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Introduction

We study are relations of finite words, that is, binary relations R ⊆ A * × A * for a finite alphabet A. The study of these relations dates back to the works of Büchi, Elgot, Mezei, and Nivat in the 1960s [START_REF] Richard | Weak second-order arithmetic and finite automata[END_REF][START_REF] Elgot | On relations defined by generalized finite automata[END_REF][START_REF] Nivat | Transduction des langages de Chomsky[END_REF], with much subsequent work done later (e.g., [START_REF] Berstel | Transductions and Context-Free Languages[END_REF][START_REF] Choffrut | Relations over words and logic: A chronology[END_REF]). Most of the investigations focused on extending the standard notion of regularity from languages to relations. This effort has followed the long-standing tradition of using equational, operational, and descriptive formalisms -that is, finite monoids, automata, and regular expressions -for describing relations, and gave rise to three different classes of relations: the Recognizable, the Automatic (a.k.a. Regular [START_REF] Berstel | Transductions and Context-Free Languages[END_REF] or Synchronous [START_REF] Choffrut | Relations over words and logic: A chronology[END_REF]), and the Rational relations.

The above classes of relations can be seen as three particular examples of a much larger (in fact infinite) range of possibilities, where relations are described by special languages over extended alphabets, called synchronizing languages [START_REF] Figueira | Synchronizing relations on words[END_REF]. Intuitively, the idea is to describe a binary relation by means of a two-tape automaton with two heads, one for each tape, which can move independently one of the other. In the basic framework of synchronized relations, one lets each head of the automaton to either move right or stay in the same position. In addition, one can constrain the possible sequences of head motions by a suitable regular language C ⊆ {1, 2} * . In this way, each regular language C ⊆ {1, 2} * induces a class of binary relations, denoted Rel(C), which is contained in the class of Rational relations (due to Nivat's Theorem [START_REF] Nivat | Transduction des langages de Chomsky[END_REF]). For example, the class of Recognizable, Automatic, and Rational relations are captured, respectively, by the languages C Rec = {1} * • {2} * , C Aut = {12} * •{1} * ∪{12} * •{2} * , and C Rat = {1, 2} * . However, it should be noted that other well-known subclasses of rational relations, such as deterministic or functional relations, are not captured by notion of synchronization. In general, the correspondence between a language C ⊆ {1, 2} * and the induced class Rel(C) of synchronized relations is not oneto-one: it may happen that different languages C, D induce the same class of synchronized relations. There are thus fundamental questions that arise naturally in this framework: When do two classes of synchronized relations coincide, and when is one contained in the other? Our contribution is a precise algorithmic answer to this type of questions.

More concretely, given a binary alphabet 2 = {1, 2} and another finite alphabet A, a word w ∈ (2 × A) * is said to synchronize the pair (w 1 , w 2 ) ∈ A * × A * if, for both i = 1, 2, w i is the projection of w on A restricted to the positions marked with i. For short, we denote this by w = (w 1 , w 2 ) -e.g., (1, a) (1, b) (2, b) (1, a)(2, c) = (aba, bc). According to this definition, every word over 2 × A synchronizes a pair of words over A, and every pair of words over A is synchronized by (perhaps many) words over of 2 × A. This notion is readily lifted to languages: a language L ⊆ (2×A) * In this setup, one can define classes of relations by restricting the set of admitted synchronizations. The natural way of doing so is to fix a language C ⊆ 2 * , called control language, and let L vary over all regular languages over the alphabet 2 × A whose projections onto 2 are in C. Thus, for every regular C ⊆ 2 * , there is an associated class Rel(C) In addition, our results show that, for positive instances (C, D), one can effectively transform any regular C-controlled language L into a regular D-controlled language L so that L = L . By 'effectively transform' we mean that one can receive as input an automaton (or a regular expression) for L and produce an automaton (or a regular expression) for L . In particular, we show a normal form of control languages, implying that every synchronized class can be expressed through a control language of star-height at most 1.

Related work.

The formalization of a framework in which one can describe classes of word relations by means of synchronization languages is quite recent [START_REF] Figueira | Synchronizing relations on words[END_REF]. As already mentioned, the class containment problem was only addressed for the classes of Recognizable, Automatic and Rational relations, for which several characterizations have been proposed [START_REF] Figueira | Synchronizing relations on words[END_REF]. The formalism of synchronizations has been extended beyond rational relations by means of semi-linear constraints [START_REF] Figueira | Path logics for querying graphs: Combining expressiveness and efficiency[END_REF] in the context of path querying languages for graph databases.

The paper [START_REF] Bojańczyk | Transducers with origin information[END_REF] studies relations with origin information, as induced by non-deterministic (one-way) finite state transducers. Origin information can be seen as a way to describe a synchronization between input and output words -somehow in the same spirit of our synchronization languages -and was exploited to recover decidability of the equivalence problem for transducers. The paper [START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF] pursues further this principle by studying "distortions" of the origin information, called resynchronizations. Despite the similar terminology and the connection between origins and synchronizing languages, the problems studied in [START_REF] Bojańczyk | Transducers with origin information[END_REF][START_REF] Filiot | On equivalence and uniformisation problems for finite transducers[END_REF] are of rather different nature than our Class Containment Problem.

Organization. After the preliminaries on subclasses of regular languages, we define in Section 3 the framework of synchronized relations. Section 4 provides a roadmap with the three key ingredients of our characterization. Sections 5, 6 and 7 contain the technical details for these main ingredients. In Section 8 we discuss the computability of the characterization.

Preliminaries

We denote by N, Q the sets of non-negative integers and rationals. We use standard interval notation as in, for example, (a, b] Q = {c ∈ Q | a < c ≤ b}. A, B denote arbitrary finite alphabets, and 2 the special binary alphabet {1, 2}.

Words and shuffles.

For a word w ∈ A * , |w| is its length, and |w| a is the number of occurrences of symbol a in w. We denote by w [i, j] the factor of w between positions i and j (included), for 1 ≤ i ≤ j ≤ |w|, and we write w[i] for w [i, i]. We will also make use of the shuffle operation, which maps a finite set of words w 1 , . . . , w n to the language shuffle{w 1 , . . . , w n } of all words w for which there is a partition I 1 , . . . , I n of [1, |w|] so that each w i is the projection of w onto I i . For example, shuffle{ab, cd} = {abcd, cdab, acbd, acdb, . . . }. Regular languages. We use standard notation for regular expressions without complement, namely, for expressions build up from the empty set, the empty word ε and the symbols a ∈ A, using the operations •, ∪, and ( ) * . For economy of space and clarity we also use the abbreviated notation ( ) k , ( ) k * -which is a shorthand for (( ) k ) * -, ( ) ≥k , ( ) <k , and we identify regular expressions with the defined languages. For example, we may write

Parikh image. The

abbc ∈ a • b ≥2 • (c ∪ d) * , b(ab) * = (ba) * b and {a, b} * • c = (a ∪ b) * • c. Given u = a 1 • • • a n ∈ A * and v = b 1 • • • b n ∈ B * , we write u ⊗ v for the word (a 1 , b 1 ) • • • (a n , b n ) ∈ (A × B) * . Similarly, given U ⊆ A * , V ⊆ B * , we write U ⊗ V ⊆ (A×B) * for the set {u ⊗ v | u ∈ U, v ∈ V, |u| = |v|}.
The star-height of a regular expression is the maximum number of nestings of Kleene stars ( ) * . By abuse of terminology, when referring to the star-height of a language, we mean the star-height of some regular expression that represents it (in particular, we do not need to work with the minimum star-height over all expressions). Besides regular expressions, we also work with automata, and use classical techniques on them (notably, pumping arguments). Given an accepting run γ of an automaton A, we often identify cycles in it, that is, factors that start and end in the same state, and that can thus be pumped. Such cycles are called simple if they do not contain proper factors that are also cycles. Moreover, to avoid mentioning explicitly an automaton for a language L and a run of it, we call cycle of L (resp. simple cycle of L) the word spelled out by any cycle (resp. simple cycle) of any accepting run of the minimal deterministic automaton recognizing L, and denote the set of all cycles (resp. simple cycles) of L by cycles(L) (resp. simple-cycles(L)). We remark that, however, that the use of the minimal automaton as a presentation of a regular language L is only to avoid ambiguity when referring to the cycles of L -in fact, our results do not depend on determinism or minimality, and can thus be applied to arbitrary non-deterministic automata, without any difference in the characterizations we present.

A regular language C is concat-star (a.k.a. unit-form [START_REF] Badban | Semi-linear parikh images of regular expressions via reduction[END_REF]), if it is of the form

C = C * 1 u 1 C * 2 u 2 • • • C * n u n , ( )
for n ∈ N, words u 1 , . . . , u n , and regular languages C 1 , . . . , C n . Without loss of generality, we can always assume that the empty word does not belong to any of the languages C i . The following trivial decomposition lemma will be used throughout.

Lemma 1.

Every regular language is a finite union of concat-star languages.

The C * i 's from ( ) are called components of the concat-star language C. Note that (an expression of) a concat-star language as in ( ) has star-height 1 if and only if every

C i is finite. A component C * i is homogeneous if C * i ⊆ 1 * or C * i ⊆ 2 * . A component which is not homogeneous is called heterogeneous (e.g. C * i = {1, 2} *
). It will also be convenient to distinguish a few types of concat-star languages. We say that C is heterogeneous if it contains at least one heterogeneous component, otherwise it is homogeneous; smooth if every homogeneous component is a language of the form 1 k * or 2 k * , for some k > 0, and there are no consecutive homogeneous components; simple if it has star-height 1 and it is either homogeneous or smooth heterogeneous. Hereafter, by "simple language" we mean simple concat-star language. The picture below summarizes the different types of control languages, together with some separating examples. 

* (11) * 2 * (1 * 1) * 2 * 1 * (12) * 2 * 1 * (1 * 2) * 2 * 1 * 2 * (12) * 1 * 2 * (1 * 2) * (12) * 1 * ∪ (12) * 2 * (1 * 2) * ∪ (12) *
In Section 5 we will see that the Class Containment Problem is reduced to the case of finite unions of simple languages. The latter languages thus form the basis of our characterization.

3

Synchronized relations

A synchronization of a pair (w 1 , w 2 ) of words over A is a word over 2 × A so that the projection on A of positions labeled i is exactly w i , for i = 1, 2 -in other words, shuffle{1 |w1| ⊗ w 1 , 2 |w2| ⊗ w 2 } is the set of all synchronizations of (w 1 , w 2 ). For example, the words (1, a)(1, b) (2, a) and (1, a)(2, a) (1, b) are two possible synchronizations of the same pair (ab, a). Every word w ∈ (2 × A) * is a synchronization of a unique pair (w 1 , w 2 ), where w i is the sequence of A-letters corresponding to the symbol i in the first position of 2 × A.

We denote such pair (w 1 , w 2 ) by w and extend the notation to languages

L ⊆ (2 × A) * by L def = { w | w ∈ L}.
Given a regular language C ⊆ 2 * , we define the class of C C C-controlled relations as

Rel(C) def = L | L ⊆ C ⊗ A * is regular, A is some finite alphabet .
A slightly different definition is possible, which restricts the class of C-controlled relations to be over a fixed alphabet A, that is, one can define

Rel A (C) = { L | L ⊆ C ⊗ A * regular}.
As far as we are concerned with comparing classes of relations controlled by different languages, the two definitions are somehow interchangeable, in the sense that containment between classes is not sensible to whether we fix or not the alphabet. For example, we will see that, for any alphabet A with at least two symbols,

Rel A (C) ⊆ Rel A (D) iff Rel(C) ⊆ Rel(D).
For economy of space, we use C ⊆ Rel D and C = Rel D as shorthands for Rel(C) ⊆ Rel(D) and Rel(C) = Rel(D), respectively. The following properties are easy to verify.

Lemma 2. For every regular

C, D, C , D ⊆ 2 * , P1. if C ⊆ D, then C ⊆ Rel D; P2. if C ⊆ Rel D and C ⊆ Rel D , then C • C ⊆ Rel D • D and C ∪ C ⊆ Rel D ∪ D ; P3. if C ⊆ Rel D, then C * ⊆ Rel D * ; P4. if C ⊆ 1 * and D ⊆ 2 * , then C • D = Rel D • C; P5. if C is finite, then C • D = Rel D • C; P6. if C ⊆ Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds; P7. if C is homogeneous concat-star, then C = Rel i∈I 1 i * 1 ki 2 ˆ i * 2 ki for a finite I; P8. if C is homogeneous concat-star, C ⊆ Rel D if and only if π(C) ⊆ π(D).
Proof idea. P1 is immediate from definitions; henceforth we use it without referencing it. P2 and P3 follow readily from the following decomposition properties.

