularity that numerical simulations
seem to indicate to depend on κ is much more challenging and seems to be open. We
prove that as κ→ 0, ρ̄κ→ ρ̄0 in a suitable topology and that ρ̄0 is a weakly harmonic
function of the regional fractional Laplacian L0, i.e. we can take κ = 0 in (1.3). We
left these interesting questions for future works.

The paper is organized as follows. In Section 2 we introduce the model and we
present all the PDE’s that will be related to its hydrodynamic limit. We also present
the main results of this work, namely the hydrodynamic limit stated in Theorem 2.12,
the convergence, when κ → 0 and when κ → ∞, of the hydrodynamical profile in
Theorem 2.13 and of the stationary profile in Theorem 2.15. Section 3 is devoted to
the proof of Theorem 2.12 while Sections 4 and 5 are dedicated, respectively, to the
convergence of the hydrodynamical profile and of the stationary profile. Finally, in
Section 6 we prove the uniqueness of all the weak solutions that we consider in this
work.

2. STATEMENT OF RESULTS

2.1. The model. For N ≥ 2 let ΛN = {1, . . . , N − 1}. The boundary driven exclusion
process with long jumps is a Markov process that we denote by {η(t)}t≥0 with state
space ΩN := {0, 1}ΛN and is defined as follows. The configurations of the state space
ΩN are denoted by η, so that for x ∈ ΛN , ηx = 0 means that the site x is vacant while
ηx = 1 means that the site x is occupied. Fix γ ∈ (1, 2). Let p : Z → [0, 1] be a
translation invariant transition probability defined by

p(z) = cγ
1{z 6=0}

|z|γ+1 (2.1)

where cγ is a normalizing constant. Since γ ∈ (1,2), we know that p has infinite
variance but finite mean.

Fix 0 < α ≤ β < 1. We consider the process in contact with infinitely many sto-
chastic reservoirs with density α at all the negative integer sites and with density β at
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all the integer sites z ≥ N . The intensity of the reservoirs is regulated by a parameter
κN−θ where κ > 0 and θ ≤ 0.

The process is characterized by its infinitesimal generator

LN = L0
N +κN−θ L`N +κN−θ L r

N , (2.2)

which acts on functions f : ΩN → R as

(L0
N f )(η) =

1

2

∑

x ,y∈ΛN

p(x − y)[ f (σx ,yη)− f (η)],

(L`N f )(η) =
∑

x∈ΛN
y≤0

p(x − y)cx(η;α)[ f (σxη)− f (η)],

(L r
N f )(η) =

∑

x∈ΛN
y≥N

p(x − y)cx(η;β)[ f (σxη)− f (η)]

(2.3)

where

(σx ,yη)z =







ηz , if z 6= x , y,

ηy , if z = x ,

ηx , if z = y
, (σxη)z =

¨

ηz , if z 6= x ,

1−ηx , if z = x ,

and for a function ϕ : [0,1]→ R and for x ∈ ΛN we used the notation

cx(η;ϕ(·)) :=
�

ηx

�

1−ϕ( x
N
)
�

+ (1−ηx)ϕ(
x
N
)
�

. (2.4)

We consider the Markov process speeded up in the subdiffusive time scale tΘ(N)
and we use the notation ηN

t := η(tΘ(N)), so that ηN
t has infinitesimal generator

Θ(N)LN . Although ηN
t depends on α, β θ and κ, we shall omit these indexes in

order to simplify notation.

2.2. Hydrodynamic equations. From now on up to the rest of this article we fix a
finite time horizon [0, T]. To properly state the hydrodynamic limit, we need to intro-
duce some notations and definitions, which we present as follows: first we abbreviate
the Hilbert space L2([0,1], h(u)du) by L2

h and we denote its inner product by 〈·, ·〉h
and the corresponding norm by ‖ · ‖h. When h ≡ 1 we simply write L2, 〈·, ·〉 and ‖ · ‖.
For an interval I in R and integers m and n, we denote by Cm,n([0, T] × I) the set
of functions defined on [0, T]× I that are m times differentiable on the first variable
and n times differentiable on the second variable. We denote by C∞c (I) the set of all
smooth real-valued functions defined in I with compact support included in I . The
supremum norm is denoted by ‖ · ‖∞. We also consider the set C1,∞

c ([0, T] × I) of
functions G ∈ C1,∞([0, T]× I) such that G(t, ·) ∈ C∞c (I) for all t ∈ [0, T]. An index on
a function will always denote a variable, not a derivative. For example, Gt(u) means
G(t, u). The derivative of G ∈ Cm,n([0, T]× I) will be denoted by ∂t G (first variable)
and ∂uG (second variable).

The fractional Laplacian−(−∆)γ/2 of exponent γ/2 is defined on the set of functions
G : R→ R such that

∫ ∞

−∞

|G(u)|
(1+ |u|)1+γ

du<∞ (2.5)

by

− (−∆)γ/2G (u) = cγ lim
ε→0

∫ ∞

−∞
1|u−v|≥ε

G(v)− G(u)

|u− v|1+γ
dv (2.6)
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provided the limit exists (which is the case, for example, if G is in the Schwartz space)
and where cγ is set in (2.1). Up to a multiplicative constant, −(−∆)γ/2 is the generator
of a γ-Lévy stable process.

We define the operator L by its action on functions G ∈ C∞c ((0, 1)), by

∀u ∈ (0, 1), (LG)(u) = cγ lim
ε→0

∫ 1

0

1|u−v|≥ε
G(v)− G(u)

|u− v|1+γ
dv.

The operator L is called the regional fractional Laplacian on (0, 1). The semi inner-
product 〈·, ·〉γ/2 is defined on the set C∞c ((0, 1)) by

〈G, H〉γ/2 =
cγ
2

∫∫

[0,1]2

(H(u)−H(v))(G(u)− G(v))

|u− v|1+γ
dudv. (2.7)

The corresponding semi-norm is denoted by ‖ · ‖γ/2. Observe that for any G, H ∈
C∞c ((0, 1)) we have that

〈G,−LH〉= 〈−LG, H〉= 〈G, H〉γ/2.

Recall (1.2). We introduced a family of operators indexed by κ and taking the form

Lκ = L−κV1.

Acting on C∞c ((0, 1)) these operators are symmetric and non-positive. For κ = 1, we
recover the so-called restricted fractional Laplacian (see [21]):

∀u ∈ (0,1), −(−∆)γ/2G (u) = (LG)(u)− V1(u)G(u) := (L1G)(u), (2.8)

while in the limit κ→ 0 we get the regional fractional Laplacian.
We rewrite V1(u) = r−(u)+ r+(u) and V0(u) = αr−(u)+β r+(u) where the functions

r± : (0, 1)→ (0,∞) are defined by

r−(u) = cγγ
−1u−γ, r+(u) = cγγ

−1(1− u)−γ. (2.9)

Definition 2.1. The Sobolev spaceH γ/2 :=H γ/2([0,1]) consists of all square integrable
functions g : (0,1) → R such that ‖g‖γ/2 < ∞. This is a Hilbert space for the norm
‖ · ‖H γ/2 defined by

‖g‖2
H γ/2 := ‖g‖2 + ‖g‖2

γ/2.

Its elements elements coincide a.e. with continuous functions. The completion of C∞c ((0, 1))
for this norm is denoted byH γ/2

0 :=H γ/2
0 ([0, 1]). This is a Hilbert space whose elements

coincide a.e. with continuous functions vanishing at 0 and 1. On H γ/2
0 , the two norms

‖ · ‖H γ/2 and ‖ · ‖γ/2 are equivalent.
The space L2(0, T ;H γ/2) is the set of measurable functions f : [0, T] → H γ/2 such

that
∫ T

0

‖ ft‖2
H γ/2 d t <∞.

The spaces L2(0, T ;H γ/2
0 ) and L2(0, T ; L2

h) are defined similarly.

We now extend the definition of the regional fractional Laplacian on (0,1), which
has been defined on C∞((0,1)), to the spaceH γ/2.

Definition 2.2. For ρ ∈H γ/2 we define the distribution Lρ by

〈Lρ, G〉= 〈ρ,LG〉, G ∈ C∞c ((0,1)).
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Let us check that Lρ is indeed a well defined distribution. Consider a sequence
{Gn}n≥1 ∈ C∞c ((0,1)) converging to 0 in the usual topology of the test functions. By
the integration by parts formula for the regional fractional Laplacian (see Theorem 3.3
in [14]) we have for any ρ ∈H γ/2 that 〈Lρ, Gn〉= 〈ρ, Gn〉γ/2. Now using the Cauchy-
Schwarz’s inequality and the mean value Theorem, we get that 〈Lρ, Gn〉 is bounded
from above by a constant times

‖ρ‖γ/2‖Gn‖γ/2 ®‖ρ‖γ/2‖G′n‖
2
∞

∫∫

[0,1]2
|u− v|1−γdudv

which goes to 0 as n→∞ since γ ∈ (1,2). Therefore Lρ is a well defined distribution.
Above (and hereinafter) we write f (u) ® g(u) if there exists a constant C indepen-

dent of u such that f (u) ≤ C g(u) for every u. We will also write f (u) = O(g(u)) if the
condition | f (u)| ® |g(u)| is satisfied. Sometimes, in order to stress the dependence of
a constant C on some parameter a, we write C(a).

2.3. Hydrodynamic equations. Now, for the following definitions recall the defini-
tion of Lκ given in (1.2) and V0 from (1.3).

Definition 2.3. Let κ̂ ≥ 0 be some parameter and let g : [0, 1] → [0,1] be a mea-
surable function. We say that ρκ̂ : [0, T] × [0, 1] → [0,1] is a weak solution of the
non-homogeneous regional fractional reaction-diffusion equation with Dirichlet bound-
ary conditions given by







∂tρ
κ̂
t (u) = Lκ̂ρ

κ̂
t (u) + κ̂V0(u), (t, u) ∈ [0, T]× (0, 1),

ρκ̂t (0) = α, ρκ̂t (1) = β , t ∈ [0, T],
ρκ̂0 (u) = g(u), u ∈ (0,1),

(2.10)

if :

i) ρκ̂ ∈ L2(0, T ;H γ/2).
ii)
∫ T

0

∫ 1

0

n

(α−ρκ̂t (u))
2

uγ
+ (β−ρκ̂t (u))

2

(1−u)γ

o

du d t < ∞ for κ̂ > 0; ρκ̂t (0) = α, ρκ̂t (1) = β for
almost every t ∈ [0, T], for κ̂= 0.

iii) For all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0, 1)) we have that

FDir(t,ρ
κ̂, G, g) :=

¬

ρκ̂t , Gt

¶

−



g, G0
�

−
∫ t

0

D

ρκ̂s ,
�

∂s +Lκ̂
�

Gs

E

ds− κ̂
∫ t

0




Gs, V0
�

ds = 0.

(2.11)

Remark 2.4. Note that item ii) is different for κ̂ > 0 and κ̂ = 0. We can see that the
condition for κ̂= 0 is weaker than the condition for κ̂ > 0. In fact, item i) and item ii) for
κ̂ > 0 of the previous definition imply that ρκ̂t (0) = α and ρκ̂t (1) = β , for almost every
t in [0, T]. Indeed, first note that by item i) we know that ρt is γ−1

2
-Hölder for almost

every t in [0, T] (see Theorem 8.2 of [13] ). Then, we note that
∫ T

0

(ρκ̂t (0)−α)
2

γ− 1
d t =

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρκ̂t (0)−α)
2

uγ
dud t.

By summing and subtracting ρκ̂t (u) inside the square in the expression on the right hand
side in the previous equality and using the inequality (a + b)2 ≤ 2a2 + 2b2 we get that
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the right hand side of the previous equality is bounded from above by

2

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρκ̂t (0)−ρ
κ̂
t (u))

2

uγ
dud t + 2

∫ T

0

lim
ε→0
εγ−1

∫ 1

ε

(ρκ̂t (u)−α)
2

uγ
dud t.

Since ρt is γ−1
2

-Hölder for almost every t in [0, T] the term on the left hand side in
the previous expression vanishes. Now, the term on the right hand side in the previous
expression is bounded from above by

2 lim
ε→0
εγ−1

∫ T

0

∫ 1

0

(ρκ̂t (u)−α)
2

uγ
dud t,

which vanishes as a consequence of item ii). Thus, we have that
∫ T

0

(ρκ̂t (0)−α)
2

γ− 1
d t = 0,

whence we get that ρκ̂t (0) = α for almost every t in [0, T]. Showing that ρκ̂t (1) = β for
almost every t in [0, T] is completely analogous.

Moreover, the existence and uniqueness of a weak solution to the equation above, for
κ̂ > 0 does not require the strong form of ii). Nevertheless, in order to prove Theorem
2.13 we need to impose that condition.

Remark 2.5. Observe that in the case κ̂ = 1, since L1 = −(−∆)γ/2 we obtain in Defi-
nition 2.3 the fractional heat equation with reaction and Dirichlet boundary conditions,
i.e.







∂tρ
1
t (u) = L1ρ

1
t (u) + V0(u), (t, u) ∈ [0, T]× (0,1),

ρ1
t (0) = α, ρ1

t (1) = β , t ∈ [0, T],
ρ1

0(u) = g(u), u ∈ (0, 1),

by (2.8) and (1.2) the notion of item iii) is reduced to

FDir(t,ρ
1, G, g) :=

¬

ρ1
t , Gt

¶

−



g, G0
�

−
∫ t

0

D

ρ1
s ,
�

∂s − (−∆)γ/2
�

Gs

E

ds−
∫ t

0




Gs, V0
�

ds = 0,

for all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0, 1)).

