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Zinc oxide nano-enabled microfluidic reactor for water
purification and its applicability to volatile organic compounds
Imadeddine Azzouz1,*, Yamina Ghozlane Habba2,*, Martine Capochichi-Gnambodoe2, Frédéric Marty1, Jérôme Vial3,
Yamin Leprince-Wang2 and Tarik Bourouina1

This paper reports fast and efficient chemical decontamination of water within a tree-branched centimeter-scale microfluidic
reactor. The microreactor integrates Zinc oxide nanowires (ZnO NWs) in situ grown acting as an efficient photocatalytic
nanomaterial layer. Direct growth of ZnO NWs within the microfluidic chamber brings this photocatalytic medium at the very close
vicinity of the water flow path, hence minimizing the required interaction time to produce efficient purification performance. We
demonstrate a degradation efficiency of 95% in o5 s of residence time in one-pass only. According to our estimates, it becomes
attainable using microfluidic reactors to produce decontamination of merely 1 l of water per day, typical of the human daily
drinking water needs. To conduct our experiments, we have chosen a laboratory-scale case study as a seed for addressing the
health concern of water contamination by volatile organic compounds (VOCs), which remain difficult to remove using alternative
decontamination techniques, especially those involving water evaporation. The contaminated water sample contains mixture of
five pollutants: Benzene; Toluene; Ethylbenzene; m–p Xylenes; and o-Xylene (BTEX) diluted in water at 10 p.p.m. concentration of
each. Degradation was analytically monitored in a selective manner until it falls below 1 p.p.m. for each of the five pollutants,
corresponding to the maximum contaminant level (MCL) established by the US Environmental Protection Agency (EPA). We also
report on a preliminary study, investigating the nature of the chemical by-products after the photocatalytic VOCs degradation
process.

Keywords: microfluidic reactor; water purification; zinc oxide nanowires; volatile organic compounds (VOCs); Benzene, Toluene,
Ethylbenzene, m–p Xylenes, o-Xylene (BTEX)
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INTRODUCTION
Environmental pollution is a well-established major determining
factor for public health: waterborne diseases continue to kill over
two million lives per year1, which led The World Health
Organization (WHO) to set the water quality at the top of its
priority action list. Water is not only vital to all forms of life, as it is
also an unavoidable precious resource in a wide range of industrial
processes. On the other hand, an ever-increasing number of
endogenic pollutants of different natures (biological, agricultural,
pharmaceutical, and cosmetic) require active monitoring. How-
ever, this warning signal is contrasting a lot with the lack in low-
cost instrumentation, which might allow efficient tools for
monitoring of water quality and their accessibility at a global
scale. This holds true for the measurement systems that are
required for screening and quantifying the numerous water
pollutants.
Besides the needs of low-cost instrumentation for measuring

the amount of pollutants, the problem of chemical pollution can
also be addressed through a remediation strategy of depollution
and recycling; indeed water can be decontaminated in an efficient
manner, involving the use of different technologies including
adsorption2, microfiltration3, photo-Fenton4, and photocatalysis5.
In this area, Lab-On-Chip technologies may play an important role,
not only due to low cost but also due to intrinsic favorable scaling

laws of physics and chemistry; ultracompact optofluidic micro-
reactors inherit the merits of microfluidics, such as large surface/
volume ratio, easy flow control, and rapid fabrication while
keeping encouraging overlook for large volume photocatalytic
water treatment.
Important research efforts have been already carried out on

photocatalytic water purification within microfluidic reactors6–10,
also summarized in a recent review11. Still there is a margin of
progress in this field in which we aim to contribute herein.
First, most previous reports relate to the use of thin films as the

photocatalytic material. Only a few reports relate to
nanomaterials12–14 and most often than not, the photocatalytic
material is TiO2