(a) For every R ∈ Rel(C • C ), there are R 1 , . . . , R n ∈ Rel(C), R 1 , . . . , R n ∈ Rel(C ) so that R = i R i • R i . (b) For every R ∈ Rel(C ∪ C ), there are R 1 ∈ Rel(C), R 2 ∈ Rel(C ) so that R = R 1 ∪R 2 . (c) For every R ∈ Rel(C * ), there are R 1 , . . . , R n ∈ Rel(C) and I ⊆ {1, . . . , n} * regular so that R = w∈I R w[1] • • • R w[|w|] . P4 can be verified by first decomposing any relation R ∈ Rel(C • D) into i R i •R i as in (a),

and then observing that in this case

i R i • R i = i R i • R i . For P5, it is easy to see that 1 • D = Rel D • 1 and 2 • D = Rel D • 2 for
any D, and thus by P2 this extends to commuting with arbitrary finite languages. For P6, observe that if C ⊆ Rel D then C ⊗ a * ∈ Rel(D) for a ∈ A, which means that π(C) ⊆ π(D). P7 is a consequence of P4 and the so-called Chrobak normal form for regular languages over unary alphabets [START_REF] Chrobak | Finite automata and unary languages[END_REF]. Finally, the proof of P8 is a variant of the proof that the operation of shuffle preserves regularity of languages.

Characterization of the Class Containment Problem

We give an overview of the main ingredients of our decision procedure for class containment.

Decomposition.

A first ingredient is a decomposition result for regular control languages into = Rel -equivalent finite unions of simple languages. Here we only state the result with a short proof sketch; the complete proof will be given in Section 5.

Proposition 3. Every regular language C ⊆ 2 * is effectively = Rel -equivalent to a finite union of simple languages.

Proof idea. One first applies Lemma 1, so as to decompose the regular language C into a finite union of concat-star languages. Then, the concat-star languages are further decomposed into unions of concat-star languages of star-height 1 Parikh ratios. The Parikh ratio of a pair

x = (n 1 , n 2 ) ∈ N 2 \ {(0, 0)} is ρ(x) = n1 n1+n2 .
We naturally extend this to non-empty words w ∈ 2 * by letting ρ(w) = ρ(π(w)) (this describes the proportion of 1's in w). We further extend the notation to languages: 

ρ(C) = {ρ(w) | w ∈ C \ {ε}}. Note that ρ(C) ⊆ [0, 1] Q . It is sometimes useful to think of ρ(C) as the cone Q π(C) = {q • π(w) | q ∈ Q, w ∈ C} inside the rational plane Q × Q.
(C) = 0, 1 2 Q , while ρ(D) = 0, 1 2 Q . ⇡(C) ⇡(D) 1 2 1 2 1 2 Q ⇡(C) 1 2 Q ⇡(D)
The following lemma summarizes the main properties of Parikh ratios that we will need.

Lemma 5. The Parikh ratio of a concat-star language C verifies the following properties:

1. If C = C * 1 u 1 • • • C * n u n , then ρ(cycles(C)) ⊆ [min i inf ρ(C * i ), max i sup ρ(C * i )] Q ; 2. Moreover, if C = D * for a finite D, then ρ(C) = ρ(cycles(C)) = [min ρ(D), max ρ(D)] Q .
Synchronizing morphisms. Another fundamental ingredient is the notion of synchronizing morphism, which intuitively relates the components of a concat-star language C to the components of a concat-star language D by comparing the Parikh ratios.

Let

C = C * 1 u 1 • • • C * n u n be a heterogeneous concat-star language and D = D * 1 v 1 • • • D * m v m any concat-star language. We say that a function f : [1, n] → [1, m] is a synchronizing morphism (abbreviated s.m.) from C to D if
it is monotonic: f (i) ≤ f (j) whenever i ≤ j; and it preserves Parikh-ratio:

for every i ∈ [1, n], ρ(C * i ) ⊆ ρ(D * f (i) ).
We write C s.m.

---→ D to denote the existence of such synchronizing morphism. By convention, if C is homogeneous, then we say that there is always a synchronizing morphism from C to D. In particular, u s.m.

---→ v for every u, v ∈ 2 * . The sole purpose of this trivial definition on homogeneous concat-star languages is to make the characterization statements simpler. Example 6. The following function f is a synchronizing morphism:

2 ⇤ 1 ⇤ (122 [ 12) ⇤ (122) ⇤ (112) ⇤ 1 ⇤ 2 ⇤ (22) ⇤ (22) ⇤ 1 ⇤ (122 [ 112) ⇤ (11 [ 111) ⇤ (12) ⇤ 2 ⇤ f a b c d Q ⇧((112) ⇤ ) Q ⇧((122) ⇤ ) Q ⇧((122 [ 12) ⇤ ) Q ⇧((122 [ 112) ⇤ ) a: b: c: d:
Observe that synchronizing morphisms are closed under composition and hence s.m.

---→ defines a pre-order on concat-star languages.

Class Containment Problem for simple languages. The existence of synchronizing morphism is the key property that characterizes ⊆ Rel on simple languages. A complete proof of the following proposition will be the theme of Section 6. ---→ D.

Note that the case of C homogeneous follows from P8. Intuitively, for any C smooth heterogeneous concat-star language of star-height 1, the characterization says that, C ⊆ Rel D iff π(C) ⊆ π(D) and for every component of C, there is a component of D that contains its Parikh ratio. Further, the matching between components is monotonic. For example, we have ( 12) * (112) * ⊆ Rel (12 ∪ 11122) * (121) * 1 * 2 * , because the Parikh ratios of (12) * and (112) * are included in those of (12 ∪ 11122) * and (121) * , respectively. On the other hand, we have (112) * (12) * ⊆ Rel (12 ∪ 11122) * (121) * 1 * 2 * because in this case there is no motononic matching between components.

Generalization to unions of simple languages. Section 7 concerns the generalization of the characterization to finite unions of simple languages, which cover arbitrary regular languages up to = Rel -equivalence. The previous characterization for simple languages thus constitutes the base case of our characterization. The lemma below allows a first generalization when C is a union of simple languages and D is a simple language.

Lemma 8. C 1 ∪ C 2 ⊆ Rel D iff C 1 ⊆ Rel D and C 2 ⊆ Rel D.
The analogous of Lemma 8 for unions on the right hand-side does not hold in general, as shown by the following example. 

C ⊆ Rel D 1 ∪ D 2 , although C ⊆ Rel D 1 and C ⊆ Rel D 2 .
Neither it holds that Parikh image containment together with the existence of s.m. to one of the disjuncts suffices. For instance, for C = (12

) * , D 1 = (1212) * , D 2 = 1 * 2 * , we have C ⊆ Rel D 1 ∪ D 2 although π(C ) ⊆ π(D 1 ∪ D 2 ) and C s.m. ---→ D 1 .
The characterization we provide is inductive on the number of languages that are unioned on the right hand-side. Concretely, for a union of two languages, we will show that

C ⊆ Rel D 1 ∪ D 2 iff C s.m. ---→ D i for some i and C \ [D i ] π ⊆ Rel D 3-i , where [D i ] π is the closure of D i under permutations, that is, [D i ] π def = {w ∈ 2 * | π(w) ∈ π(D i )}. The idea that underlies the proof of the necessity of our characterization is that C can be split into a disjoint union of C ∩ [D i ] π and C \ [D i ] π , in such a way that C ∩ [D i ] π ⊆ Rel D i and C \ [D i ] π ⊆ Rel D 3-i .
For finite unions of simple languages, we have the following characterization. A complete proof of this theorem will be the theme of Section 7.

Theorem 10. For finite unions C = i C i and D = j D j of simple languages, the following are equivalent: ---→ D 2 and π((1212) * 12) ⊆ π(D 2 ). Note that there's a caveat in the statement of Theorem 10:

C ⊆ Rel D, For all i π(C i ) ⊆ π(D) and there is j with C i s.m. ---→ D j . In addition, if C i is heterogen- eous, then C i \ [D j ] π is regular and C i \ [D j ] π ⊆ Rel j =j D j . Coming back to Example 9, note that ρ(C) = { 1 2 }, ρ(D 1 ) = [ 1 2 , 2 3 ] Q and ρ((122 ∪ 1122) * ) = [ 1 3 , 1 2 ] Q . Therefore, one can explain C ⊆ Rel D 1 ∪ D 2 by the fact of having C s.m. ---→ D 1 and C \ [D 1 ] π = (1212) * 12 ⊆ Rel D 2 ,
C i \[D j ] π needs to be regular.
And in fact this is not the case in general: if

C i = 1 * 2 * and D j = (12) * , we get a non-regular language C i \[D j ] π = {1 n 2 m | n = m}. However, provided C i s.m.
---→ D j for C i heterogeneous, we show that C i \ [D j ] π is effectively regular (in the sense that an automaton recognizing it can be computed from automata recognizing C i and D j ). This is a non-trivial fact, and will be proved in Section 5 (Proposition 12).

The second key ingredient is that if

C i ⊆ Rel D 1 ∪ • • • ∪ D n
, then there must be some j so that C i s.m.

---→ D j . This will be proved in Section 6 (Lemma 15).

Decomposition into simple languages

As already mentioned, we start by reducing the Class Containment Problem for arbitrary regular languages to the case of finite unions of simple languages (Proposition 3 below). We do this in two steps. First, we decompose regular languages into finite unions of concatstar languages of star-height 1 (Lemma 13 below). Then, we further decompose the latter languages into finite unions of simple languages (Lemma 14 below).

Unions of star-height 1 languages. Lemma 13 relies on two key results, which are also of independent interest. The first result is a normal form representation of the Parikh image π(C) of a concat-star language C. Formally, we say that a linear set x, P is in normal form if the elements of P are linearly independent. We extend this notion to semi-linear sets by saying that x1 , P 1 ∪ • • • ∪ xn , P n is in normal form if the vectors in i P i are linearly independent. In particular, in dimension 2, this means that there are at most two vectors in P . Note that if the representation of a semi-linear set is in normal form then all its linear sets are in normal form, but the converse does not hold -for example, consider 0, {(2, 0)} ∪ 0, {(3, 0)} . The following lemma shows that Parikh images of concat-star languages enjoy normal forms.

Lemma 11. For every concat-star language

C = C * 1 u 1 • • • C * n u n ,

there exists a normal form representation of its Parikh image π(C). Moreover, if C is infinite, the union of the period sets is {x

-, x+ }, where ρ(x -) = min j (inf ρ(C * j )) and ρ(x + ) = max j (sup ρ(C * j )).
Proof idea. Using some basic properties of Parikh images, we reduce to the case where C is a concatenation of expressions of the form u * (for u a non-empty word) or (u * 1 • • • u * n u) * (for u 1 , . . . , u n , u non-empty words). For any C in this form, the Parikh image of words in C can be expressed in terms of some words w -, w + such that π(w -) = x-and π(w + ) = x+ . Then, any word of C can be represented as a constrained iteration of these two words.

It is worth pointing out the difference with the normal form from [START_REF] Kopczyński | Parikh images of grammars: Complexity and applications[END_REF]. While the normal form of [START_REF] Kopczyński | Parikh images of grammars: Complexity and applications[END_REF] holds for arbitrary regular languages, our normal form holds only for concat-star languages over binary alphabets (e.g., it fails for (12) * ∪ 1 * ∪ 2 * ). Conversely, the normal form from [START_REF] Kopczyński | Parikh images of grammars: Complexity and applications[END_REF] does not guarantee the linear independence of the vectors in the union of the periods, as we do here instead. Proposition 12 below relies on such an additional property. (Also, [START_REF] Badban | Semi-linear parikh images of regular expressions via reduction[END_REF] gives a procedure to compute Parikh images, though no normal form is implied.)

The second result shows that, under certain conditions, one can intersect a regular language C by a language of the form [D] π = π -1 (π(D)), with D concat-star, and obtain a language that is again regular. This result not only enables the decomposition into starheight 1 languages, but will be used also later to formalize a recursive characterization of ⊆ Rel for unions of simple languages (cf. Section 7).