Definition 2.6. Let κ̂ > 0 be some parameter and let g : [0, 1] → [0,1] be a mea-
surable function. We say that ρκ̂ : [0, T] × [0, 1] → [0, 1] is a weak solution of the
non-homogeneous reaction equation with Dirichlet boundary conditions given by







∂tρ
κ̂
t (u) =−κ̂ρ

κ̂
t (u)V1(u) + κ̂V0(u), (t, u) ∈ [0, T]× (0, 1),

ρκ̂t (0) = α, ρκ̂t (1) = β , t ∈ [0, T],
ρκ̂0 (u) = g(u), u ∈ (0,1),

(2.12)

if:

i)
∫ T

0

∫ 1

0

n

(α−ρκ̂t (u))
2

uγ
+ (β−ρ

κ̂
t (u))

2

(1−u)γ

o

du d t <∞.



8 C.BERNARDIN, P. GONÇALVES, AND B. JIMÉNEZ OVIEDO

ii) For all t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]× (0, 1)) we have

FReac(t,ρ
κ̂, G, g) :=

¬

ρκ̂t , Gt

¶

−



g, G0
�

−
∫ t

0

¬

ρκ̂s ,∂sGs

¶

ds

+

∫ t

0

¬

ρκ̂s , Gs

¶

V1
ds−

∫ t

0




Gs, V0
�

ds = 0.

(2.13)

Remark 2.7. Note that the explicit solution of (2.12) is given by

ρ̄∞(u) + (g(u)− ρ̄∞(u))e−tκ̂V1(u),

where ρ̄∞(u) =
V0(u)
V1(u)

. As we will see, the function ρ̄∞ plays an important role in the

proof of our main results, namely, Theorems 2.13 and 2.15.

Lemma 2.8. The weak solutions of (2.10) and (2.12) are unique.

Aiming to concentrate in the main facts, the proof of previous lemma is postponed
to Section 6.

Definition 2.9. Let κ̂ ≥ 0 be some parameter. We say that ρ̄κ̂ : [0,1] → [0,1] is a
weak solution of the stationary regional fractional reaction-diffusion equation with non-
homogeneous Dirichlet boundary conditions given by

¨

Lκ̂ρ̄κ̂(u) + κV0(u) = 0, u ∈ (0,1),
ρ̄κ̂(0) = α, ρ̄κ̂(1) = β ,

(2.14)

if:

i) ρ̄κ̂ ∈H γ/2.

ii)
∫ 1

0

�

(α−ρ̄κ̂(u))2

uγ
+ (

β−ρ̄κ̂(u))2

uγ

�

du<∞ if κ̂ > 0 and ρ̄κ̂(0) = α, ρ̄κ̂(1) = β if κ̂= 0.

iii) For any function G ∈ C∞c ((0, 1)) we have

F̄Dir(ρ̄
κ̂, G) :=

¬

ρ̄κ̂,Lκ̂G
¶

+ κ̂



G, V0
�

= 0.

Remark 2.10. We observe that ρ̄0 is a weak harmonic function for L and the interior
regularity of this solution is studied in [20], but the regularity at the boundary is un-
known.

In Section 6 we will prove the following lemma.

Lemma 2.11. There exists a unique weak solution of (2.14).

2.4. Statement of results. First we want to state the hydrodynamic limit of the pro-
cess {ηN

t }t≥0 with state space ΩN and with infinitesimal generator Θ(N)LN defined in
(2.2).

Let M+ be the space of positive measures on [0,1] with total mass bounded by
1 equipped with the weak topology. For any configuration η ∈ ΩN we define the
empirical measure πN (η, du) := πN ,κ(η, du) in ΩN by

πN (η, du) =
1

N − 1

∑

x∈ΛN

ηxδ x
N
(du) , (2.15)

where δa is a Dirac mass at a ∈ [0,1] and πN
t (η, du) := πN (ηN

t , du).
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Let g : [0, 1]→ [0,1] be a measurable function. We say that a sequence of probabil-
ity measures {µN}N≥1 in ΩN is associated to the profile g if for any continuous function
G : [0, 1]→ R and every δ > 0

lim
N→∞

µN



η ∈ ΩN :

�

�

�

�

�

1

N

∑

x∈ΛN

G
�

x
N

�

ηx −
∫ 1

0

G(u)g(u)du

�

�

�

�

�

> δ



= 0.

We denote by PµN
the probability measure in the Skorohod space D([0, T],ΩN )

induced by the Markov process ηN
t and the measure µN inΩN and we denote by EµN

the
expectation with respect to PµN

. Let {QN}N≥1 be the sequence of probability measures
on the Skorohod space D([0, T],M+) induced by the Markov process {πN

t }t≥0 and by
PµN

.
At this point we are ready to state the hydrodynamic limit of the process ηN

t .

Theorem 2.12. (Hydrodynamic limit) Let g : [0,1]→ [0, 1] be a measurable function
and let {µN}N≥1 be a sequence of probability measures in ΩN associated to g. Then, for
any 0≤ t ≤ T,

lim
N→∞
PµN



ηN
· ∈ D([0, T],ΩN ) :

�

�

�

�

�

1

N

∑

x∈ΛN

G
�

x
N

�

ηx(tNγ)−
∫ 1

0

G(u)ρκt (u)du

�

�

�

�

�

> δ



= 0,

where the time scale is given by Θ(N) = Nγ+θ and ρκt is the unique weak solution of:

• (2.12) with κ̂= κ, if θ < 0;
• (2.10) with κ̂= κ, if θ = 0.

Once the hydrodynamic limit is obtained, we would like to know how the weak
solution ρκt and the stationary solution ρ̄κ behave as κ goes to 0 or ∞ and this is the
purpose of Theorem 2.13 and 2.15 stated below. This limiting profile will give us an
idea of what to expect at the hydrodynamics level when we consider our microscopic
dynamics in contact with reservoirs whose strength is regulated by κ/Nθ and when
θ 6= 0 as in [3]. As mentioned in the introduction we do not analyze the system in this
regime but we conjecture that for small positive values of θ > 0 (that corresponds to
slow reservoirs) the hydrodynamic limit should be given by the weak solution of (2.10)
with κ = 0 while for the case θ < 0 (that corresponds to fast reservoirs) it should be
given by the weak solution of (2.12).

Theorem 2.13. Let ρ0 : [0, 1] → [0,1] be a measurable function. Further, let ρκ be
the weak solution of (2.10), with initial condition ρ0 which is independent of κ and let
ρ̂κt := ρκt/κ, for all t ∈ [0, T]. Then

i) ρκ converges strongly to ρ0 in L2(0, T ;H γ/2) as κ goes to 0, where ρ0 is the weak
solution of (2.10) with κ= 0 and initial condition ρ0.

ii) If ρ0 − ρ̄∞ ∈ H γ/2 then ρ̂κ converges strongly to ρ∞ in L2(0, T ; L2
V1
) as κ goes to

∞, where ρ∞ is the weak solution of (2.12).

Remark 2.14. The convergence in Theorem 2.13 is also true in L2(0, T ; L2). In fact, we
will see that a crucial step in the proof of the theorem is to show that ρκ converges strongly
in L2(0, T ; L2). Convergence in i) is also true in L2(0, T ; L2

V1
) and it is a consequence of

the fractional Hardy’s inequality (see e.g. [11]).

Theorem 2.15. Let ρ̄κ be the weak solution of (2.14). Then,
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i) ρ̄κ converges strongly to ρ̄0 inH γ/2 as κ goes to 0, where ρ̄0 is the weak solution of
(2.14) with κ= 0.

ii) ρ̄κ converges strongly to ρ̄∞ in L2
V1

as κ goes to ∞, where ρ̄∞ is given in Remark
2.7.

3. PROOF OF THEOREM 2.12: HYDRODYNAMIC LIMIT

The proof of this theorem follows the usual approach of convergence in distribution
of stochastic processes: we prove tightness of the sequence {QN}N≥1 and then we
prove uniqueness of the limiting point, which we denote by Q. These two results
combined give the convergence of {QN}N≥1 to Q, as N →∞. In order to characterize
the limiting point Q, we prove that all limiting points of the sequence {QN}N≥1 are
concentrated on trajectories of measures that are absolutely continuous with respect
to the Lebesgue measure and whose density ρκt is a weak solution of the hydrodynamic
equation as given in Definition 2.3. From the uniqueness of the weak solutions of this
equation, namely Lemma 2.11, we conclude that {QN}N≥1 has a unique limit point Q.

First, in following subsection we explain how the item iii) in Definition 2.3 appears.
In Subsection 3.2 we prove that {QN}N≥1 is tight, then in Subsection 3.3 we obtain
energy estimates which are crucial to ensure the uniqueness of the limiting point. We
conclude this section with the characterization of the limiting point (in Subsection
3.4).

3.1. Heuristics for the hydrodynamic equations. In order to make the presentation
simple, let us fix a function G : [0, 1] → R which does not depend on time and has
compact support included in (0, 1).

By Dynkin’s formula (see Lemma A.5.1 in [15]) we have that

M N
t (G) = 〈π

N
t , G〉 − 〈πN

0 , G〉 −
∫ t

0

Θ(N)LN 〈πN
s , G〉ds, (3.1)

is a martingale with respect to the natural filtration {Ft}t≥0 where Ft := σ({η(s)}s≤t)
for all t ∈ [0, T].

Above, for an integrable function G : [0, 1] → R, we used the notation 〈πN
t , G〉 to

represent the integral of G with respect the measure πN
t :

¬

πN
t , G

¶

=
1

N − 1

∑

x∈ΛN

G
�

x
N

�

ηx(tΘ(N)).

In the previous expression, we are using a measure πN
t and a function G, therefore,

this notation should not be mistaken with the one used for the inner product in L2.
Note that LNηx is equal to
∑

y∈ΛN

p(x − y)[ηy −ηx] +
κ

Nθ
∑

y≤0

p(x − y)[α−ηx] +
κ

Nθ
∑

y≥N

p(x − y)[β −ηx].

Therefore, a simple computation shows that

Θ(N)LN (〈πN , G〉) =
Θ(N)

N − 1

∑

x∈ΛN

(LN G)( x
N
)ηx

+
κΘ(N)

N − 1

∑

x∈ΛN

G( x
N
)
�

r−N (
x
N
)(α−ηx) + r+N (

x
N
)(β −ηx)

�

,

(3.2)
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where, we denote by LN G the continuous function on [0,1] which is defined as the
linear interpolation of the function

(LN G)( x
N
) =

∑

y∈ΛN

p(y − x)
�

G( y
N
)− G( x

N
)
�

, (3.3)

for all x ∈ ΛN with (LN G)(0) = (LN G)(1) = 0. We also define the functions r±N :
[0,1]→ R as the linear interpolation of the function

r−N (
x
N
) =
∑

y≥x

p(y), r+N (
x
N
) =

∑

y≤x−N

p(y), (3.4)

for all x ∈ ΛN with r±N (0) = r±N (
1
N
) and r±N (1) = r±N (

N−1
N
). By Lemma 3.3 in [2] we

have that

lim
N→∞

Nγ(r−N )(u) = r−(u), lim
N→∞

Nγ(r+N )(u) = r+(u) (3.5)

uniformly in [a, 1− a] for a ∈ (0,1) and we also can deduce from that lemma that

lim
N→∞

Nγ(LN G)(u) = (LG)(u) (3.6)

uniformly in [a, 1−a], for all functions G with compact support included in [a, 1−a].
Now, we are going to analyse all the terms in (3.2) for θ ≤ 0. Thus, we will be able

to see how the different boundary conditions appear on the hydrodynamic equations
given in Subsection 2.3 from the underlying particle system.

3.1.1. The case θ < 0. In this regime we takeΘ(N) = Nγ+θ and a function G ∈ C∞c (0, 1).
By using (3.6) we have that the first term on the right hand side of (3.2) vanishes
since θ < 0. Now, the second term on the right hand side in (3.2) is equal to
κ〈α − πN

t , Gr−N 〉 + κ〈β − π
N
t , Gr+N 〉. By (3.5) the previous expression converges, as

N goes to∞, to

κ

∫ 1

0

(α−ρκt (u))G(u)r
−(u)du+κ

∫ 1

0

(β −ρκt (u))G(u)r
+(u)du

=−κ
∫ 1

0

ρκt (u)G(u)V1(u)du+κ

∫ 1

0

G(u)V0(u)du.

3.1.2. The case θ = 0. In this regime we takeΘ(N) = Nγ+θ and a function G ∈ C∞c (0, 1).
The first term on the right hand side in (3.2) can be replaced, thanks to (3.6) by

〈πN
t ,LG〉 →

∫ 1

0

(LG)(u)ρκt (u)du,

as N goes to ∞. Similarly, the second term on the right hand side of (3.2) is equal to
κ〈α−πN

t , Gr−〉+κ〈β −πN
t , Gr+〉 which converges, as N goes to∞, to

κ

∫ 1

0

(α−ρκt (u))G(u)r
−(u)du+κ

∫ 1

0

(β −ρκt (u))G(u)r
+(u)du

=−κ
∫ 1

0

ρκt (u)G(u)V1(u)du+κ

∫ 1

0

G(u)V0(u)du.