15–18. ZnO is an interesting alternative to TiO2,
many research groups all over the world focused on this
promising research field: developments of ZnO-based photocata-
lyst in water treatment technology19–26. In a recent report of our
group, ZnO NWs were proven to be efficient photocatalyst27.
However, their use was demonstrated in static mode where time
constants are in the range of hours, due to the diffusion length,
which affects the length-scale limit of mass transfer during the
degradation process of polluted water28,29. Fortunately, it is
expected that microfluidic systems can provide ultrahigh purity
water by taking advantages of the appropriate size for reaction–
diffusion process, possibly leading to enhance the photocatalysis
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efficiency30–32. By matching the flow rate and reaction–diffusion
process of the ZnO nanostructure under UV illumination, a
practical microfluidic system based on parallel micro–nano-
structured pipelines will be developed for precisely control
ultrapurified water treatment.
In this report, we demonstrate the ZnO NWs integration within

a microfluidic reactor leading to a drastic reduction of the reaction
time, which dropped to a few seconds, thanks to the enhanced
diffusion time, with further capabilities of fine tuning the water
flow rate for proper control of the degradation efficiency. The
latter is also inherently enhanced due to the ability of the water
sample to flow easily through the confined reactor exhibiting
large surface to volume, facilitating high throughput and high-
speed interaction of water with the photocatalyst.
On the other hand, numerous demonstration of water

purification reported in the literature are based on the use of
model chemicals such as methylene blue (MB) and methyl orange
(MO), and/or on pollutants at rather high-concentration levels. In
this report, we demonstrate efficient degradation of a mixture of
VOCs at the parts per million (p.p.m.) concentration levels, chosen
to be initially higher than the maximum concentration limit (MCL),
which allow us to address a regulated heath concern for the
demonstration of our device capabilities. Several reports already
highlighted the increasing occurrence of VOCs in aquifers—
ascribed to both natural and anthropogenic factors, and the
related implications on human health through drinking water.
Consequently, there is an interest in quantifying those VOCs,
preferably in a selective manner, though on-site sampling and
analysis, for further decontamination actions when necessary. In
this frame, there are several implications of our work on VOC
decontamination by on-chip photocatalysis enhanced by ZnO
NWs. First, because VOCs have a lower boiling temperature
than water, they remain difficult to remove using alternative

purification technologies, which involve evaporation of water and
distillation. This holds true for the emerging solar-driven low-cost
technologies for seawater desalination and waste-water purifica-
tion. On the contrary, photocatalysis was proven to be efficient.
Nowadays, removal of VOCs is currently done using carbon-
activated filters. However, the efficiency of such filters requires
regular maintenance. With this respect, as photocatalysis lead to
decomposition of the VOC’s molecules, it appears as a more
sustainable technology. When implemented in the chip format, as
considered in our work, it has additional potential of low cost.

MATERIALS AND METHODS
Photocatalysis studies were carried out on a nano-enabled
microfluidic reactor (schematically depicted in Figure 1 and
described physically in Figure 2). This reactor was placed under
a ultravolet (UV) lamp of 365 nm (HAMAMATSU—LC8, Power
4500 mW cm− 2) shining the sample with normal incidence. The
distance UV lamp and sample has been maintained at 10 cm for all
photocatalysis experiments. Precise control of the flow rate of
water flowing through the microreaction chamber is achieved
using an electrically monitored syringe pump (PHD ULTRA,
Harvard apparatus) at flow rate levels ranging from 50 to
1000 μL min− 1. The water samples before and after being
decontaminated were analyzed using both gas chromatography
(GC) and optical spectroscopy. A UV–Vis spectrometer (Lambda
35, Perkin Elmer), FT-IR spectrometer (Spectrum two, Perkin Elmer,
Villebon sur Yvette, France) and gas chromatograph (Clarus 680,
Perkin Elmer) have been used.
The VOC mixture of Benzene, Toluene, Ethylbenzene, m–p-o