Proposition 12. Given C regular and

D concat-star so that ρ(cycles(C)) ⊆ ρ(cycles(D)), the languages C ∩ [D] π and C \ [D] π are effectively regular. If in addition D is of the form D * 1 u, then C ∩ [D] π ⊆ Rel D.
Proof idea. We exploit the fact that words in 2 * are in bijection with paths inside N 2 that originate in 0 = (0, 0) and, furthermore, that words with the same Parikh image correspond to paths with the same endpoints. The claim boils down to considering some word w ∈ 2 * and proving that, under suitable hypotheses, the path induced by w can be approximated by a path inside π(D) that stays sufficiently close to the former path. The use of Lemma 11 will be crucial here, since it gives a normal form i xi , P i for the latter set π(D). Intuitively, it implies that the words from [D] π are represented by paths that never get too far from the linear set 0, i P i . For example, by pairing this property with the assumption that ρ(cycles(C)) ⊆ ρ(cycles(D)), one can show that the path induced by a word w ∈ C stays close to 0, i P i , and hence also to π(D). Stronger variants of this property are shown, that take into account the exact displacement of points along the path induced by w from the points in π(D). These latter properties are used by suitable automata that recognize the languages

C ∩ [D] π and C \ [D] π .
As we explained in the proof sketch, the above proposition relies on the normal form for the semi-linear set π(D), which in turns relies on the fact that D is concat-star. The proposition does not hold if we replace D with an arbitrary regular language. For instance, consider C = 1(11) * 2(22) * and D = (12) * ∪ (11) * (22) * , and observe that ρ(cycles

(C)) = [0, 1] Q = ρ(cycles(D)), but C ∩ [D] π = {1(11) n 2(22) n | n ∈ N} is clearly not regular.
Although Proposition 12 is stated in full generality, that is, for every regular language C so that ρ(cycles(C)) ⊆ ρ(cycles(D)), in the proof of the decomposition result below we will use it only for a smooth heterogeneous concat-star language C so that C s.m.

---→ D (this is sufficient but not necessary for verifying the hypothesis ρ(cycles(C)) ⊆ ρ(cycles(D))).

Lemma 13. Every regular

C ⊆ 2 * is = Rel -equivalent to a finite union i D i of concat-star languages of star-height 1.
Towards the proof of this lemma, note that, by Lemma 1, C is a finite union of concatstar languages

C * 1 u 1 • • • C * n u n .
The lemma then follows from applying Claim 1 below to each component of the concat-star languages, and then using P2.

Claim 1. Every regular

D * is = Rel -equivalent to a finite union i D * i u i , with finite D i 's.
Proof idea of Claim 1. Since π(D * ) is a finite union of linear sets, from the latter we can extract languages of the form D * i u i . Then we can decompose D * as the union of D * ∩[D * i u i ] π . From there, the result follows easily from Proposition 12 and P2.

Unions of simple languages. We finally show how to decompose into simple languages. Lemma 14. Every concat-star C ⊆ 2 * of star-height 1 is = Rel -equivalent to a finite union i C i of simple languages.

Proof idea. By using the basic properties given in Lemma 2, we can reduce the problem to the case where C is of the form 1 k * 2 k * w * for some heterogeneous word w and some natural numbers k, k. This case is easy to prove by using again those basic properties.

As a corollary of Lemmas 13 and 14, we have our desired result. Proposition 3. Every regular language C ⊆ 2 * is effectively = Rel -equivalent to a finite union of simple languages.

Simple languages

We prove the characterization result for simple languages, which we recall here.

Proposition 7. For all simple C, D ⊆ 2 * , C ⊆ Rel D iff π(C) ⊆ π(D) and C s.m.
---→ D.

For the left-to-right direction, by P6,

C ⊆ Rel D implies π(C) ⊆ π(D). The proof that C ⊆ Rel D implies C s.m.
---→ D is given in a more general setup where D is a finite union of simple languages. This statement will be used in the characterization of the next section.

Lemma 15. For C a simple language and

D = i D i finite union of simple languages, if C ⊆ Rel D, then C s.m. ---→ D i for some i. In particular, for C, D simple languages, if C ⊆ Rel D, then C s.m.
---→ D. Further, the statement holds even if we consider Rel A -containment for any A with at least two letters.

Proof idea. The idea is to construct a relation R ∈ Rel(C) so that from R ∈ Rel(D), using suitable pumping arguments, one can extract a synchronizing morphism from C to some D i . The relation R must depend on both languages C, D, but the underlying alphabet can be fixed and taken binary, say A = {a, b}. For example, if C is of the form C * 1 and contains two words u -and u + with minimum and maximum Parikh ratios, and if the automaton for D has a single strongly connected component, then one can define the relation R =

(u -⊗ a |u -| ) * • (u + ⊗ b |u + | ) * . In this case, R ∈ Rel(D) would imply ρ(u -), ρ(u + ) ∈ ρ(D), and hence C s.m.
---→ D. This construction can be modified for more general languages C, D, by using words with different Parikh ratios from each component of C and by increasing the number of alternations between these ratios on the basis of the number of components of D. While the construction is more involved in the general case, and in particular needs to include iterations of words which are not necessarily of minimum or maximum Parikh ratios for a component, the intuition remains the same. Lemma 17. For every p, q > 0, finite C ⊆ 2 * , and u -, u + ∈ C so that ρ(u -) = min ρ(C)

and ρ(u + ) = max ρ(C), there exists a finite C ⊆ C * so that C * = Rel (u p -∪ u q + ) * • C .
In particular, the lemma implies that C * = Rel (u -∪ u + ) * • C for some finite C ⊆ C * and u -, u + words of C of minimum and maximum ratio. In other words, it just suffices to iterate two words from C and then append tails of bounded length to obtain the class Rel(C * ). With this in mind, we can easily prove our characterization for simple languages.

Proof idea of Proposition 7. The left-to-right direction follows from P6 and Lemma 15. For the opposite direction, the case where C is homogeneous is straightforward by P8. For C heterogeneous, we use P5 to we assume wlog that

C = C * 1 • • • C * n u and D = D * 1 • • • D * m v.
Since every C i is finite (recall that simple languages have star-height 1), we can consider words w i,-, w i,+ of minimum and maximum Parikh ratio. Using the normal form of Lemma 17 plus the existence of s.m., we obtain

C * i ⊆ Rel D * f (i) C i for a finite C i ⊆ C * i . Thus, C * 1 • • • C * n u ⊆ Rel D * j1 C 1 • • • D * jn C n u = Rel D * j1 • • • D * jn C 1 • • • C n u ⊆ Rel D * 1 • • • D * m v.

Regular languages

We now prove the characterization theorem for unions of simple languages. Thanks to this theorem and to Proposition 3, we will obtain an effective characterization for arbitrary regular languages, and thus solve the Class Containment Problem in its full generality.

Theorem 10. For finite unions C = i C i and D = j D j of simple languages, we have

C ⊆ Rel D if and only if for all i π(C i ) ⊆ π(D), there is j with C i s.m. ---→ D j and if C i is heterogeneous, then C i \ [D j ] π is regular and C i \ [D j ] π ⊆ Rel j =j D j .
Note in particular that the conditions in the characterization of Theorem 10 require that

C i \ [D j ] π is regular. Despite that, this property is always verified when C i s.m.
---→ D j and C i is heterogeneous by Proposition 12 from Section 5. Indeed, C i s.m.

---→ D j for C i heterogeneous implies that all components of C i are mapped to components of D j . In view of Lemma 5 and the fact that C i and D j have star-height 1, this implies that ρ(cycles(C i )) ⊆ ρ(cycles(D j )), and hence, by Proposition 12, C i \ [D j ] π is regular. We are now ready to prove the theorem.

Proof of Theorem 10. For the left-to-right implication, by Lemma 8, we have that C i ⊆ Rel D for every i. Containment of Parikh images follows then from P6. For any fixed i, if C i is homogeneous we have C i s.m.

---→ D j for every j, and if it is smooth heterogeneous, then Lemma 15 yields the existence of some j so that C i s.m.

---→ D j . By Proposition 12, C i \ [D j ] π is regular, and we now prove that

C i \ [D j ] π ⊆ Rel j =j D j . Take R ∈ Rel(C i \ [D j ] π ) and a regular L ⊆ (C i \ [D j ] π ) ⊗ A * so that L = R. Since C i \ [D j ] π ⊆ C i , we have R ∈ Rel(C i ) ⊆ Rel(D)
, by P1 and hypothesis. Let L ⊆ D ⊗ A * be a regular language so that L = L = R. Since the projection onto 2 of L and L have necessarily the same Parikh image, it follows that L ∩ (D j ⊗ A * ) = ∅, and thus that L ⊆ ( j =j D j ) ⊗ A * or, in other words, that R ∈ Rel( j =j D j ).

For the right-to-left implication, for ---→ D j for all k ∈ K. Since we also have that π(C k ) ⊆ π(D j ), by the right-to-left direction of Proposition 7, we have that C k ⊆ Rel D j for all k ∈ K. Then, from Lemma 8 it follows that C i ⊆ Rel D j ⊆ D. Since this happens for every C i , again by Lemma 8 the statement follows.

C i homogeneous, π(C i ) ⊆ π(D) implies C i ⊆ Rel D by P8. For C i heterogeneous, we have C i = (C i \ [D j ] π ) ∪ (C i ∩ [D j ] π ). By hypothesis plus property P1, C i \ [D j ] π ⊆ Rel D.

Decidability and complexity

We have given a characterization of the pairs C, D of regular languages that satisfy C ⊆ Rel D. We argue that this characterization is effective.

As explained in Section 7, there are three main steps that one need to take for deciding whether C ⊆ Rel D, for two given regular languages C, D: First, one needs to decompose C and D as finite unions i C i and j D j of simple languages. This preprocessing relies on two constructions: the computation of the normal form for semi-linear sets and the construction of an automaton for C ∩ [D] π , proving that is regular. A close inspection of these proofs in Section 5 shows that both procedures are effective, and thus so is the decomposition.

Then, based on the characterization of Theorem 10, one has to identify suitable synchronizing morphisms from each C i to some D j . This step boils down to checking whether two components C * i,i and D * j,j of concat-star languages satisfy ρ(C * i,i ) ⊆ ρ(D * j,j ). Thanks to the insight of Lemma 5, the containment of Parikh ratios and thus the existence of such synchronizing morphism is decidable.

Finally, the third step uses Theorem 10, reducing the problem i C i ⊆ Rel j D j to sub-problems of the form C i \ [D ji ] π ⊆ Rel j =ji D j , which has a smaller union in the right hand-side and thus can be solved recursively (but in principle non-elementary).

The above arguments show that the Class Containment Problem is decidable. Once we know that C ⊆ Rel D for two given regular languages C, D, it is reasonable to ask whether it is possible to resynchronize any relation from C to D, namely, whether there is an algorithm that transforms any automaton A recognizing L ⊆ C ⊗A * into an automaton A recognizing L ⊆ D ⊗ A * so that L = L . A close inspection to our decision procedure for C ⊆ Rel D gives a positive answer to the question. Indeed, all our proofs are constructive.

We can summarize the above arguments with the following corollary.

Corollary 18. There is a non-elementary algorithm that, given two regular languages

C, D ⊆ 2 * , decides whether C ⊆ Rel D.
There is also a non-elementary algorithm that, given an automaton for L ⊆ C ⊗ A * , constructs an automaton for some L ⊆ D ⊗ A * so that L = L , provided C ⊆ Rel D.

Discussion

The overall picture we obtain from our results is that Rel(C) ⊆ Rel(D) depends on comparing the ratio growth of the two coordinates on the cycles of the transition graph of the automata A C , A D recognizing C, D. Concretely, our reduction into synchronizing morphisms for simple languages can be thought of restricting our attention to cycles c 1 , . . . , c n of A C so that: c i+1 is reachable from c i , and c i or c i+1 is heterogeneous (recall that in a simple concat-star language, there are no consecutive homogeneous components). Intuitively, Rel(C) ⊆ Rel(D) whenever π(C) ⊆ π(D) and for every sequence of cycles c 1 , . . . , c n as before, there exists a corresponding sequence of cycles c 1 , . . . , c n in A D with the same properties so that c i and c i have the same Parikh ratio for every i.

We also recall (cf. proof of Lemma 15) that our characterization holds for the containment problem Rel(C) ⊆ Rel(D), but also for any variant with a fixed alphabet of cardinality at least 2. For the variant with a unary alphabet A, it is easy to see that Rel A (C) ⊆ Rel A (D) is equivalent to π(C) ⊆ π(D). As concerns relations of higher arity defined by control languages C ⊆ k * = [1, k] * , it is not clear if a similar characterization may hold. For example, the normal form of Lemma 11 does not generalize to control alphabets of more than two letters. Finally, we leave for future work the issue of determining the precise complexity of the Class Containment Problem.