This intuitive argument is rigorously proved in Subsection 3.4.
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3.2. Tightness. In this subsection we prove that the sequence {QN}N≥1 is tight. We
use the usual approach (see, for example, Proposition 4.1.6 in [15]), which says that
is enough to show that, for all ε > 0

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

PµN

h

ηN
· ∈ D([0, T],ΩN ) :

�

�〈πN
τ+τ̄, G〉 − 〈πN

τ , G〉
�

�> ε
i

= 0, (3.7)

for any function G belonging to C([0,1]) . Above TT is the set of stopping times
bounded by T and we implicitly assume that all the stopping times are bounded by
T , thus, τ + τ̄ should be read as (τ + τ̄) ∧ T . Indeed, we prove below that (3.7)
is true for any function G in C2

c ((0,1)), by using an L1 approximation procedure(a
similar argument as done in [3]), we can extend this class of functions to functions
G ∈ C([0,1]).

Proposition 3.1. The sequence of measures {QN}N≥1 is tight with respect to the Skorohod
topology of D([0, T],M+).

Proof. Note that, we are going to prove (3.7) for functions G in C2
c ((0,1)). Recall from

(3.1) that M N
t (G) is a martingale with respect to the natural filtration {Ft}t≥0. In

order to prove (3.7) it is enough to show that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN





�

�

�

�

�

∫ τ+τ̄

τ

NγLN 〈πN
s , G〉ds

�

�

�

�

�



= 0 (3.8)

and
lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

h

�

M N
τ (G)−M N

τ+τ̄(G)
�2
i

= 0. (3.9)

By using (3.5), (3.6) and the fact that G ∈ C2
c ((0,1)) we can bound the expression in

(3.2) by a constant. By using the fact that |ηN
x (s)| ≤ 1 and

∑

x≥1

�

r−N (
x
N
) + r+N (

x
N
)
�

<∞ (3.10)

(since γ > 1), we can bound from above the second term at the right hand side in
(3.2) by a constant times Θ(N)N−1−θ . Considering the different values of θ we see
that such term is bounded from above by a constant. Then we have that

|Θ(N)LN (〈πN
s , G〉)|®1 (3.11)

for any s ≤ T , which trivially implies (3.8).
In order to prove (3.9), by Dynkin’s formula (see Appendix 1 in [15]) we know that

�

M N
t (G)

�2
−
∫ t

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds,

is a martingale with respect to the natural filtration {Ft}t≥0. By Lemma A.1 we get
that the term inside the time integral in the previous expression is equal to

Θ(N)
(N − 1)2

∑

x<y∈ΛN

�

G
�

x
N

�

− G
� y

N

��2
p(x − y)(ηy(sΘ(N))−ηx(sΘ(N)))

2

+
κΘ(N)
(N − 1)2

∑

x∈ΛN

�

G
�

x
N

��2
(1− 2ηx(sΘ(N)))

�

r−N (
x
N
)(α−ηx(sΘ(N))) + r+N (

x
N
)(β −ηx(sΘ(N)))

�

.

(3.12)
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Since the first derivative of G is bounded it is easy to see that the absolute value of
(3.12) is bounded from above by a constant times

Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)2p(x − y) +
κΘ(N)
(N − 1)2

∑

x∈ΛN

�

G
�

x
N

��2 �
r−N (

x
N
) + r+N (

x
N
)
�

.

(3.13)

Note that (x − y)2p(x − y)®1 because γ > 1, so that

Θ(N)
(N − 1)4

∑

x ,y∈ΛN

(x − y)2p(x − y)®Θ(N)N−2 = O (Nγ−2).

By (3.10), the remaining terms in (3.13) are O (Θ(N)N−θ−2) so that (3.13) is O (Nγ−2).
Thus, since τ is a stopping time and γ < 2 we have that

lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN

h

�

M N ,G
τ −M N ,G

τ+τ̄

�2
i

= lim
δ→0

limsup
N→∞

sup
τ∈TT ,τ̄≤δ

EµN





∫ τ+τ̄

τ

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds





= 0.

Therefore, we have proved (3.7) for functions G in C2
c ((0,1)) and as we have said

in the beginning of the subsection this is enough to conclude tightness. �

3.3. Energy Estimate. We prove in this subsection that any limit point Q of the se-
quence {QN}N≥1 is concentrated on trajectories πκt (u)du with finite energy, i.e., πκ

belongs to L2(0, T ;H γ/2). Moreover, we prove that πκt satisfies item ii) in Definition
2.3. The latter is the content of Theorem 3.2 stated below. Fix a limit point Q of the
sequence {QN}N≥1 and assume, without of loss of generality, that the sequence QN
converges to Q as N goes to∞.

Theorem 3.2. The probability measure Q is concentrated on trajectories of measures of
the form πκt (u)du, such that for any interval I ⊂ [0, T] the density πκ satisfies

i)
∫

I
‖πκt ‖

2
γ/2d t ® |I |(κ+ 1), if θ = 0.

ii)

∫

I

∫ 1

0

¨

(α−πκt (u))
2

uγ
+
(β −πκt (u))

2

(1− u)γ

«

du d t ® |I |
κ+ 1

κ
, if θ ≤ 0.

Remark 3.3. It follows from item i) of the previous and from Theorem 8.2 of [13] that
πκt is, P almost surely, γ−1

2
-Hölder for all t ∈ I .

By taking I = [0, T] in item i) of Theorem 3.2 we can see that πκ ∈ L2(0, T ;H γ/2).
Moreover, from item ii) of Theorem 3.2, we claim that

∫

I

‖πκt − ρ̄
∞‖2

V1
d t ® |I |

κ+ 1

κ
(3.14)

where ρ̄∞ is given in Remark 2.7. Note that
∫

I

‖πκt − ρ̄
∞‖2

V1
d t = cγγ

−1

∫

I

∫ 1

0

¨

(πκt (u)− ρ̄
∞(u))2

uγ
+
(πκt (u)− ρ̄

∞(u))2

(1− u)γ

«

dud t.

(3.15)
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By summing and subtracting α inside the first square in the expression on the right hand
side in (3.15), β in the second one and using the fact that (a+ b)2 ≤ 2(a2 + b2) we get
that (3.15) is bounded from above by

2cγγ
−1

∫

I

∫ 1

0

¨

(πκt (u)−α)
2

uγ
+
(πκt (u)− β)

2

(1− u)γ

«

dud t

+2cγγ
−1

∫

I

∫ 1

0

¨

(α− ρ̄∞(u))2

uγ
+
(β − ρ̄∞(u))2

(1− u)γ

«

dud t.

(3.16)

Now, by using item ii) of Theorem 3.2 we have that the first term in the previous expression

is bounded by constant times |I |
κ+ 1

κ
. Finally, using the definition of ρ̄∞ (see Remark

2.7) the second term in (3.16) is equal to

2cγγ
−1(β −α)2|I |

∫ 1

0

(uγ + (1− u)γ)−1du®1.

Before we prove Theorem 3.2, we establish some estimates on the Dirichlet form
which are needed in due course.

3.3.1. Estimates on the Dirichlet form. Let h : [0,1] → [0,1] be a function such that
α≤ h(u)≤ β , for all u ∈ [0, 1], and assume that h(0) = α and h(1) = β . Let νN

h be the
inhomogeneous Bernoulli product measure on ΩN with marginals given by

νN
h {η : ηx = 1}= h

�

x
N

�

.

We denote by HN (µ|νN
h ) the relative entropy of a probability measure µ on ΩN with

respect to the probability measure νN
h . It is easy to prove the existence of a constant

C0, such that
HN (µN |νN

h )≤ C0N . (3.17)

(see for example [3]). We remark here that the restriction α 6= 0 and β 6= 1 comes
from last estimate since the constant C0 given above is given by C0 =− log(α∧(1−β)).
On the other hand, for a probability measure µ on ΩN and a density function f : ΩN →
[0,∞) with respect to µ we introduce

D0
N (
p

f ,µ) :=
1

2

∑

x ,y∈ΛN

p(y − x) Ix ,y(
p

f ,µ), (3.18)

D`N (
p

f ,µ) :=
∑

x∈ΛN

∑

y≤0

p(y − x) Iαx (
p

f ,µ) =
∑

x∈ΛN

r−N (
x
N
)Iαx (

p

f ,µ) (3.19)

and Dr
N (
p

f ,µ) is the same as D`N (
p

f ,µ) but in Iαx (
p

f ,µ) the parameter α is replaced
by β and r−N is replaced by r+N . Above, we used the following notation

Ix ,y(
p

f ,µ) :=

∫

�
p

f (σx ,yη)−
p

f (η)
�2

dµ,

Iαx (
p

f ,µ) :=

∫

cx(η;α)
�
p

f (σxη)−
p

f (η)
�2

dµ

and Iβx is the same as Iαx when the parameter α is replaced by β .
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Our goal is to express, for the measure νN
h , a relation between the Dirichlet form

defined by 〈LN

p

f ,
p

f 〉νN
h

and the quantity

DN (
p

f ,νN
h ) := (D0

N +κN−θD`N +κN−θDr
N )(
p

f ,νN
h ).

More precisely, we have the following result.

Lemma 3.4. For any positive constant B and any density function f with respect to νN
h ,

there exists a constant C > 0 (independent of f and N) such that

Θ(N)
NB

〈LN

p

f ,
p

f 〉νN
h
≤−
Θ(N)
4NB

DN (
p

f ,νN
h ) +

CΘ(N)
NB

∑

x ,y∈ΛN

p(y − x)
�

h( x
N
)− h( y

N
)
�2

+
CκΘ(N)

Nθ+1B

∑

x∈ΛN

§
�

h( x
N
)−α

�2
r−N (

x
N
) +
�

h( x
N
)− β

�2
r+N (

x
N
)
ª

.

(3.20)

The proof of this statement is similar to the one in Section 5 of [3] and thus it is
omitted. Moreover, note that as a consequence of the previous lemma, for a function h
such that α≤ h(u)≤ β and h Lipschitz we have that

Θ(N)
NB

〈LN

p

f ,
p

f 〉νN
h
≤−
Θ(N)
4NB

DN (
p

f ,νN
h ) +Θ(N)N

−γ C(κN−θ + 1)
B

. (3.21)

Lemma 3.5. For any density f with respect to νN
h , any x ∈ ΛN and any positive constant

Ax , we have that
�

�

�




ηx −α, f
�

νN
h

�

�

� ®
1

4Ax
Iαx (
p

f ,νN
h ) + Ax +

�

�

�h( x
N
)−α

�

�

� .

The same result holds if α is replaced by β .

The proof of Lemma 3.5 is omitted since is similar to the one of Lemma 5.5 in [3].
Note that in the case α≤ h≤ β and Lipschitz we get

�

�

�




ηx −α, f
�

νN
h

�

�

� ®
1

4Ax
Iαx (
p

f ,νN
h ) + Ax +

x

N
.

3.3.2. Proof of of Theorem 3.2. First step: πκ ∈ L2(0, T ;H γ/2) Q almost surely. Recall
that in this case (θ = 0) the system is speeded up in the sub-diffusive time scale
Θ(N) = Nγ. Let ε > 0 be a small real number. Let F ∈ C0,∞

c (I × [0, 1]2), where the
I is a subinterval of [0, T]. By the entropy and Jensen’s inequality and Feynman-Kac’s
formula (see Lemma A.7.2 in [15]), we have that

EµN

h

∫

I

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N

, y
N
)p(y − x)(ηy(tΘ(N))−ηx(tΘ(N)))

i

d t

≤ C0 +

∫

I

sup
f

n

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N

, y
N
)p(y − x)

∫

(ηy −ηx) f (η)dν
N
h + Nγ−1

D

LN

p

f ,
p

f
E

νN
h

o

d t

(3.22)
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where the supremum is taken over all densities f on ΩN with respect to νN
h . Note

that, by a change of variables, we have that

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N

, y
N
)p(y − x)

∫

(ηy −ηx) f (η)dν
N
h

=Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N

, y
N
)p(y − x)

∫

(ηy −ηx) f (η)dν
N
h

=Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N

, y
N
)p(y − x)

∫

ηy
�

f (η)− f (σx ,yη)
�

dνN
h

+Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

F a
t (

x
N

, y
N
)p(y − x)

∫

ηx f (η)
�

θ x ,y(η)− 1
�

dνN
h

(3.23)

where θ x ,y(η) =
dνN

h (σ
x ,yη)

dνN
h (η)

and F a is the antisymmetric part of F , i.e. for all t ∈ I and

(u, v) ∈ [0,1]2

F a
t (u, v) =

1

2

h

Ft(u, v)− Ft(v, u)
i

.

Observe that F a
t (u, u) = 0. By Young’s inequality, the fact that f is a density and

|ηy | ≤ 1, we have that, for any A> 0, the third term in (3.23) is bounded from above
by a constant times

Nγ−1A
∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N

, y
N

��2
p(y − x) +

Nγ−1

A

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)Ix ,y(
p

f ,νN
h )

≤
cγA

N2

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N

, y
N

��2

| x
N
− y

N
|1+γ

+
2Nγ−1

A
D0

N (
p

f ,νN
h ).

Since h is Lipschitz we have that supη∈ΩN

�

�θ x ,y(η)− 1
�

� = O
�

|x−y|
N

�

. By Young’s in-

equality and the fact that f is a density, for any A
′
> 0, the last term in (3.23) is

bounded from above by

Nγ−1

A′
∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N

, y
N

��2
p(y − x) + A

′
Nγ−1

∑

x ,y∈ΛN
|x−y|≥εN

p(y − x)
�

|x−y|
N

�2

=
cγ

A′N2

∑

x ,y∈ΛN
|x−y|≥εN

�

F a
t

�

x
N

, y
N

��2

| x
N
− y

N
|1+γ

+
A
′
cγ

N2

∑

x ,y∈ΛN
|x−y|≥εN

1

| x
N
− y

N
|γ−1

.