Xylenes (BTEX) was purchased from Restek (Lisses, France),
containing compounds at a concentration of 2000 μg mL− 1 in
methanol. In order to prepare the contaminated water samples,
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Figure 1 Schematic illustration of the experimental setup used for water decontamination. The microfluidic reaction chamber including ZnO
nanowires acting as photocatalyst is exposed to ultraviolet (UV) light while water is flowing, leading to purified water at the outlet.
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this mixture of VOCs was diluted in ultrapure water (18 MΩ cm
resistivity) obtained from a Millipore system (Milli-Q Gradient).
A bench-scale GC was used to evaluate the efficiency of the

degradation. The chromatograph was equipped with split–splitless
injector set at 120 °C and a flame ionization detector (FID) set at 250 °
C. Nitrogen was used as a carrier gas. Hydrogen, air and nitrogen
were produced from a set of gas generators (Peak scientific).
Hydrogen and air gas flow rates were set at 45 and 450mLmin−1,
respectively. Chromatographic separations to analyze BTEX solutions
before and after degradation were achieved on fast GC column
(10 m×10 μm×0.1 μm) from J&W Scientific CP-Sil 5. A Turbomatrix
40 head space autosampler was used to introduce samples
automatically directly into the GC. Chemstation software was used
for the data evaluation. The morphology of ZnO NWs was
characterized using a scanning electron microscope (SEM, NEON
40 ZEISS) operating at 10 kV accelerating voltage.

RESULTS AND DISCUSSION
Microreactor fabrication
The microfluidic chamber of the microreactor (Figure 2a) has been
fabricated on a double-sided polished silicon wafer (16 devices
per 4-inch diameter silicon wafer). A microfluidic chamber
including structuration with pillar arrays was fabricated by deep
reactive ion etching using an anisotropic standard Bosch process
leading to an etched microchamber depth of 150 μm. The
resulting silicon microstructuration is shown in the SEM micro-
graph of Figures 2b and 3. In order to enhance water interaction
with the walls through mixing and also to increase the total
surface area of the walls, the reactor chamber is decorated with a
double two-dimensional array of 120 μm-long almond-shaped
pillars with a periodicity of 240 μm. Furthermore, for better
homogeneity of the fluid flow inside the chamber, its input and
output are designed along a tree-branched, seven-level fractal
channel structure also shown in Figure 3, whose widths are 663,
389, 231, 134, 80, 45, and 27 μm, respectively. The structured

silicon wafer was then anodically bonded to a Pyrex substrate in
order to close the chamber. Inlet and outlet access holes to the
microchamber were etched on the Pyrex side. After assembly, the
wafer was diced to obtain 2 cm×1.5 cm microreactor chips. To
enable optional temperature programming of the microchip, two
platinum filaments (one 50Ω filament for resistive heating and
one 1000Ω filament for temperature sensing) were deposited by
sputtering on the backside of the wafer (Figure 2c). Those optional
on-board resistive heaters and temperature sensors can provide
further enhancement on the control of the chemical reactions, but
were not yet used in this preliminary work, where all experiments
have been conducted at room temperature of 20 °C.
The silicon microstructuration shown in Figures 3b and c aims

providing an additional hierarchy level for improving the ultimate
total expanded surface of the ZnO NWs exposed to water.
Figure 3a illustrates such hierarchical micro–nano structuration,
which was obtained in this case by the so-called static method. In
the present work, ZnO NWs were obtained by the so-called
dynamic method, involving flow of the growth solution inside the
microreactor described hereafter, that is after silicon was bonded
to glass. In the latter case, the aqueous solutions used for NWs
growth passes only through the microfluidic chamber leading to
in situ and localized growth of ZnO NWs within the chamber.
The ZnO NWs samples have been prepared using two-step

hydrothermal method similar to our previous work33, but adapted
here under dynamic flow regime. The first step consists in
injection of 1 mL buffer solution to the microchamber. For the
buffer solution preparation, the zinc acetate dihydrate (ZnA-
c2·2H2O, 0.01 M) was dissolved in the absolute ethanol (99.9%).
The coated microchamber was annealed in an oven for 15 min at
350 °C. The second step consists in also under dynamic flow
regime, the ZnO nanorods growth via hydrothermal process at
95 °C. For the ZnO nanorod growth, the hydrothermal solution
was prepared by mixing equimolar aqueous solutions (0.025 M) of
the zinc nitrate (Zn(NO3)2) and the hexamethylenetetramine
(HMTA). Control of all compositions was made by gravimetry on

1 μm

a b c

Figure 3 Hierarchical micro–nano structuration combining microscale structures obtained by deep reactive ion etching of silicon and further
growth of ZnO NWs using the static method. (a) Resulting micro–nano-structure with ZnO NWs, (b) close view of the silicon microstructure, (c)
view of the reactor tree-branched inlets to the chamber. ZnO NWs, Zinc oxide nanowires.