A

Missing proofs to Section 3 Lemma 2. For every regular C, D, C , D ⊆ 2 * ,

P1. if C ⊆ D, then C ⊆ Rel D; P2. if C ⊆ Rel D and C ⊆ Rel D , then C • C ⊆ Rel D • D and C ∪ C ⊆ Rel D ∪ D ; P3. if C ⊆ Rel D, then C * ⊆ Rel D * ; P4. if C ⊆ 1 * and C ⊆ 2 * , then C • C = Rel C • C; P5. if C is finite, then C • C = Rel C • C; P6. if C ⊆ Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds; P7. if C is homogeneous concat-star, then C = Rel i∈I 1 i * 1 ki 2 ˆ i * 2 ki for a finite I; P8. if C is homogeneous concat-star, C ⊆ Rel D if and only if π(C) ⊆ π(D).
In order to prove Lemma 2, we will first prove the following decomposition properties.

Lemma A.1. For every regular C, C ⊆ 2 * , (a) If R ∈ Rel(C • C ), then R = i R i • R i for some R 1 , . . . , R n ∈ Rel(C), R 1 , . . . , R n ∈ Rel(C ). (b) If R ∈ Rel(C ∪ C ), then R = R 1 ∪ R 2 for some R 1 ∈ Rel(C) and R 2 ∈ Rel(C ). (c) If R ∈ Rel(C * ), then R = w∈I R w[1] • • • R w[|w|] for some regular I ⊆ {1, . . . , n} * and some R 1 , . . . , R n ∈ Rel(C). Proof. (a). Since R ∈ Rel(C • C ) there is some regular language L ⊆ (2 × A) * controlled by C • C with L = R. Let A = (Q, q 0 ,
δ, F ) be the NFA accepting L. For every w ∈ L there are w 1 C-controlled, w 2 C -controlled and q ∈ Q so that w 1 • w 2 = w and there is an accepting run of A that reads w 1 and reaches to q, and then from q reads w 2 and reaches a final state. We note this last fact as

w 1 ∈ L(A[q 0 , {q}]), w 2 ∈ L(A[q, F ]). For q ∈ Q let L q 1 = {w 1 | w 1 is C-controlled and w 1 ∈ L(A[q 0 , {q}])}, L q 2 = {w 2 | w 2 is C -controlled and w 2 ∈ L(A[q, F ])}.
It follows that L q 1 • L q 2 is (C • C )-controlled for every q ∈ Q, and we have

L q 1 • L q 2 = L q 1 • L q 2 ⊆ R. Moreover, by construction, q∈Q L q 1 • L q 2 = R.
It remains to see that each L q i is regular, which is true due to the following facts:

Let H q = {w ∈ (2 × A) * | w is C-controlled}, H q = {w ∈ (2 × A) * | w is C -controlled}.
This languages are regular by closure under inverse morphisms of regular languages (the morphism being (i, a) → i for every i ∈ 2, a ∈ A).

Let Lq

1 be the closure under prefixes of L and Lq 2 the closure under suffixes of L, these are regular since regular languages are closed under prefix closure and suffix closure. Finally, L q i is regular since it is the intersection of two regular languages:

L q 1 = Lq 1 ∩ H q , L q 2 = Lq 2 ∩ H q .
Note that the property does not necessary hold with n = 1. For example for

C = C = {1} and R = {(aa, ε), (bb, ε)}, since whenever R ⊆ R 1 • R 2 for some R 1 , R 2 ∈ Rel(C), we have that R 1 • R 2 contains also the pair (ab, ε). (b). Since R ∈ Rel(C ∪ C ), there is some regular language L ⊆ (2 × A) * controlled by C ∪ C with L = R. For every w ∈ L, w is either C-controlled or C -controlled. Let L 1 = {w ∈ L | w is C-controlled}, L 2 = {w ∈ L | w is C -controlled}. It follows that L 1 ∪ L 2 is (C ∪ C )-controlled and we have R = L 1 ∪ L 2 = L 1 ∪ L 2 .
It remains to see that each L i is regular, which is true due to the following facts:

Let H = {w ∈ (2 × A) * | w is C-controlled}, H = {w ∈ (2 × A) * | w is C -controlled}.
This languages are regular by closure under inverse morphisms of regular languages (the morphism being (i, a) → i for every i ∈ 2, a ∈ A).

Finally, L i is regular since it is the intersection of two regular languages:

L 1 = L ∩ H, L 2 = L ∩ H .
(c). We are going to use similar arguments to the ones used in the proof of (a). Specifically, instead of factorizing a word w ∈ L ⊆ (2 × A) * into an C-controlled prefix and an C -controlled suffix, we factorize it as w = w 1 • w 2 • • • w , for some ∈ N and some C-controlled words w 1 , w 2 , . . . , w , in such a way that there exist a sequence q 0 , . . . , q of states of A such that each language L qj-1,qj = L(A[q j-1 , q j ]) ∩ (C ⊗ A * ) contains the factor w j . Then we have that j=1 L qj-1,qj = j=1 L qj-1,qj ⊆ R. Moreover, by construction, q0...q ∈Q * j=1 L qj-1,qj = R, from which one easily obtains the desired equation by taking I = {(q 0 , q 1 )(q 1 , q 2 ) • • • (q l-1 , q l ) | q l is a final state} ⊆ Q 2 and R (q,q ) = L q,q .

Proof of Lemma 2. P1. It follows immediately from the definitions.

P2.

Let

R ∈ Rel(C • C ). By (a) there are R 1 , . . . , R n ∈ Rel(C) ⊆ Rel(D) and R 1 , . . . , R n ∈ Rel(C ) ⊆ Rel(D ) so that i R i • R i = R. It is straightforward from the definition of to verify that R i • R i ∈ Rel(D • D ) for all i.
And, from there, we finally get, using similar arguments, that

R = i R i • R i ∈ Rel(D • D ).
The proof for the union is similar but using (b) instead of (a).

P3. As we use (a) to prove P2, we can use (c) to prove that this property holds. Given R ∈ Rel(C * ), we know from (c) that there are some relations R 1 , . . . , R n ∈ Rel(C) and a regular language I ⊆ {1, . . . , n} * such that R = i∈I j=1,...,|i| R i[j] , where i[j] denotes the j-th letter of the word i ∈ I (in particular, i[j] ∈ {1, . . . , n}). Since R 1 , . . . , R n ∈ Rel(C) ⊆ Rel(D), there are some regular languages L 1 , . . . , L n ⊆ D ⊗ A * such that L 1 = R 1 , . . . , L n = R n . In particular, we derive that

R = i∈I j=1,...,|i| L i[j] = i∈I j=1,...,|i| L i[j] = I[k/L k ]
where I[k/L k ] denotes the language over 2×A that is obtained from I by substituting every letter k ∈ {1, . . . , n} with the corresponding regular language L k . From the fact that regular languages are closed under regular substitutions, we get that I[k/L k ] is a regular language too. Finally, it is easy to see that I[k/L k ] is controlled by D * , and hence R ∈ Rel(D * ).

P4. Let

A = (Q, q 0 , δ, F ) be a NFA so that L(A) is (C • C )-controlled (and thus L(A) ∈ Rel(C • C )). Note that L(A) = q∈Q L q0,q • L q,F for L q0,q = L(A[q 0 , {q}]) ∩ (C ⊗ A * ), L q,F = L(A[q, F ]) ∩ (C ⊗ A * ).
Since C and C have disjoint alphabets, we have that

L(A) = q∈Q L q0,q • L q,F = q∈Q L q,F • L q0,q ∈ Rel(C • C),
which proves the statement. P5. First note that, by the second assertion in P2, it is enough to prove the result for C = {w}, a singleton language. Moreover, by the first assertion of P2, it suffices to prove the result for the cases where w is a single letter (i.e. w = 1 or w = 2). We will prove it for w = 1, the other case is symmetric. We will see that Rel({1} • C ) ⊆ Rel(C • {1}), the other containment can be proved in a similar way.

Let R ∈ Rel({1} • C ) and A = (Q, q 0 , δ, F ) a NFA such that L(A) is {1} • C -controlled and L(A) = R. Let Q a 1 = {q ∈ Q | ∃
a transition (q 0 , (1, a), q 1 ) ∈ δ}. Consider an automaton A with states (q, a) ∈ Q × A and transitions δ = {((q, a ), (1, a ), (q , a))} a ∈A,(q,(1,a),q )∈δ ∪ {((q, a ), (2, a), (q , a ))} a ∈A,(q,(2,a),q )∈δ .

We don't specify its initial or final states because it is not necessary for our proof.

It is easy to check that a,a ∈A, q f ∈F,

q1∈Q a 1 L(A [(q 1 , a), {(q f , a )}]) • {(1, a )} = R
and that a,a ∈A, . By P2, to prove that the converse holds for any finite C, it is enough to prove it for C = {w} a singleton language. By hypothesis about Parikh images, there exist v ∈ D such that π(w) = π(w ). Then it suffices to prove that {w} ⊆ Rel {w }. For R ∈ Rel(w), consider a NFA A = (Q, q 0 , δ, F ) such that L(A) is w-controlled and L(A) = R. Since w and w have the same amount of 1's and 2's, for every w ⊗ v ∈ L(A), there exists a shuffle ṽ of v such that w ⊗ v = w ⊗ ṽ . Then we can construct a NFA A such that L(A ) = {w ⊗ ṽ | there exists w ⊗ v ∈ L(A) s.t. w ⊗ v = w ⊗ ṽ }. The result then follows immediately. 

q f ∈F, q1∈Q a 1 L(A [(q 1 , a), {(q f , a )}]) • {(1, a )} is a regular C • {1}-
P7. Let C = C * 1 u 1 • • • C * n u n be concat-
• C 2 , with C 1 ⊆ 1 * and C 2 ⊆ 2 * .
In particular, C 1 and C 2 are languages over unary alphabets. There is a special normal form for automata over unary alphabets, called Chrobak normal form [START_REF] Chrobak | Finite automata and unary languages[END_REF], that implies that all languages over the unary alphabet {1}, can be written as unions of languages of the form 1 i * 1 ki , for i ranging over a finite set I, and similarly for regular languages over {2}. This proves that

C = Rel C 1 • C 2 = i∈I 1 i * 1 ki 2 ˆ i * 2 ki .
P8. The proof is essentially based on the fact that regularity of languages is preserved under shuffles. Suppose that π(C) ⊆ π(D) and consider a regular language L ⊆ C ⊗ A * . By property P8 we can assume that C = i∈I 1 i * 1 ki 2 ˆ i * 2 ki , and hence

L = i∈I L 1,i • L 2,i , for some regular languages L 1,i ⊆ (1 i * 1 ki ) ⊗ A * and L 2,i ⊆ (2 ˆ i * 2 ki ) ⊗ A * . For each b ∈ {1, 2}
and i ∈ I, let A b,i be an automaton recognizing L b,i , and assume that the states spaces of the A b,i are pairwise disjoint. Further let D be an automaton recognizing D. We construct an automaton B that recognizes L ⊆ D ⊗ A * so that L = L . The automaton B has for states the triples of states A 1,i , A 2,i and D, for all i. When B is in a control state of the form (q 1 , q 2 , r), with q 1 state of A 1,i and q 2 state of A 2,i , and it reads a letter (b, a) ∈ 2 × A, it simulates a transition of D on b, which moves from r to r , and simultaneously a transition of A b,i on (b, a), which moves from q i to q i , and accordingly updates the control state to (q 1 , q 2 , r ), where q 3-b = q 3-b . Because π(C) ⊆ π(D), we know that B accepts all and only the words w ∈ D so that w ∈ shuffle{w 1 , w 2 } for some w 1 , w 2 , i so that w 1 ∈ L 1,i and w 2 ∈ L 2,i . This proves that w = w 1 w 2 .

B Missing proofs to Section 4

Lemma 5. The Parikh ratio of a concat-star language C verifies the following properties:

1. If C = C * 1 u 1 • • • C * n u n , then ρ(cycles(C)) ⊆ [min i inf ρ(C * i ), max i sup ρ(C * i )] Q ; 2. Moreover, if C = D * for a finite D, then ρ(C)(= ρ(cycles(C))) = [min ρ(D), max ρ(D)] Q .
Proof. For the first item, it is enough to prove that min i (inf(ρ(C * i ))) = inf(ρ(cycles(C))) (and similarly for the maximum). Note that w.l.o.g. we can assume that C is of the form

C * 1 • • • C * n since inf ρ(cycles(C)) = inf ρ(cycles(C * 1 • • • C * n )). Now, if C = C * 1 • • • C * n , every cycle w of C has Parikh image i π(w i ) for some words w i ∈ C * i ; therefore ρ(w) ≥ min i (inf(ρ(C * i ))). It follows then that inf(ρ(cycles(C))) ≥ min i (inf(ρ(C * i ))
). The other inequality follows from the fact that C * i ⊆ cycles(C) for all i. For the second item, consider an arbitrary rational number r ∈ [min ρ(D), max ρ(D)] Q . For convenience, we fix two words w -and w + in D so that ρ(w -) = min ρ(D) and ρ(w + ) = min ρ(D). Since r = ρ((w -) i • (w + ) j ) for some i, j, and C = D * , we have that r ∈ ρ(C).