Recall (3.21), so that by choosing A= 8 and B = 1 and using the two results above we
have just proved that (3.22) is bounded from above by C0 plus

cγ(8+
1
A′
)

N2

∑

x 6=y∈ΛN

�

F a
t (

x
N

, y
N
)
�2

| x
N
− y

N
|1+γ

+ C(κ+ 1) + cγA
′
A
′′
,
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where

A
′′

:= sup
ε>0

sup
N≥1

1

N2

∑

x ,y∈ΛN
|x−y|≥εN

1

| x
N
− y

N
|γ−1

<∞

since γ < 2. Therefore, we have proved that there exist constants A
′′′

and B
′
(indepen-

dent of ε > 0, N ≥ 1, and F ∈ C∞c (I × [0, 1]2)) such that

EµN

�
∫

I

Nγ−1
∑

x ,y∈ΛN
|x−y|≥εN

Ft(
x
N

, y
N
)p(y − x)(ηN

y (t)−η
N
x (t)) d t

�

= EµN

�
∫

I

−2cγ〈πN
t , gN

t 〉 d t

�

≤
∫

I

A
′′′

N2

∑

x ,y∈ΛN
|x−y|≥εN

cγ
�

F a
t (

x
N

, y
N
)
�2

| x
N
− y

N
|1+γ

d t + B
′
|I |(κ+ 1).

(3.24)

Above the function gN is defined on I × [0, 1] by

gN
t (u) =

1

N

∑

y∈ΛN

1�
�

y
N
−u
�

�≥ε

F a
t

�

u, y
N

�

|u− y
N
|1+γ

and it is a discretization of the smooth function g defined on (t, u) ∈ I × [0,1] by

gt(u) =

∫ 1

0

1{|v−u|≥ε}
F a

t (u, v)

|u− v|1+γ
dv.

Let Qε = {(u, v) ∈ [0,1]2 ; |u− v| ≥ ε}. Observe first that for symmetry reasons we
have that for any integrable function π,

∫ 1

0

π(u)gt(u)du=

∫∫

Qε

(π(v)−π(u))F a
t (u, v)

|u− v|1+γ
dudv.

By taking the limit as N → ∞ in (3.24), we conclude that there exist constants
C > 0 independent of F ∈ C0,∞

c (I × [0, 1]2) and ε > 0 such that

EQ





∫

I

∫∫

Qε

(πκt (v)−π
κ
t (u))F

a
t (u, v)

|u− v|1+γ
− C

�

F a
t (u, v)

�2

|u− v|1+γ
dudvd t



 ® |I |(κ+ 1).

From Lemma 7.5 in [16] we can insert the supremum over F inside the expectation
above, so that

EQ



sup
F

(

∫

I

∫∫

Qε

(πκt (v)−π
κ
t (u))F

a
t (u, v)

|u− v|1+γ
− C

�

F a
t (u, v)

�2

|u− v|1+γ
dudvd t

)

 ® |I |(κ+ 1).

Since the function (u, v) ∈ [0,1]2 → π(v)−π(u) is antisymmetric we may replace F a

by F in the previous variational formula, i.e.

EQ



sup
F

(

∫

I

∫∫

Qε

(πκt (v)−π
κ
t (u))Ft(u, v)

|u− v|1+γ
− C

�

Ft(u, v)
�2

|u− v|1+γ
dudvd t

)

 ® |I |(κ+ 1).

(3.25)
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Consider the Hilbert space L2([0,1]2, dµε) where µε is the measure whose density
with respect to Lebesgue measure is given by (u, v) ∈ [0,1]2 → 1|u−v|≥ε |u− v|−(1+γ).
By taking

Πκ : (t; u, v) ∈ I × [0, 1]2→ πκt (v)−π
κ
t (u),

the previous formula implies that

EQ





∫

I

∫∫

[0,1]2

�

Πκt (u, v)
�2

dµε(u, v)d t



 ® |I |(κ+ 1). (3.26)

Letting ε→ 0, by the monotone convergence theorem, we conclude that
∫

I

∫∫

[0,1]2

(πκt (v)−π
κ
t (u))

2

|u− v|1+γ
dudvd t <∞

Q almost surely.

Second step:

∫

I

∫ 1

0

¨

(α−πκt (u))
2

uγ
+
(β −πκt (u))

2

(1− u)γ

«

du d t < ∞ Q almost surely.

Now we have to prove that the function (t, u) → πκt (u) − α is in the space L2(I ×
(0,1), d t ⊗ dµ), where µ is the measure whose density with respect to the Lebesgue
measure is given by

u ∈ (0,1)→
1

uγ
.

A similar argument shows that the function (t, u)→ πκt (u)− β belongs to L2([0, T]×
(0,1), d t ⊗ dµ′), where µ′ is the measure whose density with respect to the Lebesgue
measure is given by

u ∈ [0,1]→
1

(1− u)γ
.

Let νN
h be the Bernoulli product measure corresponding to a profile h which is Lip-

schitz such that h(0) = α ≤ h(u) ≤ β = h(1) for all u ∈ [0,1]. Let G ∈ C∞c (I × [0, 1]).
Using the entropy and Jensen’s inequalities and the Feynman-Kac’s formula we get that

EµN





∫

I

Nγ−1
∑

x∈ΛN

Gt r
−
N

�

x
N

�

(ηx(tΘ(N))−α)



 d t

≤ C0 +

∫

I

sup
f







Nγ−1
∑

x∈ΛN

(Gt r
−
N )
�

x
N

�

〈ηx −α, f 〉νN
h
+Θ(N)N−1

D

LN

p

f ,
p

f
E

νN
h







d t,

(3.27)

where the supremun is taken over all the densities f on ΩN with respect to νN
h . Using

(3.21) with B = 1 we can bound from above the second term on the right hand side of
(3.27) by

−
Θ(N)
4N

DN (
p

f ,νN
h ) + CΘ(N)N−γ(κN−θ + 1),
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and from 3.5 with Ax =
Gt

� x
N

�

κ
the term on the right side of (3.27) is bounded from

above by

CNγ−1

κ

∑

x∈ΛN

r−N
�

x
N

��

Gt

�

x
N

��2
+ C(κ+ 1).

Taking N →∞ we can conclude that there exists a constant C ′ > 0 independent of G
and of t such that

EQ





∫

I

∫ 1

0

�

(πκt (u)−α)Gt(u)

|u|γ
−

C ′

κ

G2
t (u)

|u|γ

�

dud t



 ® |I |(κ+ 1).

From Lemma 7.5 in [16] we can insert the supremum over G inside the expectation
above, and we get

EQ



sup
G

(

∫

I

∫ 1

0

�

(πκt (u)−α)Gt(u)

|u|γ
−

C ′

κ

G2
t (u)

|u|γ

�

dud t

)

 ® |I |(κ+ 1). (3.28)

The previous formula implies that
∫

I

∫ 1

0

(πκt (u)−α)
2

|u|γ
dud t <∞

Q almost surely. Similarly, we get
∫

I

∫ 1

0

(πκt (u)− β)
2

|u|γ
dud t <∞

Q almost surely.

Final step. By Definition 2.3, the two steps above allow us to show that Q is concen-
trated on trajectories of measures whose density is a weak solution of the correspond-
ing hydrodynamic equation (see Proposition 3.6). By uniqueness of the weak solution
(see Lemma 2.8) we get that Q is unique. Indeed, we have that Q = δ{ρκt (u)du} (Dirac
mass). Then, by using the latter, we compute the expectation in (3.26) and (3.28) and
we are done.

�

3.4. Characterization of limit points. In the present subsection we characterize all
limit points Q of the sequence {QN}N≥1, which we know that exist from the results of
Subsection 3.2. Let us assume without lost of generality, that {QN}N≥1 converges to Q.
Since there is at most one particle per site, it is easy to show that Q is concentrated on
trajectories of measures absolutely continuous with respect to the Lebesgue measure,
i.e. πκt (du) = ρκt (u)du (for details see [15]). In Proposition 3.6 below we prove,
for each range of θ , that Q is concentrated on trajectories of measures whose density
satisfies a weak form of the corresponding hydrodynamic equation. Moreover, we have
seen in Theorem 3.2 that Q is concentrated on trajectories of measures whose density
satisfies the energy estimate, i.e. ρκ ∈ L2(0, T ;H γ/2) and

∫ T

0

∫ 1

0

¨

(α−ρκt (u))
2

uγ
+
(β −ρκt (u))

2

(1− u)γ

«

dud t <∞.
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Since a weak solution of the hydrodynamic equation (2.10) is unique we have that Q
is unique and takes the form of a Dirac mass.

Proposition 3.6. If Q is a limit point of {QN}N≥1 then

1. if θ < 0:

Q
�

π· : FReac(t,ρ
κ, G, g) = 0,∀t ∈ [0, T], ∀G ∈ C1,2

c ([0, T]× [0, 1])
�

= 1.

2. if θ = 0:

Q
�

π· : FDir(t,ρ
κ, G, g) = 0,∀t ∈ [0, T], ∀G ∈ C1,2

c ([0, T]× [0, 1])
�

= 1.

Proof. Note that in order to prove the proposition, it is enough to verify, for δ > 0 and
G in the corresponding space of test functions, that

Q
�

π· ∈ DT
M+ : sup

0≤t≤T

�

�Fθ (t,ρ
κ, G, g)

�

�> δ

�

= 0,

for each θ , where Fθ stands for FReac if θ < 0 and FDir if θ = 0 . Indeed, we have that

Fθ (t,ρ
κ, G, g) =

¬

ρκt , Gt

¶

−



g, G0
�

−
∫ t

0

D

ρκs ,
�

∂s +1{θ=0}L
�

Gs

E

ds

+1{θ≤0}κ

∫ t

0

¬

ρκs , Gs

¶

V1
ds−1{θ≤0}κ

∫ t

0




Gs, V0
�

ds = 0.

(3.29)

From here on, in order to simplify notation, we will erase π· from the sets that we
have to look at.

By definition of Fθ above we can bound from above the previous probability by the
sum of

Q
�

sup
0≤t≤T

�

�Fθ (t,ρ
κ, G,ρ0)

�

�>
δ

2

�

(3.30)

and

Q
�

�

�




ρ0 − g, G0
�

�

�>
δ

2

�

.

We note that last probability is equal to zero sinceQ is a limit point of {QN}N≥1 andQN
is induced by µN which is associated to g. Now we deal with (3.30). Since for θ ≤ 0
the function Gs has compact support included in (0,1) the singularities of V0 and V1 are
not present, thus from Proposition A.3 of [12], the set inside the probability in (3.30)
is an open set in the Skorohod topology. Therefore, from Portmanteau’s Theorem we
bound (3.30) from above by

lim inf
N→∞
QN

�

sup
0≤t≤T

�

�Fθ (t,ρ
κ, G,ρ0)

�

�>
δ

2

�

.

Summing and subtracting

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds to the term inside the previous ab-

solute value, recalling (3.1) and the definition of QN , we can bound the previous
probability from above by the sum of the next two terms

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�
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and

PµN

 

sup
0≤t≤T

�

�

�

�

�

∫ t

0

Θ(N)LN 〈πN
s , Gs〉ds−

∫ t

0

¬

πN
s ,1{θ=0}LGs

¶

ds

+1{θ≤0}κ

∫ t

0




ρs, Gs
�

V1
ds −1{θ≤0}κ

∫ t

0




Gs, V0
�

ds

�

�

�

�

�

>
δ

4

!

.

(3.31)

By Doob’s inequality we have that

PµN

�

sup
0≤t≤T

�

�M N
t (G)

�

�>
δ

4

�

®
1

δ2EµN





∫ T

0

Θ(N)
�

LN 〈πN
s , G〉2 − 2〈πN

s , G〉LN 〈πN
s , G〉

�

ds



 .

In the proof of Proposition 3.1 we have proved that the term inside the time integral in
the previous expression is O (Nγ−2). Then, using the fact that γ < 2 we have that last
probability vanishes as N →∞. It remains to prove that (3.31) vanishes as N →∞.
For that purpose, we recall (3.2) and we bound (3.31) from above by the sum of the
following terms

PµN



 sup
0≤t≤T

�

�

�

�

�

∫ t

0

Θ(N)

N − 1

∑

x∈ΛN

LN Gs(
x
N
)ηN

x (s)ds−
∫ t

0

¬

πN
s ,1{θ=0}LGs

¶

ds

�

�

�

�

�

>
δ

24



 ,

(3.32)

PµN











sup
0≤t≤T

�

�

�

�

�

�

�

�

∫ t

0







κΘ(N)

Nθ (N − 1)

∑

x∈ΛN

(Gs r
−
N )(

x
N
)(α−ηN

x (s))

−1{θ≤0}κ

∫ 1

0

(Gs r
−)(u)(α−ρκs (u))du

)

ds

�

�

�

�

�

>
δ

24

!

(3.33)

and

PµN











sup
0≤t≤T

�

�

�

�

�

�

�

�

∫ t

0







κΘ(N)

Nθ (N − 1)

∑

x∈ΛN

(Gs r
+
N )(

x
N
)(β −ηN

x (s))

−1{θ≤0}κ

∫ 1

0

(Gs r
+)(u)(β −ρκs (u))du

)

ds

�

�

�

�

�

>
δ

24

!

. (3.34)

For θ = 0 from (3.6) we have that (3.32) goes to 0 as N → ∞. For θ ≤ 0 we have
that from (3.6) and 3.5 the boundary terms (3.33) and (3.34) go to 0 as N →∞. This
finishes the proof Proposition 3.6. �

4. PROOF OF THEOREM 2.13

For easy understanding of the proof of items i) and ii) of Theorem 2.13, we first
establish some notation and prove some lemmata.