3 mm

a b c

5 mm

Figure 2 Micrographs showing overall views of the microreactor. (a) Top view of the reactor, (b) zoom showing the tree branches and the pillar
array within the chamber, (c) backside view of the reactor incorporating platinum resistors for optional temperature control.
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an analytical balance Mettler Toledo AM50 (accuracy 0.0001 g).
Figure 3a shows a typical morphology of the inner surface of
microchamber decorated by the ZnO nanorods, which is showing
an excellent crystallinity. In our previous work27,33, the micro-
structural properties of ZnO NWs have been investigated by XRD,
HRTEM and UV–Visible (UV–Vis) absorption spectroscopy. Typical
characterization results are given in Supplementary Material S2.
For convenience, those experiments have been carried out on the
ZnO NWs grown on bare silicon surfaces.

Water purification experiments
After functionalization with ZnO NWs, the microfluidic chamber
becomes a photocatalytic reaction chamber. The corresponding
chip is then mounted to a manifold and connected to the rest of
the setup via 10 cm-long, 200 μm-diameter tubes.
A calibrated solution of 10 p.p.m. was prepared by suitable

dilution in water of the BTEX mixture purchased from Restek. This
solution was introduced in a 10 mL syringe and mounted on a
syringe pump connected to the microreactor. The degraded BTEX
water solutions were collected from the outlet and analyzed by
both spectroscopic and chromatographic methods.
We started our study using UV absorption spectroscopy. We

performed a comparative analysis of the contents of water sample
before and after completion of the photocatalytic degradation after a
single pass through the microchamber decorated with ZnO NWs. A
control experiment was also performed using a similar microcham-
ber, which has no ZnO NWs. Figure 4a shows the results of this
comparison and Figure 4b gives the UV absorption spectra of each
VOC in the same wavelength range. We note that the absorption
spectrum after the control experiment (dashed line in Figure 4a) is
quite similar to the spectrum of the initially polluted water sample.
On the contrary, the absorption decreases significantly when using
the reactor that contains ZnO NWs. The difference before and after
the photocatalysis assisted by ZnO NWs is clearer in the spectral
range between 200 and 225 nm, where all VOCs have the maximum
absorption as shown in Figure 4b, even though we can also notice
some decrease in the spectral range around 260 nm. A control
experiment has been performed using a similar microfluidic
microchamber, which has no ZnO NWs. The corresponding result
of the absorption spectrum recorded after UV irradiation is shown in
the dashed line of Figure 4a. As it can be seen, there is no difference
between this absorption spectrum with the one obtained initially on
the polluted water sample, before UV irradiation. Obviously, one can
conclude from this first experiment that ZnO NWs are responsible of
the degradation process.
However, even though we have an overall reduction of the

absorption magnitude, one cannot distinguish in a selective
manner by which VOCs have been mostly affected by the

photocatalysis. In order to provide an answer, we made additional
analysis using chromatography as described hereafter. One can
also notice from Figure 4a that besides the decrease of absorption
after the purification step, we also have additional peaks that
appear. Indeed, the absorption spectrum extends above 225 nm
until 235 nm, suggesting that chemical by-products may have
been formed during the photocatalytic reaction. Nevertheless,
those by-products cannot be identified at this stage as UV
absorption spectroscopy appears not selective enough to
discriminate all compounds.
For the chromatography analysis of the BTEX compounds

dissolved in water, a method based on the use of GC analysis was
developed using static head space. The conditions were optimized
with respect to sample thermostating time and temperature.
Figure 5a shows superimposition of two chromatograms before
and after one-pass degradation under optimal conditions
(50 μL min− 1