Lemma 8. C 1 ∪ C 2 ⊆ Rel C iff C 1 ⊆ Rel C and C 2 ⊆ Rel C.
Proof. The left-to-right direction is immediate by transitivity of ⊆ Rel and language inclusion:

C i ⊆ Rel C 1 ∪ C 2 for i = 1, 2.
The right-to-left direction is a particular case of P2.

w 1 w 2 w 3 w 4 w 5 (1,1) (2,1) (1,0) (1,1)
(2,0)

Figure 1 Forest corresponding to (((12

w 1 ) * 1 w 2
) * (112

w 3 ) * 12 w 4
) * (11

w 5
) * .

C Missing proofs to Section 5

Lemma 11. For every concat-star language

C = C * 1 u 1 • • • C * n u n
, there exists a normal form representation of its Parikh image π(C). Moreover, if C is infinite, the union of the period sets is {x -, x+ }, where ρ(x -) = min j (inf ρ(C * j )) and ρ(x + ) = max j (sup ρ(C * j )).

For the proof of Lemma 11, we introduce the notion of forest-like regular expression, and we show that for every concat-star regular expression there is a forest-like expression with 'almost' the same Parikh image and finally, we reduce the proof of Lemma 11 to the case of forest-like expressions. We say that a regular expression is forest-like if it is defined by the following grammar:

F : def = ε | (F u) * | F F for u = ε.
We abstract each forest-like expression as a finite forest whose nodes are labelled with vectors from N 2 in the following way:

The forest associated to ε is the empty forest.

The forest associated to an expression (F u) * is a tree with a root labeled π(u) and set of children F, where F is the forest associated to F . The forest associated to an expression F 1 F 2 is the disjoint union of the forests F 1 and F 2 associated to F 1 and F 2 respectively. Note that, by definition of forest-like, the empty word is in every forest-like expression. Regardless that, no node of the corresponding forest carries a label (0, 0).

Example C.1. For the forest-like expression

F = (((12) * 1) * (112) * 12) * (11) *
we obtain the forest depicted in Figure 1. Intuitively, the ancestor relation represents the dependence between the non-empty words involved in F . Concretely, if a node corresponding to an occurrence of a word u is an ancestor of a node corresponding to an occurrence of a word v, then the regular expression F does not allow any iteration of that occurrence of v without iterating at least once that occurrence of u (have in mind that the same word could occur many times in the expression). In Figure 1 , the node labeled with (1, 0) corresponding to the word 1 in F will be an ancestor of the blue node labeled with (1, 1) corresponding with the first occurrence of 12 in F .

Lemma C.2. Given a concat-star regular expression

C = C * 1 u 1 • • • C * n u n , there exists a forest-like regular expression F such that π(C) = π(F u 1 • • • u n ).
Proof. We use the following simple facts about Parikh images. For all regular expressions D 1 , . . . , D n , D 1 , D 2 , words v 1 , . . . , v n and forest-like expression F we have:

1. π(( n i=1 D i ) * ) = π(D * 1 • • • D * n ); 2. π(D * 1 v 1 • • • D * n v n ) = π(D * 1 • • • D * n v 1 • • • v n ); 3. if π(D 1 ) = π(D 1 ) and π(D 2 ) = π(D 2 ), then π(D 1 D 2 ) = π(D 1 D 2 ); 4. if π(D 1 ) = π(D 1 ), then π((D 1 ) * ) = π((D 1 ) * ); 5. π(D 1 ε) = π(D 1 ) = π(εD 1 ); and 6. π(F * ) = π(F ).
We now prove the statement by induction on the star-height of C.

Base case: If C has star height 0, then C = {u 1 } and we take the forest-like expression F = ε.

Inductive step: Suppose that C has star-height s > 0. Then for every i = 1, . . . , n we have C i = j∈Ii C i,j for |I i | < ∞ and C i,j concat-star expressions of star-height strictly smaller than s for all j ∈ I i . Then, by inductive hypothesis, we have forest-like expressions F i,j such that π(F i,j u i,j ) = π(C i,j ) for some words u i,j for all i = 1, . . . , n and j ∈ I i . We can take

F = E 1,1 • • • E |I1|,1 • • • E 1,n • • • E |In|,n where 
E i,j = F i,j if u i,j = ε (F i,j u i,j ) * otherwise .
The result then follows from using fact 2 to move the u i 's to the end, then facts 1 and 3 combined to split the unions inside each C i , then facts 4 and 3 combined to apply the inductive hypothesis and finally facts 3, 4, 5 and 6 combined to get rid of possible empty words and useless nesting of stars.

Corollary C.3. For any expression of the form

C = C * 1 • • • C * n ,
and the forest-like expression F given by Lemma C.2, the forest associated to F has nodes i -, i + labelled xi -and xi + respectively, so that ρ(x i -) = min j (inf(ρ(C * j ))) and ρ(x i + ) = max j (sup(ρ(C * j ))).

Proof. Note that it is enough to prove that min

j (inf(ρ(C * j ))) = (1) inf(ρ(C)) = (2) inf(ρ(F )) = (3) min i∈I ρ(x i )
where I is the set of nodes of the forest and xi is the label of i ∈ I (the case of max is analogous).

( (3) By the grammar defining forest like expressions, every word w in F has Parikh image i∈I m i xi for some natural numbers m i ; therefore ρ(w) ≥ min i∈I ρ(x i ). It follows then that inf(ρ(F )) ≥ min i∈I ρ(x i ). For the other inequality, let i 0 ∈ I be such that ρ(x i0 ) = min i∈I ρ(x i ). Now observe that for all m ∈ N we can construct words w m ∈ F such that lim m→∞ ρ(w m ) = ρ(x i0 ) and ρ(w m ) ≥ ρ(x i0 ) for all m ∈ N (for example the ones that correspond to iterate a word with Parikh image xi0 m times and all the words corresponding to the ancestors of the node labeled xi0 once). Then inf(ρ(F )) ≤ min i∈I ρ(x i ).

) Since C = C * 1 • • • C * n , 1 
The following lemma is the last ingredient before giving the proof of Lemma 11.

Lemma C.4. For every non-empty words

u 1 , u 2 , u 3 ∈ 2 * such that ρ(u 1 ) ≤ ρ(u 2 ) ≤ ρ(u 3 ), there exist k 1 , k 2 , k 3 ∈ N such that k 1 > 0 and π(u k1 2 ) = π(u k2 1 • u k3 3 ). Moreover, if ρ(u 1 ) < ρ(u 2 ), we can choose k 3 > 0 and if ρ(u 2 ) < ρ(u 3 ), we can choose k 2 > 0.
Proof. Linear algebra.

Proof of Lemma 11. We assume, wlog, that

u 1 = • • • = u n = ε. Indeed, note that if we have a normal form representation i xi , P i of π(C * 1 • • • C * n ), it follows that we have the normal form i ȳ + xi , P i for π(C), where ȳ = π(u 1 • • • u n ).
Since we are only interested in the Parikh image of C, by Lemma C.2, wlog we can assume that we have a forest-like representation of C. Let I be the set of nodes of the corresponding forest and for all i ∈ I, let xi be the label of the node i. Let also ≺ ⊆ I × I be the ancestor relation.

Let's fix the following notation:

min j (inf(ρ(C * j ))) = c - d -with c -, d -coprime, max j (sup(ρ(C * j ))) = c + d + with c + , d + coprime. I -= {i ∈ I | ρ(x i ) = min j (inf(ρ(C * j )))}, I + = {i ∈ I | ρ(x i ) = max j (sup(ρ(C * j )))}, k -= lcm(k i | i ∈ I -) with k i such that xi = k i (c -, d --c -), k + = lcm(k i | i ∈ I + ) with k i such that xi = k i (c + , d + -c + ).
Then wlog we can assume (it doesn't change the Parikh image) that for every i ∈ I -, i has a sibling with label k -(c -, d --c -), and similarly for

I + . Let x-= k -(c -, d --c -) and x+ = k + (c + , d + -c + ). Then, for each i ∈ I, by Lemma C.4, there exist l i > 0, j i ≥ 0, k i ≥ 0 (j i , k i not both equal to 0) such that l i xi = j i
x-+k i x+ . Moreover, we can take j i = 0 if and only if i ∈ I -and k i = 0 if and only if i ∈ I + .

Let i -, i + ∈ I such that xi -= x-, xi + = x+ , and

N 0 = max({( s≺i -j s + s≺i + j s ) li ji + l i -1} i∈I\I + , {( s≺i -k s + s≺i + k s ) li ki + l i -1} i∈I\I -, {l i } i∈I )
. Now consider the following linear sets that we split into four types: Type A: i∈I0 a i xi , {x -, x+ } for a set I 0 ⊆ I and (a i ) i∈I0 such that for all i ∈ I 0 , 0 < a i ≤ N 0 , I 0 is closed under ≺, there exists i ∈ I -such that every ancestor of i belongs to I 0 and there exists i ∈ I + such that every ancestor of i belongs to I 0 . Type B: i∈I0 a i xi , {x -} for a set I 0 ⊆ I such that for all i ∈ I 0 , 0 < a i ≤ N 0 , I 0 is closed under ≺ and there exists i ∈ I -such that every ancestor of i belongs to I 0 Type C: i∈I0 a i xi , {x + } for a set I 0 ⊆ I such that for all i ∈ I 0 , 0 < a i ≤ N 0 , I 0 is closed under ≺ and there exists i ∈ I + such that every ancestor of i belongs to I 0 Type D: i∈I0 a i xi , ∅ for a set I 0 ⊆ I such that for all i ∈ I 0 , 0 < a i ≤ N 0 and I 0 is closed under ≺. It is straightforward to check that the union of all these linear sets is included in π(C). Now we are going to prove that π(C) is included in the union. Let w ∈ C, then there exists Ĩ0 ⊆ I closed under ≺ such that π(w) = i∈ Ĩ0 m i xi with m i = 0 for all i ∈ Ĩ0 . We are going to split the proof in four cases according to the possibilities of having or not iterated at least one word with minimum or maximum Parikh ratio. Intuitively, if we have iterated at least once a word with minimum Parikh ratio, then we are "allowed" to iterate one with Parikh image x-as many times as we want. If not, maybe we didn't need it because we only have iterated a bounded amount of times the cycles that "involve" it. If we want to iterate them many times, then they should be at least as many as we need to allow us to iterate a word with Parikh image x-(see the bound N 0 above).

Case I: I -∩ Ĩ0 = ∅ and I + ∩ Ĩ0 = ∅. Then note that there exist i ∈ I -such that all its ancestors belong to Ĩ0 (and similarly for I + ). Then it is easy to check that π(w) belongs to the type A linear set given by

I 0 def = Ĩ0 and a i def = m i mod l i if m i ≡ 0 (l i ) l i otherwise.
Case II:

I -∩ Ĩ0 = ∅, I + ∩ Ĩ0 = ∅.
Then there exists i ∈ I -such that all its ancestors belong to Ĩ0 . If for all i ∈ Ĩ0 \ I -, m i ≤ N 0 , then it is easy to check that π(w) belongs to the type B linear set given by

I 0 def = Ĩ0 and a i def =        m i if i ∈ Ĩ0 \ I - m i mod l i if i ∈ Ĩ0 ∩ I -and m i ≡ 0 (l i ) l i otherwise.
If there exist i 0 ∈ Ĩ0 \I -such that m i0 > N 0 , then

mi 0 li 0 > N0+1-li 0 li 0
and so, by definition of N 0 plus the fact that i 0 ∈ I -∪ I + , (

mi 0 li 0 -1)j i0 > s≺i + j s and ( mi 0 li 0 -1)k i0 > s≺i + k s .
Then, it is not difficult to check that π(w) belongs to the type A linear set given by

I 0 def = Ĩ0 ∪ {s ∈ I | s ≺ i + } and a i def = m i mod l i if i ∈ Ĩ0 and m i ≡ 0 (l i ) l i if m i ≡ 0 (l i ) or i ∈ {s ∈ I | s ≺ i + } \ Ĩ0 .
Case III:

I -∩ Ĩ0 = ∅, I + ∩ Ĩ0 = ∅.
It is symmetric to the previous case.