Recall the function ρ̄∞ introduced in Remark 2.7 which can be rewritten as

ρ̄∞(u) =
βuγ +α(1− u)γ

uγ + (1− u)γ
.
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It is easy to see that ρ̄∞(0) = α and ρ̄∞(1) = β . Moreover, it is not difficult to see that
ρ̄∞ ∈ C1([0,1]) and that

lim
u→0
(ρ̄∞(u))′u2−γ = lim

u→1
(ρ̄∞(u))′(1− u)2−γ = 0,

and from Lemma 7.2 of [14] we conclude that

‖ρ̄∞‖γ/2 <∞. (4.1)

By the fractional Hardy’s inequality (see e.g. [11]) and the fact that V1(
1
2
) ≤ V1(u)

for all u ∈ (0,1) we know that

‖g‖®‖g‖V1
®‖g‖γ/2 (4.2)

for any g ∈H γ/2
0 .

In order to prove items i) and ii) of Theorem 2.13 we first guarantee the existence
of weak solutions of equation (2.10) with κ = 0 and (2.12), (see Lemma 4.1 and 4.3
below), then we establish the convergence in L2(0, T ; L2) (see Lemma 4.2 and 4.4)
which will allow us to conclude.

Lemma 4.1. Let ρ0 : [0, 1]→ [0,1] be a measurable function. Then, there exists a weak
solution of (2.10) with κ̂= 0 and initial condition ρ0.

Proof. The strategy of the proof is to construct the solution as the limit of ρκ, as k→ 0,
where ρk is the weak solution of (2.10) with initial condition ρ0 and κ̂= κ.

By item i) in Theorem 3.2 and since κ > 0 we know that
∫

I

‖ρκt ‖
2
γ/2d t ® |I |(κ+ 1) (4.3)

for any interval I ⊂ [0, T]. We define

∀t ∈ [0, T], ∀u ∈ [0, 1], ϕκt (u) := ρκt (u)− ρ̄
∞(u). (4.4)

Since we are interested in small values of κ, say κ ≤ 1, from (4.3), (4.1) and the fact
(a+ b)2 ≤ 2a2 + 2b2, it is not difficult to see that

∫

I

‖ϕκt ‖
2
γ/2d t ® |I |, (4.5)

thus we have that ϕκ ∈ L2(0, T ;H γ/2
0 ). It is also easy to see that ϕκ satisfies

〈ϕκt , Gt〉−〈ϕ0, G0〉−
∫ t

0

¬

ϕκs ,
�

L+ ∂s
�

Gs

¶

ds+κ

∫ t

0

〈ϕκs , Gs〉V1
ds−

∫ t

0

〈ρ̄∞,LGs〉ds = 0

(4.6)

for all t ∈ [0, T], for any function G ∈ C1,∞
c ([0, T] × (0, 1)) and where ϕ0(u) =

ρ0(u)− ρ̄∞(u). From (4.5) we conclude that there exists a subsequence of (ϕκ)κ∈(0,1)

converging weakly to some element ϕ0 ∈ L2(0, T ;H γ/2
0 ) as κ → 0. We claim that

ρ0 := ρ̄∞ +ϕ0 is the desired solution. Indeed, first note that since the norm ‖ · ‖γ/2 is
weakly lower-semicontinuous we have that

∫

I

‖ϕ0
t ‖

2
γ/2d t ® |I |. (4.7)
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By using (a+ b)2 ≤ 2a2 + 2b2 we have that
∫

I

‖ρ0
t ‖

2
γ/2d t ≤ 2

∫

I

‖ρ̄∞‖2
γ/2d t + 2

∫

I

‖ϕ0
t ‖

2
γ/2d t ® |I |.

Taking I = [0, T], we have that ρ0 satisfies item i) of Definition 2.3. Since ϕ0 ∈
L2(0, T ;H γ/2

0 ), it is easy to see that ρ0
t (0) = ρ̄

∞(0) = α and ρ0
t (1) = ρ̄

∞(1) = β for
almost every t ∈ [0, T]. Then, item ii) for κ̂ = 0 in Definition 2.3 is satisfied. In order
to verify that ρ0 satisfies item iii) in Definition 2.3 we first integrate (4.6) over [0, t].
Thus we have that

∫ t

0

〈ϕκs , Gs〉ds− t〈ϕ0, G0〉 −
∫ t

0

∫ s

0

¬

ϕκr ,
�

L+ ∂r
�

Gr

¶

drds

+κ

∫ t

0

∫ s

0

〈ϕκr , Gr〉V1
drds−

∫ t

0

∫ s

0

〈ρ̄∞,LGr〉drds = 0

for any function G ∈ C1,∞
c ([0, T]× (0, 1)). Taking κ → 0, by weak convergence and

Lebesgue’s dominated convergence theorem we get from the previous equality that
∫ t

0

〈ϕ0
s , Gs〉ds − t〈ϕ0, G0〉 −

∫ t

0

∫ s

0

¬

ϕ0
r ,
�

L+ ∂r
�

Gr

¶

− 〈ρ̄∞,LGr〉drds = 0.

Now, taking the derivative with respect to t in the previous equality we get that ϕ0

satisfies

〈ϕ0
t , Gt〉 − 〈ϕ0, G0〉 −

∫ t

0

〈ϕ0
s ,
�

L+ ∂s

�

Gs〉 ds−
∫ t

0

〈ρ̄∞,LGs〉ds = 0, (4.8)

for all t ∈ [0, T]. Then, item iii) with κ = 0 in Definition 2.3 follows from (4.8), the
definition of ρ0 and ρ̄∞ �

Lemma 4.2. Let ρ0 : [0,1] → [0, 1] be a measurable function. Let ρκ be the weak
solution of (2.10) with initial condition ρ0 and κ̂= κ. Then, ρκ converges strongly to ρ0

in L2(0, T ; L2) as κ goes to 0, where ρ0 is the weak solution of (2.10) with κ̂ = 0 and
initial condition ρ0.

Proof. Note that is enough to show that
∫ t

0

‖ρκs −ρ
0
s ‖

2 ds ® t2κ,

for all t ∈ [0, T]. By Lemma 4.1 we know that ρ0 = ρ̄∞ +ϕ0. Then, last inequality is
equivalent to

∫ t

0

‖ϕκs −ϕ
0
s ‖

2 ds ® t2κ. (4.9)

By subtracting (4.8) from (4.6) and calling δk
t := ϕκt −ϕ

0
t we obtain that

〈δκt , Gt〉 −
∫ t

0

¬

δκs ,
�

L+ ∂s
�

Gs

¶

ds =−κ
∫ t

0

〈ϕκs , Gs〉V1
ds (4.10)

for any function G ∈ C1,∞
c ([0, T] × (0, 1)). Let {Hκn}n≥1 be a sequence of functions

in C1,∞
c ([0, T] × (0,1)) converging to δκ as n → ∞ with respect to the norm of
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L2(0, T ;H γ/2
0 ) and for n ≥ 1, let Gκn (s, u) =

∫ t

s
Hκn (r, u)dr. We claim that by plug-

ging Gn into (4.10) and taking n→∞ we get that
∫ t

0

‖δκs ‖
2 ds+

1

2











∫ t

0

δκs ds











2

γ/2

=−κ
∫ t

0

®

ϕκs ,

∫ t

s

δκr dr

¸

V1

ds. (4.11)

We leave the justification of the equality above to the end of the proof. Now, by using
successively the Cauchy-Schwarz’s inequality we have that
∫ t

0

‖δκs ‖
2 ds+

1

2











∫ t

0

δκs ds











2

γ/2

≤ κ
∫ t

0

‖ϕκs ‖V1











∫ t

s

δκr dr











V1

ds

® κ

s

∫ t

0

‖ϕκs ‖
2
γ/2ds

√

√

√

√

∫ t

0











∫ t

s

δκr dr











2

γ/2

ds.

(4.12)

In the last inequality of the previous expression we used (4.2). By the triangular

inequality we have that

r

∫ t

0







∫ t

s
δκr dr







2

γ/2
ds is bounded from above by

s

∫ t

0

�
∫ t

s

‖δκr ‖γ/2dr

�2

ds ≤

s

t

∫ t

0

∫ t

0

‖δκr ‖
2
γ/2drds ®

s

t2

∫ t

0

�

‖ϕκr ‖
2
γ/2 + ‖ϕ

0
r ‖

2
γ/2

�

dr.

(4.13)

In the first inequality in the previous display we used the Cauchy-Schwarz’s inequality
and in the second inequality we used the Minkowski’s inequality and the inequality
(a+ b)2 ≤ 2(a2+ b2). Using (4.5) and (4.7), we get from (4.12) and (4.13) the result.

We conclude this proof justifying (4.11). Note that it is enough to show

i) lim
n→∞

∫ t

0

〈δκs , (∂sG
κ
n )(s, ·)〉ds =−

∫ t

0

‖δκs ‖
2ds.

ii) lim
n→∞

∫ t

0

〈δκs ,LGκn (s, ·)〉ds =−
1

2







∫ t

0

δκs ds






2

γ/2
.

iii) lim
n→∞

∫ t

0

¬

ϕκs , Gκn (s, ·)
¶

V1
ds =

∫ t

0

®

ϕκs ,

∫ t

s

δκr dr

¸

V1

ds.

For i) we rewrite
∫ t

0
〈δκs , (∂sG

κ
n )(s, ·)〉ds as

−
∫ t

0

〈δκs , Hκn (s, ·)〉 ds =−
∫ t

0




δκs , Hκn (s, ·)−δ
κ
s

�

ds−
∫ t

0

‖δκs ‖
2 ds.

Observe then that by the Cauchy-Schwarz’s inequality we have
�

�

�

�

�

∫ T

0




δκs , Hκn (s, ·)−δ
κ
s

�

ds

�

�

�

�

�

≤
∫ T

0

‖δκs ‖‖H
κ
n (s, ·)−δ

κ
s ‖ ds

≤

s

∫ T

0

‖δκs ‖
2 ds

s

∫ T

0

‖Hκn (s, ·)−δ
κ
s ‖

2 ds

which goes to 0 as n → ∞ since Hκn → δκs in L2(0, T ;H γ/2
0 ). For ii), since Gn has

compact support included in (0,1), we can use the integration by parts formula for the
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regional fractional Laplacian (see Theorem 3.3 in [14]) which permits to write

∫ t

0

〈δκs ,LGκn (s, ·)〉ds =−
∫ t

0

D

δκs , Gκn (s, ·)
E

γ/2
ds.

Then we have

∫ t

0

D

δκs , Gκn (s, ·)
E

γ/2
ds =

∫ t

0

D

δκs ,

∫ t

s

δκr dr
E

γ/2
ds+

∫ t

0

D

δκs , Gκn (s, ·)−
∫ t

s

δκr dr
E

γ/2
ds

=

∫∫

0≤s<r≤t

〈δκs , δκr 〉γ/2 dsdr +

∫ t

0

D

δκs ,

∫ t

s

�

Hκn (r, ·)−δ
κ
r

�

dr
E

γ/2
ds

=
1

2

∫∫

[0,t]2
〈δκs , δκr 〉γ/2 dsdr +

∫ t

0

D

δκs ,

∫ t

s

�

Hκn (r, ·)−δ
κ
r

�

dr
E

γ/2
ds

=
1

2







∫ t

0

δκs ds






2

γ/2
+

∫ t

0

D

δκs ,

∫ t

s

�

Hκn (r, ·)−δ
κ
r

�

dr
E

γ/2
ds.

To conclude the proof of ii) it is sufficient to show that the term at the right hand side
of last expression vanishes as n goes to∞. This is a consequence of a successive use of
Cauchy-Schwarz’s inequalities:

�

�

�

�

�

∫ t

0

D

δκs ,

∫ t

s

�

Hκn (r, ·)−δ
κ
r

�

dr
E

γ/2
ds

�

�

�

�

�

≤
∫ t

0





δκs







γ/2







∫ t

s

�

Hκn (r, ·)−δ
κ
r

�

dr






γ/2
ds

≤
∫ t

0





δκs







γ/2

∫ t

s





Hκn (r, ·)−δ
κ
r







γ/2
dr ds ≤

∫ t

0





δκs







γ/2

∫ t

0





Hκn (r, ·)−δ
κ
r







γ/2
dr ds

=

�
∫ t

0





δκs







γ/2
ds

� �
∫ t

0





Hκn (r, ·)−δ
κ
r







γ/2
dr

�

≤ t

s

∫ t

0





δκs







2

γ/2
ds

s

∫ t

0





Hκn (r, ·)−δ
κ
r







2

γ/2
dr −−→

n→∞
0.