flow rate). This enables in a selective manner that
all VOCs have been dropped below the threshold concentration
level of 1 p.p.m., which is equivalent to the MCL established by US
EPA34. Figure 5b shows repeatability measurement after a one-
pass photocatalysis showing almost the same contents after three
experiments. Furthermore, Supplementary Material S1 is provided
in order to further support the fact that ZnO NWs has an
important photocatalytic activity, which can be extended not only
to the five VOCs considered in this work, but also to three other
commonly used chemical dyes, namely methylene blue (MB),
methyl orange (MO), and Acid Red 14 (AR14). These results are
also supported by control experiments. The presented results on
Acid Red 14 (AR14) also show that ZnO NWs has an important
photocatalytic activity even at much higher concentrations than
the p.p.m. level, as considered in this work. Indeed, the results
shown in Supplementary Material S1 are related to concentration
levels of 10 mM (45000 p.p.m. for AR14). Furthermore, the results
shown in Supplementary Material S1 illustrate the fact that
photocatalytic activity of ZnO NWs is proven to be repeatable over
time, as the degradation efficiency is shown to be constant after
several repeated cycles of 3 h each. ZnO NWs are eventually found
to be stable over time in aqueous environment. It is worth
mentioning that potential dissolution and photodissolution of
ZnO has been reported in the literature35. It was found that these
effects occur at low pH values, below 5. In all our experiments, we
made sure that water was neutral, with pH values ranging from
6 to 7.
One can legitimately pose the question about the practical

usefulness of such microfluidic decontamination devices. A simple
calculation of orders of magnitudes can highlight the fact that if
one uses a flow rate of 700 μL min− 1 instead of 50 μL min− 1, it is
attainable to achieve decontamination of 1 l of water in only
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Figure 4 (a) Comparative analysis by ultraviolet (UV) absorption spectroscopy of a water sample before and after a single-pass photocatalysis
within the microreactor containing Zinc oxide nanowires (ZnO NWs). The results of a control experiment (without ZnO NWs) are shown in
dashed line. (b) Reference absorption spectra of volatile organic compounds (VOCs) of interest.
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1 day, which is consistent with the order of magnitude of daily
drinking water needs of humans. The only parameter that needs
to be adjusted with respect to the previous experiment is the flow
rate, hence the importance of studying the effect of this
parameter. A trade-off will certainly need to be found between
flow rate and the acceptable degradation efficiency because the
flow rate is one of the major factors that affects the degradation
efficiency in the microreactor system. The flow rate is indeed
related to the effective residence time (that is, the degradation
time) of the contaminated solution in the reaction chamber by the
following relationship:

Effective residence time ¼ Chamber volume
Flow rate

To investigate the effect of the flow rate, the solutions are pumped
at the different flow rates of 50, 100, 250, 500, and 1000 μL min−1,
respectively. The corresponding values for the effective residence
time (that is, the degradation time) are 8.8, 4.4, 1.8, 0.9, and 0.4 s,
respectively. The residual percentage of non-degraded pollutants is
plotted in Figure 6 as a function of flow rate. The data histograms
and the error bars represent the averaged values and the s.d.
following three repeated measurements, respectively.
The degradation percentage increases with the effective

residence time and reaches an average of 95% (corresponding
to the flow rate 50 μL min− 1). The trend of these results was
expected because the longer the residence time is, the more
photoreaction occurs. It is also not surprising that the degradation
is not linear with respect to residence time as a saturation trend is
expected at the ultimate an asymptotic value of 100%. Figure 6
also depicts the differences in term of degradation efficiency
between the five considered VOCs at a given flow rate. For
example, at a flow rate of 1000 μL min− 1, 51.3% of benzene is
degraded compared to 60.7% of degraded ethylbenzene.
Dead volume and related retention time are important