Case IV:

I -∩ Ĩ0 = ∅, I + ∩ Ĩ0 = ∅.
If for all i ∈ Ĩ0 , m i ≤ N 0 , then π(w) belongs to the type D linear set given by I 0 def = Ĩ0 and a i def = m i for all i ∈ Ĩ0 . If there exist i 0 ∈ Ĩ0 such that m i0 > N 0 , then

mi 0 li 0 > N0+1-li 0 li 0
and so, by definition of N 0 plus the fact that i 0 ∈ I -∪ I + , (

mi 0 li 0 -1)j i0 > s≺i -j s + s≺i + j s and ( mi 0 li 0 -1)k i0 > s≺i -k s + s≺i + k s .
Then, it is not difficult to check that π(w) belongs to the type A linear set given by 

I 0 def = Ĩ0 ∪ {s ∈ I | s ≺ i -} ∪ {s ∈ I | s ≺ i + } and a i def = m i mod l i if i ∈ Ĩ0 and m i ≡ 0 (l i ) l i if m i ≡ 0 (l i ) or i ∈ ({s ∈ I | s ≺ i -} ∪ {s ∈ I | s ≺ i + }) \ Ĩ0 .
* 1 u, then C ∩ [D] π ⊆ Rel D.
For the proof of Proposition 12, we need some auxiliary notation and lemmas. We will measure the distance of a vector x ∈ N 2 from a given set S ⊆ N 2 of vectors by using the ∞-norm, namely, by letting dist(x, S)

def = min{ x -ȳ ∞ : ȳ ∈ S}. U U ȳ ȳ U U ȳ ȳ U U Figure 2
Distance of ȳ ∈ U from the linear sets 0, P and x, P , with P = {x+}.

Lemma C.5. Let L be the language recognized by a minimal deterministic automaton with k states and let simple-cycles(L) = {w 1 , . . . , w n }. For every factor w of a word in L, there exists a word w 0 with |w 0 | ≤ k and k 1 , . . . , k n ∈ N so that w ∈ shuffle{w 0 , w k1 1 , . . . , w kn n }.

Proof. Let A be an automaton with k states that recognizes L. By way of contradiction, suppose that w is a word of minimal length that violates the claim. In particular, w is a factor of some word in L and its length exceeds k (otherwise, w ∈ shuffle{w 0 } for w 0 = w).

Since w is a factor of a word in L, there exist u, v and a successful run γ 1 γ 2 γ 3 of A, where γ 1 reads u, γ 2 reads w, and γ 3 reads v. Since |w| > k, γ 2 can be further decomposed into γ 1 γ 2 γ 3 , with γ 2 simple cycle. Let u , w , v be the words read by γ 1 , γ 2 , γ 3 , respectively, so that w = u • w • v . Since γ 2 is a simple cycle, w = w i for some 1 ≤ i ≤ n, and hence w ∈ shuffle{u v , w i }. Moreover, since w = ε, u v is shorter than w, and hence by the minimality of w, u v must satisfy the claim: u v ∈ shuffle{w 0 , w k1 1 , . . . , w kn n }, for some w 0 of length at most k and some k 1 , . . . , k n ∈ N. By transitivity we conclude that w ∈ shuffle{w 0 , w Lemma C.7. Let P = {x -, x+ }, with ρ(x -) < ρ(x + ), let C ⊆ 2 * be regular so that ρ(cycles(C)) ⊆ [ρ(x -), ρ(x + )] Q , and let x, P be a linear set with P ⊆ P . There is a constant k so that for every prefix w of a word in C ∩ π -1 ( x, P ), dist(π(w), x, P ) ≤ k.

Proof. We will exploit a natural correspondence between words in 2 * and paths inside the discrete plane N 2 . Intuitively, each word u ∈ 2 * induces a path that starts at the origin 0 = (0, 0) of the plane and visits all the vectors corresponding to the Parikh images of prefixes of u. In particular, paths with the same endpoints correspond to words with the same Parikh image. Our first goal is to prove a slightly different claim that concerns the factors of words in C (not necessarily having Parikh image in x, P ). We prove that such factors are at bounded distance from the linear set 0, P .

Claim.

For every factor u of a word in C, dist(π(u), x, P ) ≤ k 1 +k 2 , where k 1 is the number of states of the minimum deterministic automaton for C and k 2 = max( x-∞ , x+ ∞ ).

Proof of claim.

We fix a factor u of some word in C, and consider the induced path U = {π(u ) | u prefix of u}. For this proof the reader can refer to the left hand-side of Figure 2. There, the path U is depicted in blue, and the linear set 0, P is represented by a gray grid. Consider a point ȳ ∈ U , which corresponds to a prefix u of u. Since u is a factor of a word in C, by Corollary C.6 is at distance at most k 1 from π(simple-cycles(C) * ). Figure 2 represents the points in π(simple-cycles(C) * ) by the red dots.

Recall that ρ(cycles(C)) ⊆ [ρ(x -), ρ(x + )] Q . Intuitively, this means that π(cycles(C)) is contained in a 'cone' with slopes between ρ(x -) and ρ(x + ) (this is represented by the gray shaded area behind the grid). We formalize this notion of 'cone' as follows: given any subset S of the discrete plane, we let QS = {αz | α ∈ Q, z ∈ S}, which is precisely our cone living in the rational plane Q 2 . We generalize in the obvious way the distance function to points z and subsets QS of the rational plane (for this we need to take the infimum instead of the minimum of the distances of z from the points of QS).

From the previous containments, we obtain π(cycles(C)) ⊆ Q 0, P . Moreover, by construction, every point in Q 0, P is at distance at most k 2 = max( x-∞ , x+ ∞ ) from the linear set 0, P . Since π(simple-cycles(C) * ) ⊆ π(cycles(C)), we conclude by transitivity that ȳ is at distance at most k 1 + k 2 from 0, P . Now, it remains to extend the previous property to any linear set x, P , with x ∈ N 2 and P P . We restrict our attention to the case P = {x + } (the case P = {x -} is symmetric, the case P = ∅ is straightforward, and the case P = P follows readily from the previous claim). We also use different hypotheses that those of the claim: here we assume that u ∈ C and its Parikh image belongs to x, P . Under these hypotheses, we prove that the points along the induced path U = {π(u ) | u prefix of u} are at distance at most k from x, P , where k = k 1 + k 2 + k 3 , with k 1 , k 2 defined as in the claim and k 3 = x ∞ . For this proof the reader may refer to the middle of Figure 2. For example, the black dots represent the set x, P . It will be convenient to have a shorthand notation for denoting neighborhoods of sets of points: given any set S ⊆ N 2 , we let

N k (S) = {x ∈ N 2 | dist(x, S) ≤ k}.
Suppose by way of contradiction that there is a point ȳ ∈ U such that dist(ȳ, x, P ) > k = k 1 + k 2 + k 3 . This is equivalent to having N k ({ȳ}) ∩ x, P = ∅ (this is represented in the figure by a blue square disjoint from the black dots). We first claim that N k ({ȳ}) is above x, P . Indeed, ȳ is the Parikh image of a factor of some word in C, and hence from the previous claim dist(ȳ, 0, P ) ≤ k 1 + k 2 . This is equivalent to saying that N k1+k2 ({ȳ}) intersects 0, P , and hence, since k = k 1 + k 2 + x ∞ , N k ({ȳ}) intersects x, P . However, by our assumption, N k ({ȳ}) does not intersect x, P . Since there is no point in x, P that is strictly below x, P , we conclude that N k ({ȳ}) must be disjoint and above x, P . Now, we consider the linear sets ȳ, P and ȳ, P that originate in the point ȳ (these are not shown in the figure). Because N k ({ȳ}) is disjoint from x, P , N k ( ȳ, P ) too is disjoint from x, P . Moreover, because N k ({ȳ}) is above x, P , N k ( ȳ, P ) too is above x, P . This implies that N k ( ȳ, P ) is disjoint from x, P . Towards a conclusion, consider the vector z = π(u) -ȳ, which corresponds to another factor of a word in C. From the usual arguments it follows that dist(z, 0, P ) ≤ k 1 + k 2 , or equally z ∈ N k1+k2 ( 0, P ), which implies π(u) ∈ N k ( ȳ, P ). Together with N k ( ȳ, P ) ∩

x, P = ∅, this implies π(u) ∈ x, P , which contradicts the initial hypothesis. Since ρ(cycles(C)) ⊆ ρ(cycles(D)), we have ρ(cycles(C)) ⊆ [ρ(x -), ρ(x + )] Q (Lemma 5). Moreover, since u ∈ [D] π , there is an index i so that u ∈ π -1 ( xi , P i ). The construction that follows depends implicitly on the index i, which needs to be correctly guessed by the automaton D that recognizes C ∩ [D] π .

By Lemma C.7, we know that the path U can be approximated by another path that is contained in the semi-linear set xi , P i , but that remains also sufficiently close to U (cf. the black dots in the right hand-side of Figure 2). More precisely, there is a constant k that depends only on C and D and so that for every j = 0, . . . , |u|, the following set is non-empty:

S j def = xi , P i ∩ N k π(u[1, j])
(here we reuse the notation N for neighborhoods of sets of points, that was introduced in the proof of Lemma C.7).

The automaton D exploits the above property to parse the input u while simulating the transitions of an automaton for C, and, at the same time, guessing a series of points ȳ0 ≤ ȳ1 ≤ • • • ≤ ȳ|u| from the sets S 0 , S 1 , . . . , S |u| . In fact, D only maintains in memory the offset zj = ȳj -π(u [1, j]) associated with the current position j -this is possible because zj ranges over the finite domain [-k, k] 2 . The possible choices for the next offset zj+1 can be computed knowing the current offset zj and the current input symbol u[j + 1]. Indeed, we have zj+1 -zj = ȳj+1 -ȳj -π(u[j + 1]) and ȳj+1 -ȳj ∈ 0, P i , which implies that zj+1 must range in the set zj -π(u[j + 1]) + 0, P i ∩ [-k, k] 2 . In the end, the automaton D accepts the input u if u ∈ C and the final vector z|u| is 0, namely, if u ∈ C ∩ π -1 ( xi , P i ).

We now turn to the proof of the second claim. We assume, without any loss of generality, that the concact-star language D is of the form u 0 D * 1 , since this will simplify notation. Note that nevertheless u 0 D * 1 ⊗ A * for all j > 0. The concatenation of such outputs will give precisely the word ŵ ∈ D ⊗ A * such that ŵ = w . Once the transducer T is defined, it could be used to compute from any given regular language L ⊆ (

C ∩ [D] π ) ⊗ A * a new regular language T (L) ⊆ D ⊗ A * so that L = L , thus showing that C ∩ [D] π ⊆ Rel D holds effectively.
To avoid heavy notation, it is convenient to lift the operation of concatenation from words over A to pairs of words over A in a pointwise manner. Accordingly, we say that a pair p is a prefix of another pair p if there is a third pair p so that p = p • p ; similarly, we say that p

= (w 1 , w 2 ) has length |p| = (n 1 , n 2 ) if |w 1 | = n 1 and |w 2 | = n 2 .
Thanks to this, we can succinctly write equations like w[1, j + 1] = w [1, j] • w[j + 1] , or say that w [1, j] has length π(w [1, j]) for any w ∈ (2 × A) * . We extend further this notation by working with words (or even pairs of words) over the free group A ∪ A -1 . For example, we could write (abc) • (bc) -1 = (abc) • c -1 • b -1 = a. We will tacitly assume that we never construct words with irreducible factors of the form a • b -1 with a = b. Moreover, by a slight abuse of terminology, we say that a word has lengthif it is the inverse of a word over A of length , and similarly for pairs (note that we do not define the length of words that contain both symbols from A and symbols from A -1 , since these should be first reduced).

As usual, we restrict our attention an arbitrary word w = u ⊗ v with control sequence u ∈ C ∩ π -1 ( xi , P i ), for some i = 1, . . . , n. We recall that the automaton D that recognizes C ∩ [D] π can guess the same index i, and a series of offsets z0 , z1 , . . . , z|w| so that, for all j = 0, . . . , |w|,

ȳj = zj + π(u[1, j]) ∈ S j = xi , P i ∩ N k π(u[1, j]) .
The transducer T will simulate the guesses of D internally. Now, let p j denote the unique prefix of the pair w that has length ȳj . Since ȳj ≤ ȳj+1 , each p j is a prefix of p j+1 . We define the gap at position j = 1, . . . , |w|, as the difference between two consecutive pairs p j and p j+1 :

g j def = (p j ) -1 • p j+1 .
Note that every g j is a word over A, because p j is a prefix of p j+1 . The goal of the transducer is to produce first a synchronization for the pair p 0 , and then some synchronizations for the gaps g 1 , . . . , g |w| , so that the total output will be a synchronization of p |w| . Under the assumption that the automaton D for C ∩ π -1 ( xi , P i ) accepts the underlying control sequence u, we will have that z|w| = 0 and hence ȳ|w| = z|w| + π(u) = π(u). This will imply p |w| = w . Below we explain in more detail how T can produce the correct outputs.