(4.14)

To prove iii) we rewrite
∫ t

0
〈ϕκs , Gκn (s, ·)〉V1

ds as

∫ t

0

®

ϕκs ,

∫ t

s

�

Hκn (r, ·)−δ
κ
r

�

dr

¸

V1

ds+

∫ t

0

®

ϕκs ,

∫ t

s

δκr dr

¸

V1

ds

and, to conclude the proof it is sufficient to show that the term at the left hand side
of last expression vanishes as n→∞. This is a consequence of a successive use of the
Cauchy-Schwarz’s inequality as in (4.14), with ‖ · ‖γ/2 replaced by ‖ · ‖V1

and Hardy’s
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inequality:
�

�

�

�

�

∫ t

0

D

ϕκs ,

∫ t

s

{Hκn (r, ·)−δ
κ
r }dr

E

V1

ds

�

�

�

�

�

≤
∫ t

0





ϕκs







V1







∫ t

s

�

Hκn (r·)−δ
κ
r

�

dr






V1

ds

≤
∫ t

0





ϕκs







V1

∫ t

s





Hκn (r, ·)−δ
κ
r







V1

dr ds ≤
∫ t

0





ϕκs







V1

∫ t

0





Hκn (r, ·)−δ
κ
r







V1

dr ds

=

�
∫ t

0





ϕκs







V1

ds

� �
∫ t

0





Hκn (r, ·)−δ
κ
r







V1

dr

�

≤ t

s

∫ t

0





ϕκs







2

V1

ds

s

∫ t

0





Hκn (r, ·)−δ
κ
r







2

V1

dr

≤ C t

s

∫ t

0





ϕκs







2

γ/2
ds

s

∫ t

0





Hκn (r, ·)−δ
κ
r







2

γ/2
dr −−→

n→∞
0

where in the last inequality we used the fractional Hardy’s inequality (see (4.2)).
�

Lemma 4.3. Let ρ0 : [0,1] → [0,1] be a measurable function. Consider the function
ρ∞t = ρ̄

∞ + (ρ0 − ρ̄∞)e−tV1 . If g∞ := ρ0 − ρ̄∞ ∈H γ/2, then

i) ρ∞ ∈ L2(0, T ;H γ/2) .
ii) ρ∞ is a weak solution of (2.12) with initial condition ρ0.

Proof. For i) note that by using the inequality (a+ b)2 ≤ 2a2 + 2b2 we get that
∫ T

0

‖ρ∞t ‖
2
γ/2d t ≤ 2T‖ρ̄∞‖2

γ/2 + 2

∫ T

0



g∞e−tV1




2
γ/2 d t.

Since ‖ρ̄∞‖γ/2 <∞ (see (4.1)) it is enough to prove that the term on the right hand

side of last expression is finite. Note that


g∞e−tV1




2
γ/2 is equal to

cγ
2

∫∫

[0,1]2

�

g∞(u)e−tV1(u) − g∞(v)e−tV1(v)
�2

|u− v|γ+1 dudv

=
cγ
2

∫∫

[0,1]2

�

g∞(u)
�

e−tV1(u) − e−tV1(v)
�

+
�

g∞(u)− g∞(v)
�

e−tV1(v)
�2

|u− v|γ+1 dudv.

Using the fact that (a+ b)2 ≤ 2a2+2b2 and that |g∞(u)| ≤ 2 for any u ∈ [0, 1] we get
that last expression is less than 8‖e−tV1‖2

γ/2+2‖g∞‖2
γ/2. Note that the term 8‖e−tV1‖2

γ/2
can be written as

4cγ

∫∫

[0,1]2

�

∫ u

v
−tV ′1(w)e

−tV1(w)dw
�2

|u− v|γ+1 dudv

=4cγ

∫∫

[0,1]2

�

∫ u

v
t
�

γ

w
r−(w)− γ

1−w
r+(w)

�

e−tV1(w)dw
�2

|u− v|γ+1 dudv.
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Using again (a+b)2 ≤ 2a2+2b2 and the fact that e−tV1(w) ≤ e−t r±(w) for any w ∈ [0,1],
we get that last expression is bounded from above by

8cγ

∫∫

[0,1]2

�

∫ u

v
γ

w
t r−(w)e−t r−(w)dw

�2

|u− v|γ+1 +

�

∫ u

v
γ

1−w
t r+(w)e−t r+(w)dw

�2

|u− v|γ+1 dudv

=16cγ

∫∫

[0,1]2

�

∫ u

v
γ

w
t r−(w)e−t r−(w)dw

�2

|u− v|γ+1 dudv.

In the last equality we used a symmetry argument. We can write last expression as

Cγ t
2−2γ
γ

∫∫

[0,1]2

�

∫ u

v
wγ−2(t r−(w))

2γ−1
γ e−t r−(w)dw

�2

|u− v|γ+1 dudv,

where Cγ = 16c

2−γ
γ

γ γ
4γ−2
γ . Since the function Eγ : [0,∞)→ [0,∞) defined as Eγ(z) =

z
2γ−1
γ e−z is bounded from above by Eγ

�

2γ−1
γ

�

we can bound last expression from
above by

Cγ t
2−2γ
γ E2

γ(
2γ−1
γ
)

∫∫

[0,1]2

�

∫ u

v
wγ−2dw

�2

|u− v|γ+1 dudv

= Cγ t
2−2γ
γ E2

γ(
2γ−1
γ
)(γ− 2)−2

∫∫

[0,1]2

�

uγ−1 − vγ−1
�2

|u− v|γ+1 dudv,

which is finite from (7.2) in the proof of Lemma 7.2 of [14]. Thus, we have that

8‖e−tV1‖2
γ/2 ® t

2−2γ
γ . (4.15)

Therefore, if g∞ ∈H γ/2 then we conclude that

∫ T

0

‖ρ∞t ‖
2
γ/2d t ® T‖ρ̄∞‖2

γ/2 + T


g∞




2
γ/2 +

∫ T

0

t
2−2γ
γ d t

® T‖ρ̄∞‖2
γ/2 + T



g∞




2
γ/2 + T

2−γ
γ ,

which is finite since γ < 2.
For ii), since ρ∞ is the solution of (2.12) then it satisfies item ii) of Definition 2.6.

In order to see that ρ∞ satisfies item i) of Definition 2.6, note that using (a + b)2 ≤
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2a2 + 2b2 we have that
∫ T

0

∫ 1

0







�

α−ρ∞t (u)
�2

uγ
+

�

β −ρ∞t (u)
�2

(1− u)γ






dud t

≤ 2T

∫ 1

0

 

�

α− ρ̄∞(u)
�2

uγ
+

�

β − ρ̄∞(u)
�2

(1− u)γ

!

du+
8γ

cγ

∫ T

0

‖e−tV1‖2
V1

d t

= 2T (β −α)2
∫ 1

0

(uγ + (1− u)γ) du+
8γ

cγ

∫ T

0

‖e−tV1‖2
V1

d t

≤ 2γ(β −α)2T +
8γ

cγ

∫ T

0

‖e−tV1‖2
V1

d t.

For the term on the right hand side of last expression we first see that we can extend
continuously the function e−tV1 in such a way that it vanishes at 0 and at 1. There
exists a constant C2 (see 4.2) such that the previous expression is bounded from above
by

2γ(β −α)2T +
8γC2

2

cγ

∫ T

0

‖e−tV1‖2
γ/2d t. (4.16)

Thus, we obtain the desired result by using (4.15). �

Lemma 4.4. Let ρ0 : [0, 1] → [0,1] be a measurable function, such that ρ0 − ρ̄∞ ∈
H γ/2. Furthermore, let ρκ and ρ∞ be the weak solutions of (2.10) and (2.12), respec-
tively, and with the same initial condition ρ0. Let ρ̂κt := ρκt/κ , for all t ∈ [0, T]. Then
ρ̂κ converges strongly to ρ∞ in L2(0, T ; L2), as κ goes to∞.

Proof. It is enough to show that
∫ t

0

‖ρ̂κs −ρ
∞
s ‖

2 ds =

∫ t

0

‖ϕ̂κs −ϕ
∞
s ‖

2 ds ®
1
p
κ

, (4.17)

for all t ∈ [0, T] where ϕ̂κt = ρ̂
κ
t − ρ̄

∞ and ϕ∞t = (ρ0 − ρ̄∞)e−tV1 . It is not difficult to
see that ϕ̂κt satisfies

〈ϕ̂κt , Gt〉 − 〈ϕ0, G0〉 −
∫ t

0

〈ϕ̂κs ,∂sGs〉 ds+

∫ t

0

〈ϕ̂κs , Gs〉V1
ds−

1

κ

∫ t

0

〈ρ̂κs ,LGs〉ds = 0

(4.18)

for all functions G ∈ C1,∞
c ([0, T]× (0,1)). Then, calling δ̂k := ϕ̂κ −ϕ∞ we have that

〈δ̂κt , Gt〉 −
∫ t

0

�

δ̂κs ,
�

1

κ
L+ ∂s

�

Gs

�

ds+

∫ t

0

¬

δ̂κs , Gs

¶

V1
=

1

κ

∫ t

0

〈ρ∞s , Gs〉γ/2ds (4.19)

for any function G ∈ C1,∞
c ([0, T]× (0,1)). Let {Ĥκn}n≥1, be a sequence of functions in

C1,∞
c ([0, T], (0,1)) converging to δ̂κ with respect to the norm of L2(0, T ;H γ/2

0 ). Now,

for n≥ 1 we define the test function Ĝκn (s, u) =
∫ t

s
Ĥκn (r, u)dr. Plugging Ĝκn into (4.19)

and using a similar argument as in proof of Lemma 4.2 we get that

∫ t

0

‖δ̂κs ‖
2 ds+

1

2κ











∫ t

0

δ̂κs ds











2

γ/2

+
1

2











∫ t

0

δ̂κs ds











2

V1

=
1

κ

∫ t

0

®

ρ∞s ,

∫ t

s

δ̂κr dr

¸

γ/2

ds.
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By neglecting terms we get that
∫ t

0

‖ρ̂κs −ρ
∞
s ‖

2 ds =

∫ t

0

‖δ̂κs ‖
2 ds ≤

1

κ

∫ t

0

®

ρ∞s ,

∫ t

s

δ̂κr dr

¸

γ/2

ds.

Then it is suffices to show that

1

κ

∫ t

0

®

ρ∞s ,

∫ t

s

δ̂κr dr

¸

γ/2

ds ®
1
p
κ

Indeed, by using twice the Cauchy-Schwarz’s inequality we have that the term at the
left hand side of the previous expression is bounded from above by

1

κ

∫ t

0

‖ρ∞s ‖γ/2











∫ t

s

δ̂κr dr











γ/2

ds ≤
1

κ

s

∫ t

0

‖ρ∞s ‖
2
γ/2ds

√

√

√

√

∫ t

0











∫ t

s

δ̂κr dr











2

γ/2

ds.

Since by hypothesis ρ0 − ρ̄∞ ∈ H γ/2 we know from item i) of Lemma 4.3 that ρ∞ ∈
L2(0, T ;H γ/2). Thus, from the latter and by the triangular inequality, the right hand
side in the previous expression can be bounded from above by a constant times

1

κ

s

∫ t

0

�
∫ t

s

‖δ̂κr ‖γ/2dr

�2

ds ®
1

κ

s

t

�
∫ t

0

‖δ̂κr ‖γ/2dr

�2

.

By using again the Cauchy-Schwarz’s inequality, the term on the right hand side in the
last expression is bounded from above by

1

κ

s

t2

∫ t

0

‖δ̂κr ‖
2
γ/2dr =

1

κ

s

t2

∫ t

0

‖ρ̂κr −ρ
∞
r ‖

2
γ/2dr

®
1

κ

s

2t2

∫ t

0

‖ρ̂κr ‖
2
γ/2 + ‖ρ

∞
r ‖

2
γ/2dr.

In the last inequality we used the Minkowski’s inequality and the fact that (a+ b)2 ≤
2a2 + 2b2. Now, since

∫ t

0
‖ρ̂κr ‖

2
γ/2dr ®κ (this is due to item i) of Theorem 3.2 and a

change of variables) and ρ∞ ∈ L2(0, T ;H γ/2) we can see that

1

κ

s

2t2

∫ t

0

‖ρ̂κr ‖
2
γ/2 + ‖ρ

∞
r ‖

2
γ/2dr ®

1

κ

p

κ+ 1®
1
p
κ

,

and we are done. �

4.1. Proof of item i) of Theorem 2.13. Recall ϕκt defined in (4.4). Note that it is
enough to show (4.9) with ‖·‖ replaced with ‖·‖γ/2. From (4.10) we obtain, for ε > 0,
that

〈δκt+ε, Gt+ε〉 − 〈δκt , Gt〉 −
∫ t+ε

t

〈δκs ,
�

L+ ∂s
�

Gs〉 ds =−κ
∫ t+ε

t

〈ϕκs , Gs〉V1
ds (4.20)

for any function G ∈ C1,∞
c ([0, T] × [0,1]). Let {Hκn}n≥1 be a sequence of functions

in C1,∞
c ([0, T], (0, 1)) converging to δκ with respect to the norm of L2(0, T ;H γ/2

0 )

as n → ∞. Now, for n ≥ 1, we define the test function Gκn (u) =
1
ε

∫ t+ε

t
Hκn (r, u)dr.
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Plugging Gκn into last equality and taking n→∞, a similar argument to the one of the
proof of Lemma 4.2 allows to get

1

ε

*

δκt+ε −δ
κ
t ,

∫ t+ε

t

δκr dr

+

+ ε











1

ε

∫ t+ε

t

δκr dr











2

γ/2

= κ

∫ t+ε

t

*

ϕκs ,
1

ε

∫ t+ε

t

δκr dr

+

V1

ds.

Integrating last equality over [0, t̃] we get:

ε

∫ t̃

0











1

ε

∫ t+ε

t

δκr dr











2

γ/2

d t = κ

∫ t̃

0

∫ t+ε

t

*

ϕκs ,
1

ε

∫ t+ε

t

δκr dr

+

V1

ds d t

−
1

ε

∫ t̃

0

*

δκt+ε −δ
κ
t ,

∫ t+ε

t

δκr dr

+

d t. (4.21)

Now we use the Cauchy-Schwarz’s inequality, Hardy’s inequality and (4.5) to get that

κ

∫ t̃

0

∫ t+ε

t

*

ϕκs ,
1

ε

∫ t+ε

t

δκr dr

+

V1

ds d t ®κ
∫ t̃

0

∫ t+ε

t

‖ϕκs ‖γ/2











1

ε

∫ t+ε

t

δκr dr











γ/2

ds d t

®κ

s

∫ t̃

0

∫ t+ε

t

‖ϕκs ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0

∫ t+ε

t











1

ε

∫ t+ε

t

δκr dr











2

γ/2

ds d t

®κε
p

t̃

√

√

√

√

∫ t̃

0











1

ε

∫ t+ε

t

δκr dr











2

γ/2

d t.