performance metrics in continuous mode purification. In our case,
the dead volume is the microchamber volume itself. Indeed,
nearly all the volume of the reactor can be occupied by water
because the height of the ZnO NWs does not exceed 1 μm, while
the height of the microreactor chamber is 150 μm and its lateral
dimensions are 7 × 7 mm, corresponding to a volume of 7.4 μL.
When combining with the flow-rate values considered in our work,
this leads to a retention time ranging from 441 ms to 8.8 s,
respectively, for flow rates of 1000 and 50 μL min− 1. According to
the best purification performance obtained at a flow rate of
50 μL min− 1, one can extrapolate the fact that a reaction time of
at least 8.8 s is sufficient for the case study under consideration
in this paper, which is also consistent with the well-known

advantages of microfluidic reactors in terms of reduced reaction
time. It is worth mentioning that these estimates of the retention
time are consistent with the volumes of purified water in a 5-s
single-pass, which ranges from 5 to 80 μL depending on the
flow rate.
According to our rather recent experience in water decontami-

nation using ZnO NWs, we found that reaching degradation
percentages in the order of 90–95% require different times
depending on the reactor size. This time ranges from hours,
minutes, and then seconds, for reactors whose characteristic
lengths are in the order of 10 cm, 1 mm, and 100 μm, respectively.
This scaling trend suggests that it is a diffusion-limited process,
which governs photocatalysis with ZnO NWs.
After the above quantification of the device performance in

terms of degradation efficiency and transit time, we started
pushing our investigation further. In addition to the residual
amounts of the five pollutants of the initial water sample, we were
indeed expecting to see other by-products of the photocatalysis.
But obviously, one can see from the upper chromatogram shown
in Figure 5a that only those residual five pollutants can be found,
at least using Micro-GC coupled with a flame ionization detector
(GC-FID). We then made new analysis using GC, but in this case, it
was combined with mass spectrometry, which provides better
selectivity and better signal to noise ratio. The corresponding
chromatograms are superimposed in Figure 5c. They relate to a
water sample analyzed before and after photocatalytic degrada-
tion at a flow rate of 250 μL min− 1. Here again, one can clearly
observe from these chromatograms that only the five VOCs can be
seen and there is no evidence of by-products that may have been
formed during the photocatalysis, at least in the explored range.
Similar results were obtained at different flow rates. It is therefore
tempting to conclude at this stage that the photocatalysis of the
five VOC pollutants led to a complete degradation of the VOC
molecules. However, further experiments and investigations are
still needed and will be conducted in the near future to elaborate
more on the nature of the by-products formed during the
photocatalytic reaction.

CONCLUSION
In this work, a nano-enabled photocatalytic microreactor for
water purification was successfully fabricated by in situ
growth of ZnO nanowires within a microfluidic chamber
(7 mm×7 mm×150 μm). According to the large surface to
volume ratio of the ZnO nanowires and their proximity with the
water flow within the microfluidic chamber, the proposed
microreactor was proven to be very efficient and fast, as
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Figure 6 (a) Residual contents R (in %) and (b) corresponding errors ΔR (in %), for each VOC of the BTEX mixture after one-pass photocatalytic
purification for different values of the flow rate (from 50 to 1000 μL min− 1) calculated from peak areas (obtained by GC-FID). All measures
were repeated three times, errors bars correspond to the s.d.
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degradation up to 95% was achieved in o5 s. When considering
a flow rate of 250 μL min− 1, a realistic throughput is evaluated
enabling the purification of merely 0.4 l per day. This estimate is
based not only on the measured degradation efficiency versus
flow rate, but it is also supported by the fact that ZnO NWs
photocatalytic activity remains stable over time (cf.
Supplementary Material S1). The purification process of water
contaminated with a BTEX mixture was monitored and character-
ized through both chromatographic and optical spectroscopy
measurements. The subsequent research work will focus first on
determination of the chemical structure of the by-product(s),
revealed by our preliminary results. Moreover, stability and
recyclability being crucial performance metrics of the catalyst,
our detailed study conducted on ZnO NWs obtained by the static
method will be extended to the newly proposed catalytic bed
obtained through in situ grown ZnO NWs within the microfluidic
reactor, following methods inspired by prior works in this area36.
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