We introduce a second object, called lag:

j def = w[1, j] -1 • p j .
Intuitively, j is for T what the offset zj was for D, namely, j is the difference between the pair p j of length ȳj and the pair encoded by the prefix w[1, j] of the input. Observe that j ∈ (A * ∪ (A -1 ) * ) × (A * ∪ (A -1 ) * ). This means that j may contain words over A -1 , even if it is maximally reduced. For example, if p j is a prefix of w [1, j] , then the lag j consists of a pair of words over A -1 , meaning that both coordinates of p j are 'lagging behind' the coordinates of w [1, j] . In general, each coordinate of p j can lag behind or ahead of the corresponding coordinate of w [1, j] .

We observe that

| j | = ȳj -π(u[1, j]) = zj ∈ [-k, k] 2
, which means that lags can be maintained by T using finitely many states. More precisely, at each position j, T guesses j as any pair of words over (A * ∪ (A -1 ) * ) × (A * ∪ (A -1 ) * ) of length zj (the latter vector is available from the underlying automaton D). The correctness of the guesses for the lags j are verified implicitly when performing concatenations: if at any moment a concatenation with j or its inverse induces an irreducible factor ab -1 , with a = b, then the computation fails, meaning that some words were wrongly guessed.

We now relate the lags to the gaps:

g j = (p j ) -1 • p j+1 (by definition of gap) = w[1, j] -1 • p j -1 • w[j + 1] • w[1, j + 1] -1 • p j+1 (by definition of lag) = ( j ) -1 • w[j + 1] • j+1 .
(by reducing factors)

Intuitively, the gap can be equally seen as the difference between two consecutive lags, adjusted by taking into account the current input letter w[j + 1]. The above property shows that T can compute g j using only the bounded amount of information relative to j , j+1 , and w[j + 1]. Summing up, the transducer T parses the input w, while guessing some offsets z0 , . . . , z|w| and some lags 0 , . . . , |w| , and producing some outputs ŵ0 , . . . , ŵ|w| . More precisely, the first output must belong to the language (u 0 D * 1 ) ⊗ A * and must synchronize the pair p 0 (i.e., ŵ0 = p 0 ). Such a word ŵ0 exists because p 0 has length ȳ0 ∈ xi , P i ⊆ π(u 0 D * 1 ). In a similar way, every subsequent output ŵj , for j = 1, . . . , |w|, must be belong to the language D * 1 and must synchronize the gap g j (i.e., ŵj = g j ). Such a word ŵj exists because g j has length |p j+1 | -|p j |, which belong to the linear set 0, P i ⊆ π(D * 1 ). By construction, the total output produced by T will be ŵ = ŵ0 Proof. Let C = C ∩ [D * u] π . In order to be able to apply Proposition 12 for C and D * u, we need to prove that ρ(cycles(C )) ⊆ ρ(cycles(D * )). After that, the result follows immediately from that proposition.

If w ∈ cycles(C ), then there exist words û, v such that ûw * v ⊆ C . Since π(C ) ⊆ π(D * u), this implies that for all n ∈ N, there exists u n ∈ D * such that π(ûw n v) = π(u n u). Then it follows that inf ρ(cycles(D * )) ≤ lim n→∞ ρ(u n ) = lim n→∞ ρ(u n u) = lim n→∞ ρ(ûw n v) = ρ(w). In a similar way, one can prove that ρ(w) ≤ sup ρ(cycles(D * )).

To complete the proof of Lemma 13, it only remains to provide the missing details for Claim 1: Proof. First note that wlog we can assume that C is of the form

H 0 D * 1 H 1 D * 2 H 2 • • • D * m H m
where D * i are the components (non empty) and H i are homogeneous concatstar languages (eventually empty). This is due to P5 and P2. Moreover, by using also P7, we can further assume that for all i = 0, . . . , m H i = 1 ki * 2 ki * for some k i , ki . We can also assume that C is heterogeneous (otherwise the statement follows trivially), i.e. that m ≥ 1. Since D * i are non empty heterogeneous components, for all i = 1, . . . , m, there exist a heterogeneous word w i ∈ D * i . Then ---→ D. Further, the statement holds even if we consider Rel A -containment for any A with at least two letters.

Proof. If C is homogeneous the statement follows immediately. Let us then assume that C is smooth heterogeneous of star-height 1.

The rough idea is to construct a relation R ∈ Rel(C) in such a way that from C ⊆ Rel D one derives R ∈ Rel(D), and from this, using suitable pumping arguments, one extracts a synchronizing morphism from C to some D i . The relation R will depend on both languages C and D, but the underlying alphabet A will only depend on C. In fact, this latter dependency is mainly for simplifying the proof. Towards the end, we will explain how to avoid the dependency on C and construct a relation R over a fixed alphabet. This basically shows that semantics of ⊆ Rel with a fixed alphabet has the same characterization.

Consider a smooth heterogeneous language

C = C * 1 u 1 • • • C * k u k = Rel C * 1 • • • C * k u, for u = u 1 • • • u k ,
and recall that there are no consecutive homogeneous components C * i , C * i+1 . Without any loss of generality, assume that k is odd and C * i is heterogeneous for all even indices i.

We let D be a finite union of concat-star languages

D i = D * i,1 u i,1 • • • D * i,ki u i,ki
, and denote by A some automaton with h states that recognizes D.

The relation R is defined by taking into account the structure of the concat-star language C * 1 • • • C * k u and the number h of states of A. Formally, we introduce the alphabet A = {ã i,j , a i,j , bi,j , b i,j | 1 ≤ i ≤ k, 1 ≤ j ≤ h} ∪ {a k+1 } and, for each 1 ≤ j ≤ k, we denote by u - j , u + j some words in C j that have minimum and maximum Parikh ratios, respectively (minimum and maximum exists because C has star height 1). If j is odd, then we assume u - j = u + j . We also let u ∼ j ∈ C * j be any heterogeneous word for each even index j. We then define R = L , where

L = L 1,1 • • • L 1,h • • • L k,1 • • • L k,h • (u ⊗ a |u| k+1 )
and

L i,j =    u - j ⊗ a |u - j | i,j * if j is odd u ∼ j ⊗ ã|u ∼ j | i,j * • u - j ⊗ a |u - j | i,j * • u ∼ j ⊗ b|u ∼ j | i,j * . u + j ⊗ b |u + j | i,j * if j is even.
We exploit the fact that R ∈ Rel(C ) and C ⊆ Rel D to derive R ∈ Rel(D), and so R = L for some regular language L ⊆ D ⊗ A * . Let B be an automaton recognizing L and, without loss of generality, assume that B is a refinement of A (this will be used later to transfer properties of cycles of B to properties of cycles of A). Now, consider the following word from the language L:

w = w 1,1 • • • w 1,h • • • w k,1 • • • w k,h • (u ⊗ a |u| k+1
) with

w i,j =    u ∼ j ⊗ ã|u ∼ j | i,j n • u - j ⊗ a |u - j | i,j n • u ∼ j ⊗ b|u ∼ j | i,j n . u + j ⊗ b |u + j | i,j n if j is even, u - j ⊗ a |u - j | i,j n if j is odd,
where n is chosen large enough so as to exceed the number of states of B. Since L = R = L , we know that B accepts some word w with w = w = (w 1 , w 2 ). Let γ be a successful run of B on w.

Let us some i. Since ρ(C * i ) ⊆ ρ(D * ji ) for some j i , there are words ŵ1 , ŵ2 ∈ D * ji so that ρ(w i,r ) = ρ( ŵr ) for r ∈ {-, +} or, in other words, there are p, q > 0 so that π(w p i,-) = π( ŵ1 ) and π(w q i,+ ) = π( ŵ2 ). By Lemma 17, we have

C * i = Rel (w p i,-∪ w q i,+ ) * • C i (for a finite C i ⊆ C * i ) ⊆ Rel D * ji • C i Thus, C * 1 • • • C * n u ⊆ Rel D * j1 • C 1 • • • D * jn • C n • u = Rel D * j1 • • • D * jn • C 1 • • • C n • u ⊆ Rel D * 1 • • • D * m C 1 • • • C n • u
(by monotonicity of s.m.)

⊆ Rel D * 1 • • • D * m v
proving the statement. For the last step, note that π(c

1 • • • c n u) ∈ π(D * 1 • • • D * n v
) for all c i ∈ C i and so the containment follows from P6 and P2.

  synchronizes the relation L = { w | w ∈ L} ⊆ A * ×A * . For example, ((1, a)(2, a) ∪ (1, b)(2, b)) * denotes the equality relation over A = {a, b}.

  of C-controlled relations, namely, relations synchronized by regular languages L ⊆ (2 × A) * whose projection onto 2 are in C. Clearly, C ⊆ D ⊆ 2 * , implies Rel(C) ⊆ Rel(D), but the converse does not hold: while Rel(C Rec ) = Recognizable ⊆ Automatic = Rel(C Aut ), we have C Rec ⊆ C Aut . Moreover, as we have mentioned earlier, different control languages may induce the same class of synchronized relations. For example, once again, the class of Recognizable relations is induced by the control language C Rec = {1} * {2} * , but also by C Rec = {1} * {2} * {1} * , and the class of Automatic relations is induced by C Aut = {12} * • {1} * ∪ {12} * • {2} * , or equally by C Aut = {21} * • {1} * • {2} * . This 'mismatch' between control languages and induced classes of relations gives rise to the following algorithmic problem.

  Parikh image of a word w over A is the tuple π(w) associating each symbol a ∈ A to its number of occurrences |w| a in w. We will mostly use Parikh images for words over 2 * , which are thus pairs π(w) = (|w| 1 , |w| 2 ). We naturally extend this to languages by letting π(L) def = {π(w) | w ∈ L} (⊆ N 2 ). For x, x1 , . . . , xn ∈ N 2 , we denote by x, P the 2-dimensional linear set {x + α 1 x1 + • • • + α n xn | α 1 , . . . , α n ∈ N}, and call x ∈ N 2 its basis and x1 , . . . , xn its periods. A semi-linear set is a finite union of linear sets.

Example 4 .

 4 The Parikh images of the languages C = (2(2112) * ) * and D = (2 ∪ 2112) * are depicted below. Note that ρ

Proposition 7 .

 7 For all simple C, D ⊆ 2 * , C ⊆ Rel D iff π(C) ⊆ π(D) and C s.m.

Example 9 .

 9 Let C = (12) * , D 1 = (112 ∪ 1122) * , and D 2 = (122 ∪ 1122) * 12. We have

  where the latter containment holds by the fact that (1212) * 12 s.m.

Observation 16 .

 16 The previous Lemma 15 does not hold for arbitrary concat-star languages C. For example, consider (12) * 1 * 2 * = Rel (12) * 1 * ∪ (12) * 2 * ,where there is no s.m. from (12) * 1 * 2 * to (12) * 1 * , nor from (12) * 1 * 2 * to (12) * 2 * . Conversely, to show that the conditions π(C) ⊆ π(D) and C s.m. ---→ D are sufficient to have C ⊆ Rel D, where C, D are simple, it is useful to introduce a normal form for languages of the form C * , with C finite.

  Then, by Lemma 8, it only remains to check that C i ∩ [D j ] π ⊆ Rel D. Now, by Proposition 12 and Proposition 3, C i ∩ [D j ] π is = Rel -equivalent to a finite union of simple languages (C k ) k∈K . Note that C k ⊆ Rel C i for all k ∈ K. Then, by the left-to-right direction of Proposition 7, we have C k s.m. ---→ C i for all k. By composition of synchronizing morphisms, we obtain C k s.m.

  controlled language which concludes the proof. P6. Let suppose that Rel(C) ⊆ Rel(D). Towards a contradiction, assume that there exists an element (α, β) ∈ π(C) \ π(D). Now consider the one letter alphabet A = {a} and the singleton relation R = {(a α , a β )}. It is easy to check that this relation is in Rel(C) \ Rel(D) which is a contradiction. Note that the converse does not hold in general, consider for example C = (12) * (1 * |2 * ), D = 1 * 2 * . It is clear that π(C) ⊆ π(D) (in fact they are equal) but one can easily prove that R = {(u, v) | u = v} ∈ Rel(C) \ Rel(D)

2 )

 2 every word w ∈ C has Parikh image j π(w j ) for some wordsw j ∈ C * j ; therefore ρ(w) ≥ min j (inf(ρ(C * j ))). It follows then that inf(ρ(C)) ≥ min j (inf(ρ(C * j ))). The other inequality follows from the fact that C * j ⊆ C for all j = 1, . . . , n. (It is immediate from the fact that π(C) = π(F ) (Lemma C.2).