(4.22)

Let us estimate the second term on the right hand side (4.21). First note that by
changing variables we have that

−
1

ε

∫ t̃

0

*

δκt+ε −δ
κ
t ,

∫ t+ε

t

δκr dr

+

d t =
1

ε

∫ t̃

0

∫ t+ε

t

〈δκt ,δκr 〉drd t −
1

ε

∫ t̃

0

∫ t+ε

t

〈δκt+ε,δ
κ
r 〉drd t

=
1

ε

∫ t̃

0

∫ r+ε

r

〈δκt ,δκr 〉d tdr −
1

ε

∫ t̃+ε

ε

∫ t

t−ε
〈δκt ,δκr 〉drd t

(4.23)

The term 1
ε

∫ t̃

0

∫ r+ε

r
〈δκt ,δκr 〉d tdr can be split as

1

ε

 

∫ ε

0

∫ ε

r

〈δκt ,δκr 〉d tdr +

∫ ε

0

∫ r+ε

ε

〈δκt ,δκr 〉d tdr +

∫ t̃

ε

∫ r+ε

r

〈δκt ,δκr 〉d tdr

!

.

By Fubini’s theorem, we have that the term 1
ε

∫ t̃+ε

ε

∫ t

t−ε〈δ
κ
t ,δκr 〉drd t which appears in

(4.23) is equal to

1

ε

 

∫ ε

0

∫ r+ε

ε

〈δκt ,δκr 〉d tdr +

∫ t̃

ε

∫ r+ε

r

〈δκt ,δκr 〉d tdr +

∫ t̃+ε

t̃

∫ t̃+ε

r

〈δκt ,δκr 〉d tdr

!

.
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Therefore we can write the second term on the right hand side of (4.21) as

−
1

ε

∫ t̃+ε

t̃

∫ t̃+ε

r

〈δκt ,δκr 〉d t dr +
1

ε

∫ ε

0

∫ ε

r

〈δκt ,δκr 〉d t dr

≤
1

ε

∫ t̃+ε

t̃

∫ t̃+ε

t̃

‖δκt ‖‖δ
κ
r ‖d t dr +

1

ε

∫ ε

0

∫ ε

0

‖δκt ‖‖δ
κ
r ‖d t dr

=
1

ε

 

∫ t̃+ε

t̃

‖δκt ‖ d t

!2

+
1

ε

�
∫ ε

0

‖δκt ‖ d t

�2

≤
∫ t̃+ε

t̃

‖δκt ‖
2d t +

∫ ε

0

‖δκt ‖
2d t.

(4.24)

where in the inequalities above we used the Cauchy-Schwarz’s inequality. Then, using
(4.22) and (4.24) in (4.21) we obtain that

∫ t̃

0











1

ε

∫ t+ε

t

δκr dr











2

γ/2

d t ®κ
p

t̃

√

√

√

√

∫ t̃

0











1

ε

∫ t+ε

t

δκr dr











2

γ/2

d t

+
1

ε

∫ t̃+ε

t̃

‖δκt ‖
2d t +

1

ε

∫ ε

0

‖δκt ‖
2d t.

(4.25)

Taking ε → 0, using Lebesgue’s differentiation theorem (see Theorem 1.35 in [19])
and the fact that δκ0 = 0 (since the initial condition for ρκ and ρ0 is the same) we get
that

∫ t̃

0

‖δκt ‖
2
γ/2d t ®κ

p

t̃

s

∫ t̃

0

‖δκt ‖
2
γ/2d t + ‖δκt̃ ‖

2,

for all t̃ ∈ [0, T]. Integrating last inequality over [0, T] and using the Cauchy-Schwarz’s
inequality and using (4.9) we conclude that

∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2d td t̃ ®κT

s

∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2d td t̃ +κT 2, (4.26)

in the last inequality we have used (4.9). Then, by a simple computation we have that

∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2d td t̃ ®κT 2. (4.27)

By Fubini’s theorem, we get that

∫ T

0

∫ t̃

0

‖δκt ‖
2
γ/2 d td t̃ =

∫ T

0

(T − t)‖δκt ‖
2
γ/2 d t ≥

T

2

∫ T/2

0

‖δκt ‖
2
γ/2 d t. (4.28)

The result now follows from (4.27) and (4.28).

�
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4.2. Proof of item ii) of Theorem 2.13. Recall ϕ̂κt and ϕ∞t defined in Lemma 4.4. It
is enough to show (4.17) with ‖ · ‖ replaced with ‖ · ‖V1

:
∫ T

0

‖ϕ̂κt −ϕ
∞
t ‖

2
V1

d t ®
1
p
κ

. (4.29)

From (4.19), we obtain, for ε > 0, that

〈δ̂κt+ε, Gt+ε〉 − 〈δ̂κt , Gt〉 −
∫ t+ε

t

〈δ̂κs ,
�1

κ
L+ ∂s

�

Gs〉 ds

+

∫ t+ε

t

〈δ̂κs , Gs〉V1
ds =

1

κ

∫ t+ε

t

〈ρ∞s , Gs〉γ/2ds (4.30)

for any function G ∈ C1,∞
c ([0, T] × [0,1]). Let {Ĥκn}n≥1 be a sequence of functions

in C1,∞
c ([0, T], (0,1)) converging to δ̂κ with respect to the norm of L2(0, T ;H γ/2

0 )

as n → ∞. Now, for n ≥ 1 we define the test functions Ĝκn (u) =
1
ε

∫ t+ε

t
Ĥκn (r, u)dr.

Plugging Ĝκn into (4.30) and taking n→∞, a similar argument to the one of the proof
of Lemma 4.2 allows to get

1

ε

*

δ̂κt+ε − δ̂
κ
t ,

∫ t+ε

t

δ̂κr dr

+

+
ε

κ











1

ε

∫ t+ε

t

δ̂κr dr











2

γ/2

+ ε











1

ε

∫ t+ε

t

δ̂κr dr











2

V1

=
1

κ

∫ t+ε

t

*

ρ∞s ,
1

ε

∫ t+ε

t

δ̂κr dr

+

γ/2

ds. (4.31)

By neglecting the term
ε

κ







1
ε

∫ t+ε

t
δ̂κr dr







2

γ/2
in (4.31) and then integrating over [0, t̃]

we get that

ε

∫ t̃

0











1

ε

∫ t+ε

t

δ̂κr dr











2

V1

d t ≤
1

κ

∫ t̃

0

∫ t+ε

t

*

ρ∞s ,
1

ε

∫ t+ε

t

δ̂κr dr

+

γ/2

ds d t

−
1

ε

∫ t̃

0

*

δ̂κt+ε − δ̂
κ
t ,

∫ t+ε

t

δ̂κr dr

+

d t. (4.32)

Now we use twice the Cauchy-Schwarz’s inequality in order to get that the first term
on the right hand side in the previous expression is bounded from above by

1

κ

∫ t̃

0

∫ t+ε

t

‖ρ∞s ‖γ/2











1

ε

∫ t+ε

t

δ̂κr dr











γ/2

ds d t

≤
1

κ

s

∫ t̃

0

∫ t+ε

t

‖ρ∞s ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0

∫ t+ε

t











1

ε

∫ t+ε

t

δ̂κr dr











2

γ/2

ds d t

≤
p
ε

κ

s

∫ t̃

0

∫ t+ε

t

‖ρ∞s ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0











1

ε

∫ t+ε

t

δ̂κr dr











2

γ/2

d t.

(4.33)
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By a similar argument as the one in the proof of item i) of Theorem 2.13 we have that
the second term on the right hand side in (4.32) is bounded from above by

1

ε

∫ t̃+ε

t̃

‖δ̂κt ‖
2d t +

1

ε

∫ ε

0

‖δ̂κt ‖
2d t. (4.34)

Therefore, by using (4.33) and (4.34) in (4.32) we get that

∫ t̃

0











1

ε

∫ t+ε

t

δ̂κr dr











2

V1

d t ≤
1

κ

s

∫ t̃

0

1

ε

∫ t+ε

t

‖ρ∞s ‖
2
γ/2dsd t

√

√

√

√

∫ t̃

0











1

ε

∫ t+ε

t

δ̂κr dr











2

γ/2

d t

+
1

ε

∫ t̃+ε

t̃

‖δ̂κt ‖
2d t +

1

ε

∫ ε

0

‖δ̂κt ‖
2d t.

(4.35)

Taking ε → 0, using Lebesgue’s differentiation theorem (see Theorem 1.35 in [19])
and the fact that δ̂κ0 = 0 we get that

∫ t̃

0

‖δ̂κt ‖
2
V1

d t ≤
1

κ

s

∫ t̃

0

‖ρ∞t ‖
2
γ/2d t

s

∫ t̃

0

‖δ̂κt ‖
2
γ/2d t + ‖δ̂κt̃ ‖

2,

for all t̃ ∈ [0, T]. Integrating the previous expression over [0, T] and using the Cauchy-
Schwarz’s inequality we get that
∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
V1

d td t̃ ≤
1

κ

s

∫ T

0

∫ t̃

0

‖ρ∞t ‖
2
γ/2d td t̃

s

∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
γ/2d td t̃ +

∫ T

0

‖δ̂κt̃ ‖
2d t̃

®
1

κ

s

∫ T

0

∫ T

0

‖δ̂κt ‖
2
γ/2d td t̃ +

1
p
κ

,

®
1

κ

s

2T

∫ T

0

‖ρ̂κt ‖
2
γ/2 + ‖ρ

∞
t ‖

2
γ/2d t +

1
p
κ

,

®
1

κ

p

(κ+ 2) +
1
p
κ

.

(4.36)

In the second inequality above we used the fact that ρ∞ ∈ L2(0, T ;H γ/2) (see item i)
of Lemma 4.3) and (4.29), while in the third inequality of we used Minkoski’s inequal-
ity and the fact that (a+ b)2 ≤ 2a2 + 2b2. And finally, the last inequality of (4.36) is
true since ρ∞ ∈ L2(0, T ;H γ/2) and item i) of Theorem 3.2.

Then, by a simple computation we have that
∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
V1

d td t̃ ®
1
p
κ

. (4.37)

By Fubini’s theorem, we have that
∫ T

0

∫ t̃

0

‖δ̂κt ‖
2
V1

d td t̃ =

∫ T

0

(T − t)‖δ̂κt ‖
2
V1

d t ≥
T

2

∫ T/2

0

‖δ̂κt ‖
2
V1

d t. (4.38)

The result now follows from (4.37) and (4.38).
�
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5. PROOF OF THEOREM 2.15

In this section we prove items i) and ii) of Theorem 2.15. Now we are interested in
analyzing the convergence of the stationary solution ρ̄κ as κ→ 0 and κ→∞. From
Definition 2.9, for κ≥ 0, and for ϕ̄κ = ρ̄κ − ρ̄∞ we have that ϕ̄κ ∈H γ/2

0 and

〈ϕ̄κ,−LG〉+κ〈ϕ̄κ, G〉V1
= Iρ̄∞(G), (5.1)

for any test function G of compact support included in (0,1). Above Iρ̄∞ :H γ/2
0 → R is

a linear form defined by Iρ̄∞(G) = 〈ρ̄∞,LG〉. Moreover, this linear form is continuous.
Indeed, using integration by parts given in Proposition 3.3 in [14] we have that

|Iρ̄∞(G)|=

�

�

�

�

�

∫ 1

0

ρ̄∞(u)LG(u)du

�

�

�

�

�

=
cγ
2

�

�

�

�

�

∫∫

[0,1]2

(ρ̄∞(u)− ρ̄∞(v))(G(u)− G(v))
|u− v|γ+1 dvdu

�

�

�

�

�

≤ ‖ρ̄∞‖γ/2‖G‖γ/2 <∞.

(5.2)

Above we used the Cauchy-Schwarz’s inequality and the fact that ‖ρ̄∞‖γ/2 is finite (see
(4.1)). Therefore, |Iρ∞(G)|®‖G‖H γ/2

0
.

Then it is enough to analyze the behavior of ϕ̄κ. We claim that we can take G = ϕ̄κ

in (5.1). The justification is postponed to the end of the proof. Whence, from (5.2) we
have that

‖ϕ̄κ‖2
γ/2 +κ‖ϕ̄

κ‖2
V1
= Iρ̄∞(ϕ̄

κ)®‖ϕ̄κ‖γ/2, (5.3)

from where we conclude that ‖ϕ̄κ‖γ/2 <∞. Plugging this back into (5.3) we get that

‖ϕ̄κ‖V1
®

1
p
κ

. (5.4)

Now, note that ϕ̄0 ∈H γ/2
0 satisfies 〈ϕ̄0,−LG〉= Iρ̄∞(G), for any function G ∈ C∞c ((0, 1)).

Then ϕ̄κ − ϕ̄0 satisfies

〈ϕ̄κ − ϕ̄0,−LG〉+κ〈ϕ̄κ, G〉V1
= 0,

for any function G ∈ C∞c ((0,1)). We claim that we can take G = ϕ̄κ−ϕ̄0 in the previous
equality. The proof is analogous to the one done at the end of this section. Thus, we
get that

‖ϕ̄κ − ϕ̄0‖2
γ/2 = k〈ϕ̄κ, ϕ̄0 − ϕ̄κ〉V1

≤ κ‖ϕ̄κ‖V1
‖ϕ̄κ − ϕ̄0‖V1

.