Proposition 12 .

 12 Given C regular and D concat-star so that ρ(cycles(C)) ⊆ ρ(cycles(D)), the languages C ∩ [D] π and C \ [D] π are effectively regular. If in addition D is of the form D

k 1 1

 1 , . . . , w k n n } where k i = k i + 1 and k j = k j for all j = i.Corollary C.6. Let L be the language recognized by a minimal deterministic automaton with k states. For every factor u of a word in L, dist(π(u), π(simple-cycles(L) * )) ≤ k.

  We are now ready to prove Proposition 12 (recall that this concerns the regularity of the languagesC ∩ [D] π and C \ [D] π ).Proof of Proposition 12. To prove the first claim, it suffices to construct an automaton D for C ∩[D] π (from this it will follow that the language C \[D] π is also effectively regular, since it can be rewritten as C \ (C ∩ [D] π ) and regular are closed under set difference). We fix a word u ∈ C ∩ [D] π and we consider the induced set U of Parikh images of prefixes of u. x1 , P 1 ∪ • • • ∪ xn , P n be the normal form of the semi-linear set π(D) obtained from Lemma 11, where P i ⊆ {x -, x+ } for some vectors x-, x+ so that ρ(x -) ≤ ρ(x + ).

1 =

 1 Rel D * 1 u 0 by P5, and hence we also have that π(u 0 D * 1 ) = π(D * 1 u 0 ) and [u 0 D * 1 ] π = [D * 1 u 0 ] π . Namely, we will show that C ∩ [D] π ⊆ Rel D whenever D = u 0 D * 1 . The basic idea it to lift the previous construction for the automaton D to a resynchronization from (C ∩ [D] π ) ⊗ A * to D ⊗ A * , namely, to a functional transducer T that maps words w ∈ (C ∩ [D] π ) ⊗ A * to words ŵ ∈ D ⊗ A * so that w = ŵ . Intuitively, the transducer T will use the offsets z0 , z1 , . . . , z|w| guessed by the previous automaton D and associate with them a corresponding sequence of outputs ŵ0 , ŵ1 , . . . , ŵ|w| , with ŵ0 ∈ u 0 D * 1 ⊗ A * and ŵj ∈ D *

Observation C. 8 .

 8 • ŵ1 • • • ŵ|w| , which belongs to D ⊗ A * and satisfies ŵ = p |w| = w . In general, C ∩ [D] π and C \ [D] π are not regular if we do not impose any restriction. For example, 1 * 2 * ∩ (12) * = {1 n 2 n | n ∈ N}. Corollary C.9. C ∩ [D * u] π ⊆ Rel D * u for every regular C, D and word u.

Claim 1 . 9 )

 19 Every regular D * is = Rel -equivalent to a finite union i D * i u i , with finite D i 's. Proof. Let x1 , P 1 ∪• • •∪ xn , P n = π(D * ), and let D i and u i be so that π(D * i u i ) = xi , P i , for every i = 1, . . . , n. We show that D * = Rel i D * i u i . The left-to-right containment holds byD * = i (D * ∩ [D * i u i ] π ) (since π(D * ) = π( i D * i u i )) ⊆ Rel i D * i u i ,(by Corollary C.9 plus P2)and the right-to-left containment follows from Lemma 8 and the fact that for every i,D * i u i = D * i u i ∩ [D * ] π (since π(D * i u i ) ⊆ π(D * )) ⊆ Rel D * .(by Corollary C.Lemma 14. Every concat-star C ⊆ 2 * of star-height 1 is = Rel -equivalent to a finite union i C i of simple languages.

C = H 0 w * 1 D * 1 HD Missing to Section 6 Lemma 15 .

 11615 1 w * 2 D * 2 H 2 • • • w * m D * m w * m H mand so, by what we said before and again P5 and P2, we can assume wlog that C is of the form 1 k * 2 k * w * (the case w * 1 k * 2 k * that we may need for the last homogeneous component is analogous). Then it only remains to prove the case where C = 1 k * 2 k * w * for k, k > 0 and w a heterogeneous word. By P8,1 k * 2 k * ⊆ Rel 1 k * (1 k k|w|1 2 kk|w|2 ) * (2 k) <k|w|2 ∪ 2 k * (1 k k|w|1 2 kk|w|2 ) * (1 k ) < k|w|1 ⊆ Rel 1 k * w * (2 k) <k|w|2 ∪ 2 k * w * (1 k ) < k|w|1 . Then, it follows easily that C = 1 k * 2 k * w * = Rel 1 k * w * (2 k) <k|w|2 ∪ 2 k * w * (1 k ) < k|w|1which concludes the proof. For C a simple language and D = i D i finite union of simple languages, ifC ⊆ Rel D, then C s.m.---→ D i for some i. In particular, for C, D simple languages, if C ⊆ Rel D, then C s.m.

  . For example, (112(12) * ∪ 122) * = Rel (122) * ∪ (112 ∪ 122) * 112 ∪ (112 ∪ 122) * 11122 ∪ (112 ∪ 122) * 1111222. This latter step is more difficult and exploits the increased flexibility of the relation = Rel compared to equality.It also exploits in a crucial way properties of linear sets, and more specifically those that result from taking the Parikh images of concat-star languages. Finally, to get the desired decomposition, one needs to decompose further the concat-star languages of star-height 1 into finite unions of simple languages as in, for example, (12) * 1 * 2 * = Rel (12) * 1 * ∪ (12) * 2 * . This last decomposition makes use of some basic properties from Lemma 2.

* Work supported by ANR project DELTA, grant ANR-16-CE40-0007, and LIA INFINIS.

Now fix an arbitrary coordinate ∈ an index 1 ≤ j ≤ k, and a letter c ∈ Ãj = {ã i,j , bi,j | 1 ≤ i ≤ h}. Consider the first and last positions i 1 , i 2 on γ that read ( , c), and consider any arbitrary cycle between those positions i 1 and i 2 . We claim that the cycle 1. reads only letters from 2 × {c}, 2. has Parikh ratio ρ(u ∼ j ).

Indeed, the positions of w that carry the letter c form a factor of w . This implies that all the positions on γ between i 1 and i 2 , and in particular, the positions of the cycle, either read ( , c) or read a symbol c on the opposite coordinate 3-. If the cycle reads at least two different letters on coordinate 3 -, then by pumping the cycle we obtain an inconsistency. Otherwise, if the cycle reads always the same letter c on coordinate 3 -, and c = c, then by removing the cycle we would remove a positive number of occurrences of ( , c) but no occurrence of (3 -, c), thus obtaining a word w ∈ L so that

, and hence w ∈ R, which is a contradiction. So the cycle must read the same letter c on coordinate 3 -. Finally, if the Parikh ratio of the cycle is not precisely ρ(u ∼ j ), then by removing the cycle and by arguing as before, we would obtain a word w ∈ L so that w ∈ R (again a contradiction). Now consider again an arbitrary coordinate ∈ 2 and the maximal factors of w that remain sandwiched between the previous factors identified by the symbols from j Ãj . By construction every such sandwiched factor reads the same letter c everywhere, for some c ∈ A j = {a i,j , b i,j | 1 ≤ i ≤ h} and some ≤ j ≤ k. Consider the first and last positions i 1 , i 2 of γ that read ( , c). We claim that every cycle on γ between i 1 and i 2

1. reads only letters from 2 × {c};

2. if c = a i,j for some 1 ≤ i ≤ h, then it has Parikh ratio ρ(u - j ); if in addition ρ(u - j ) = 0 (and hence = 2), then it reads only letters (2, a i,j ); symmetrically, if ρ(u - j ) = 1 (and hence = 1), then it reads only letters (1, a i,j ); 3. if c = b i,j for some 1 ≤ i ≤ h, then it has Parikh ratio ρ(u + j ); if in addition ρ(u + j ) = 0 (and hence = 2), then it reads only letters (2, b i,j ); symmetrically, if ρ(u + j ) = 1 (and hence = 1), then it reads only letters (1, b i,j ).

Note that if we are in the second case, i.e.a i,j , but ρ(u - j ) = 0, then, we could reach a contradiction by reasoning as we did before, that is, by removing the cycle and obtaining a word w ∈ L so that w ∈ R. Similarly, it cannot happen that c = b i,j and ρ(u + j ) = 0. So the interesting case here is when c is, for example, of the form a i,j and ρ(u - j ) = 0. If on coordinate 3 -the cycle reads at least two different letters, we get an absurd as before. Otherwise, if it reads at least one letter (3 -, c ) for some c ∈ j Ãj , we get an absurd by removing the cycle and changing the ratio of letters c. Finally, if it reads at least one letter (3 -, c ) for some other c ∈ A j with j = j , it means that there is some c ∈ j Ãj so that all the (1, c) letters occur before position i 1 and all the (2, c) letters occur after position i 2 on γ, or viceversa, the (1, c)'s occur after i 2 and the (2, c)'s occur before i 1 . This is in contradiction with the previous claim on cycles inside factors of letters from j Ãj . The remaining cases are similar.

The previous claims imply that the letters

in this precise order. By choice of h, this means that there are k SCC's in A, say Q 1 , . . . , Q k , so that Q i+1 is reachable from Q i for every i, and Q i contains a cycle with ratio ρ(u - i ) if i is odd, and cycles with ratios ρ(u - i ), ρ(u + i ) if i is even. From this, using the second claim of Lemma 5, it is easy to conclude that there exists an index i and a synchronizing morphism from C to D i .

It remains to explain how to modify the proof so as to have a relation R over a fixed alphabet. The main modification consists in removing the subscripts j from all the letters ãi,j , a i,j , bi,j , b i,j , a k+1 in A, thus defining a new alphabet A = {ã, a, b, b} (by same principle, using more clumsy notation, we could even restrict to any alphabet with at least two letters). Accordingly, the language L is redefined as

where

As before, we derive the existence of a regular language L ⊆ D ⊗ A * so that L = L . However, due to the modification, we cannot rely on the indexed letters to apply the remaining arguments. Nonetheless, we can overcome the problem by introducing a new automaton C that is a refinement of B (and hence also a refinement of A) and that recognizes the old language L with the correctly indexed letters. The idea is that C reads indexed letters, while simulating B on the letters devoid of the indices, and checking at the same time the series of indices is correct. For this, C need to stores the current control state of the automaton B and the last letters c 1 , c 2 from the parsed prefix of the input that were associated with each coordinate in 2. For example, when reading a letter (1, a i,j ), C simulates a transition of B on (1, a) , and checks that the last letter c 1 associated with coordinate 1 is either a i,j or ãi,j (namely, the only two possible letters that could have preceded the current letter (1, ãi,j ) in an arbitrary word from the language L).

From there, one follows basically the same arguments as before: first, construct a word w ∈ L inducing cycles in a successful run of C (here n needs to exceed the number of states of C). Then, argue that the cycles of C have the appropriate Parikh rations in the appropriate order. Finally, one transfers the latter properties to the successful runs of B and A, so as to witness a synchronizing morphism.

Lemma 17. For every p, q > 0, finite C ⊆ 2 * , and u -, u + ∈ C so that ρ(u -) = min ρ(C) and ρ(u + ) = max ρ(C), there exists a finite C ⊆ C * so that C * = Rel (u p -∪ u q + ) * • C . Before turning to the proof of Lemma 17, we need to first prove a few technical lemmas. Lemma D.1. For every finite language = {u -, u + , u 1 , . . . , u n } with ρ(u -) = min(ρ(C)) and ρ(u + ) = max(ρ(C)), there are k 1 , . . . , k n > 0 so that

Proof. We proceed by induction on n. The base case n = 0 is immediate. For the inductive case, suppose n > 0, and let k > 0 and k , k ≥ 0 be so that

by Lemma C.4. Thus,

• u <k n , (by inductive hypothesis on Ĉ) proving the statement.

Lemma D.2. For every p > 0, u 1 , u 2 ∈ 2 * we have

Proof. We have

Corollary D.3 (of Lemma D.2). For every p, q > 0, u 1 , u 2 ∈ 2 * we have

Proof. It follows easily from Lemma D.2 (applied twice) plus P2. ---→ D.

Proof of

Proof. The left-to-right direction follows from P6 and Lemma 15. For the right-to-left direction, if C is homogeneous, the fact that π(C) ⊆ π(D) yields C ⊆ Rel D by P8. Suppose then that C is heterogeneous. For any concat-star 

Note also that, by a similar argument, we can assume wlog that C i = {ε} for all i = 1, . . . , n.

Since all C i are finite, one can take w i,-, w i,+ be the minimum and maximum Parikhratio words of each C i respectively -note that they could have the same Parikh-ratio, or even be the same word.