From (5.4) and fractional Hardy’s inequality given in (4.2) we have that

‖ϕ̄κ − ϕ̄0‖2
γ/2 ®

p
κ‖ϕ̄κ − ϕ̄0‖V1

®
p
κ‖ϕ̄κ − ϕ̄0‖γ/2,

from where we conclude that ‖ϕ̄κ − ϕ̄0‖γ/2 ®
p
κ. Then ϕ̄κ converges to ϕ̄0, as k→ 0

in the ‖ · ‖γ/2 norm. So far we proved item i).

Remark 5.1. From fractional Hardy’s inequality (see 4.2) the convergence is also true in
L2

V1
and since

‖ϕ̄κ − ϕ̄0‖V1
≥ V1(

1
2
)‖ϕ̄κ − ϕ̄0‖

we conclude that the convergence also holds in L2.
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For item ii), by (5.4) we get that ‖ϕ̄κ‖V1
→ 0 and so ‖ϕ̄κ‖ → 0 as k→∞.

We conclude this proof by showing that we can take G = ϕ̄κ in (5.1). Indeed, since
C∞c ((0, 1)) is dense inH γ/2

0 , there exists a sequence {H̄κn}n≥1 in C∞c ((0, 1)) converging
to ϕ̄κ, i.e, ‖H̄κn − ϕ̄

κ‖γ/2→ 0 as n→∞. Observe that as a result of the latter and (4.2)
we also have ‖H̄κn − ϕ̄

κ‖V1
→ 0 as n→∞. Using the Cauchy-Schwarz’s inequality we

have that

〈ϕ̄κ, H̄κn − ϕ̄
κ〉γ/2 ≤ ‖ϕ̄κ‖γ/2‖H̄κn − ϕ̄

κ‖γ/2,

〈ϕ̄κ, H̄κn − ϕ̄
κ〉V1
≤ ‖ϕ̄κ‖V1

‖H̄κn − ϕ̄
κ‖V1

,

Iρ̄∞(H̄
κ
n − ϕ̄

κ)≤ ‖ρ̄∞‖γ/2‖H̄κn − ϕ̄
κ‖γ/2,

all going to 0 as n→∞. Thus, we can rewrite (5.1) as

〈ϕ̄κ,−Lϕ̄κ〉+ 〈ϕ̄κ,−L(H̄κn − ϕ̄
κ)〉+κ(〈ϕ̄κ, ϕ̄κ〉V1

+ 〈ϕ̄κ, H̄κn − ϕ̄
κ〉V1
) = Iρ̄∞(ϕ̄

κ) + Iρ̄∞(H̄
κ
n − ϕ̄

κ).

Now it is enough to take n→∞.

�

6. UNIQUENESS OF WEAK SOLUTIONS

In this section we prove Lemmas 2.8 and 2.11. For Lemma 2.8, we only focus in
the proof of the uniqueness for the weak solutions of (2.10) for κ̂ = κ. The proof of
the uniqueness of the weak solutions of (2.10) for κ = 0 and (2.12) is analogous, the
difference is that only the first two items in Lemma 6.1 below are required. Finally, in
Subsection 6.2 we prove Lemma 2.11.

6.1. Proof of Lemma 2.15. Let ρκ,1 and ρκ,2 two weak solutions of (2.10) with the
same initial condition and let us denote ρ̃κ = ρκ,1 −ρκ,2. For almost every t ∈ [0, T],
we identify ρ̃κt with its continuous representation on [0,1]. Therefore, by Remark 2.4

we have ρ̃κt (0) = ρ̃
κ
t (1) = 0. Since H γ/2

0 is equal to the set of functions in H γ/2

vanishing at 0 and 1 we have that ρ̃κt ∈H
γ/2

0 for a.e. time t ∈ [0, T] and, in fact, ρ̃κ ∈
L2(0, T ;H γ/2

0 ). Moreover, for any t ∈ [0, T] and all functions G ∈ C1,∞
c ([0, T]×(0, 1))

we have

〈ρ̃κt , Gt〉 −
∫ t

0

D

ρ̃κs ,
�

∂s +L
�

Gs

E

ds+κ

∫ t

0

¬

ρ̃κs , Gs

¶

V1
ds = 0. (6.1)

Note that, it is easy to show that C1,∞
c ([0, T]× (0,1)) is dense in L2(0, T ;H γ/2

0 ).
Let {Hκn}n≥1 be a sequence of functions in C1,∞

c ([0, T]× (0, 1)) converging to ρ̃κ with

respect to the norm of L2(0, T ;H 1/2
0 ) as n→∞. For n≥ 1, we define the test functions

∀t ∈ [0, T], ∀u ∈ [0,1], Gκn (t, u) =
∫ T

t
Hκn (s, u) ds. Plugging Gκn into (6.1) and

letting n→∞ we conclude by Lemma 6.1 below that
∫ T

0

‖ρ̃κs ‖
2ds+

1

2







∫ T

0

ρ̃κs ds






2

γ/2
+
κ

2







∫ T

0

ρ̃κs ds






2

V1

= 0. (6.2)

Recall that 〈·, ·〉V1
(resp. ‖ · ‖V1

) is the scalar product (resp. the norm) corresponding to
the Hilbert space L2

V1
.

Then, it follows that for almost every time s ∈ [0, T] the continuous function ρ̃κs is
equal to 0 and we conclude the uniqueness of the weak solutions to (2.10).
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Lemma 6.1. Let {Gκn}n≥n be defined as above. We have

i) lim
n→∞

∫ T

0

¬

ρ̃κs , (∂sG
κ
n )(s, ·)

¶

ds =−
∫ T

0

‖ρ̃κs ‖
2ds.

ii) lim
n→∞

∫ T

0

¬

ρ̃κs ,LGκn (s, ·)
¶

ds =−
1

2







∫ T

0

ρ̃κs ds






2

γ/2
.

iii) lim
n→∞

∫ T

0

¬

ρ̃κs , Gκn (s, ·)
¶

ds =
1

2







∫ T

0

ρ̃κs ds






2

V1

<∞.

Proof. The proof of this lemma is quite similar to the proof of items i), ii) and iii) in
the proof of Lemma 4.2. For that reason we just sketch the main steps of the proof and
we leave the details to the reader. For i) we have that

−
∫ T

0

¬

ρ̃κs , (∂sG
κ
n )(s, ·)

¶

ds =

∫ T

0




ρ̃κs , Hκn (s, ·)− ρ̃
κ
s

�

ds+

∫ T

0

‖ρ̃κs ‖
2ds, (6.3)

and by the Cauchy-Schwarz inequality,
�

�

�

�

�

∫ T

0




ρ̃κs , Hκn (s, ·)− ρ̃
κ
s

�

ds

�

�

�

�

�

≤

s

∫ T

0

‖ρ̃κs ‖
2 ds

s

∫ T

0

‖Hκn (s, ·)− ρ̃
κ
s ‖

2 ds (6.4)

which goes to 0 as n→∞.
For ii), we first use the integration by parts formula for the regional fractional Lapla-

cian (see Theorem 3.3 in [14]) to get
∫ T

0

¬

ρ̃κs ,LGκn (s, ·)
¶

ds =−
∫ T

0

D

ρ̃κs , Gκn (s, ·)
E

γ/2
ds,

and as in ii) in the proof of Lemma 4.2 we have that
∫ T

0

D

ρ̃κs , Gκn (s, ·)
E

γ/2
ds =

1

2







∫ T

0

ρ̃κs ds






2

γ/2
+

∫ T

0

D

ρ̃κs ,

∫ T

s

�

Hκn (t, ·)− ρ̃
κ
t

�

d t
E

γ/2
ds.

Now, note that the term on the right hand side of last expression vanishes as n→∞ as
a consequence of a successive use of Cauchy-Schwarz’s inequalities. The proof of iii)
is similar to the proof of ii) by using the fractional Hardy’s inequality (see (4.2)) and
since C∞c ((0, 1)) is dense in Hγ/20 we have that any g ∈ Hγ/20 is also in the space L2

V1
and

that (4.2) remains valid for g. In particular, we have that the right hand side of iii) is
finite. We have
∫ T

0

D

ρ̃κs , Gκn (s, ·)
E

V1

ds =
1

2







∫ T

0

ρ̃κs ds






2

V1

+

∫ T

0

D

ρ̃κs ,

∫ T

s

�

Hκn (t, ·)− ρ̃
κ
t

�

d t
E

V1

ds.

(6.5)

To conclude the proof of iii) it is sufficient to prove that the term on the right hand side
of last expression vanishes as n→∞. But this is a consequence of a successive use of
the Cauchy-Schwarz inequalities and Hardy’s inequality, from which we get

�

�

�

�

�

∫ T

0

D

ρ̃κs ,

∫ T

s

�

Hκn (t, ·)− ρ̃
κ
t

�

d t
E

V1

ds

�

�

�

�

�

≤ C T

s

∫ T

0





ρ̃κs







2

γ/2
ds

s

∫ T

0





Hκn (t, ·)− ρ̃
κ
t







2

γ/2
d t −−→

n→∞
0.
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The proof of the uniqueness of the weak solutions of (2.10) for κ = 0 is analogous,
the difference is that only the first two items in Lemma 6.1 above are required. The
uniqueness of the weak solutions of (2.12) is analogous as well, in this case only items
i) and iii) in Lemma 6.1 above are required.

�

6.2. Proof of Lemma 2.11. Recall (5.1). As we will see below, by Lax-Milgram’s
Theorem (see [5]), there exists a unique function ϕ̄κ̂ ∈ H γ/2

0 which is solution of
(5.1). Then, it is not difficult to see that ρ̄κ̂ := ϕ̄κ̂+ ρ̄∞ is the desired weak solution of
(2.14). For that purpose, let aκ̂ :H γ/2

0 ×H γ/2
0 → R be the bilinear form defined, for

G, F ∈H γ/2
0 , as

aκ̂(F, G) = 〈F, G〉γ/2 + κ̂〈F, G〉V1
. (6.6)

From Lax-Milgram Theorem, in order to conclude the existence and uniqueness it is
enough to prove that aκ̂ is coercive and continuous. For κ̂ > 0, we can easily see that

aκ̂(G, G)≥min{1, κ̂V1(
1
2
)}
�

‖G‖2
γ/2 + ‖G‖

2
�

=min{1, κ̂V1(
1
2
)}‖G‖2

H γ/2
0

.

For κ̂= 0, since onH γ
0 the norms ‖ · ‖γ/2 and ‖ · ‖H γ/2 are equivalent we have that

a0(G, G) = ‖G‖2
γ/2 ¦ ‖G‖

2
H γ/2

0

.

Therefore aκ̂ is coercive for κ̂≥ 0. Moreover, by using the Cauchy-Schwarz’s inequality
we obtain that

|aκ̂(F, G)| ≤ ‖F‖γ/2‖G‖γ/2 + κ̂(‖F‖V1
‖G‖V1

).
From the fractional Hardy’s inequality (see (4.2)) we have that

|aκ̂(F, G)|® (κ̂+ 1)(‖F‖γ/2‖G‖γ/2)

and since onH γ/2
0 the norms ‖ · ‖γ/2 and ‖ · ‖H γ/2 are equivalent, we conclude that the

bilinear form aκ̂ is continuous for κ̂≥ 0. This end the proof.
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APPENDIX A. COMPUTATIONS INVOLVING THE GENERATOR

Lemma A.1. For any x 6= y ∈ ΛN , we have
i) L0

N (ηxηy) = ηx L0
Nηy +ηy L0

Nηx − p(y − x)(ηy −ηx)2,
ii) L r

N (ηxηy) = ηx L r
Nηy +ηy L r

Nηx ,
iii) L`N (ηxηy) = ηx L`Nηy +ηy L`Nηx .
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Proof. For i) we have, by definition of L0
N , that

L0
N (ηxηy) =

1

2

∑

x̄ , ȳ∈ΛN

p( ȳ − x̄)
�

(σ x̄ , ȳη)x(σ
x̄ , ȳη)y −ηxηy

�

=
1

2

∑

x̄ , ȳ∈ΛN

p( ȳ − x̄)
�

((σ x̄ , ȳη)xηy −ηxηy) + ((σ
x̄ , ȳη)yηx −ηxηy)+

+(σ x̄ , ȳη)x(σ
x̄ , ȳη)y − (σ x̄ , ȳη)xηy − (σ x̄ , ȳη)yηx +ηxηy

�

=ηx L0
Nηy +ηy L0

Nηx +
1

2

∑

x̄ , ȳ∈ΛN

p( ȳ − x̄)
�

(σ x̄ , ȳη)x −ηx

��

(σ x̄ , ȳη)y −ηy

�

=ηx L0
Nηy +ηy L0

Nηx − p(y − x)(ηy −ηx)
2.

In order to prove ii), note that
�

(σ x̄η)x −ηx

��

(σ x̄η)y −ηy

�

is equal to zero, for all
x̄ ∈ Z. Thus, by definition of L r

N , we have that

L r
N (ηxηy) =

∑

x̄∈ΛN , ȳ≥N

p( ȳ − x̄)
�

η x̄(1− β) + (1−η x̄)β
�

�

(σ x̄η)x(σ
x̄η)y −ηxηy

�

= ηx L r
Nηy +ηy L r

Nηx+
∑

x̄∈ΛN , ȳ≥N

p( ȳ − x̄)
�

η x̄(1− β) + (1−η x̄)β
�

�

(σ x̄η)x −ηx

��

(σ x̄η)y −ηy

�

= ηx L r
Nηy +ηy L r

Nηx .

The proof of the third expression is analogous. �
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