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Abstract
A natural approach to define binary word relations over a finite alphabet A is through two-tape
finite state automata that recognize regular languages over {1, 2}×A, where (i, a) is interpreted
as reading letter a from tape i. Accordingly, a word w ∈ L denotes the pair (u1, u2) ∈ A∗ × A∗

in which ui is the projection of w onto i-labelled letters. While this formalism defines the well-
studied class of Rational relations (a.k.a. non-deterministic finite state transducers), enforcing
restrictions on the reading regime from the tapes, which we call synchronization, yields various
sub-classes of relations. Such synchronization restrictions are imposed through regular properties
on the projection of the language onto {1, 2}. In this way, for each regular language C ⊆ {1, 2}∗,
one obtains a class Rel(C) of relations. Regular, Recognizable, and length-preserving rational
relations are all examples of classes that can be defined in this way.

We study the problem of containment for synchronized classes of relations: given C,D ⊆
{1, 2}∗, is Rel(C) ⊆ Rel(D)? We show a characterization in terms of C and D which gives a
decidability procedure to test for class inclusion. This also yields a procedure to re-synchronize
languages from {1, 2} × A preserving the denoted relation whenever the inclusion holds.
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1 Introduction

We study are relations of finite words, that is, binary relations R ⊆ A∗ × A∗ for a finite
alphabet A. The study of these relations dates back to the works of Büchi, Elgot, Mezei, and
Nivat in the 1960s [4, 8, 13], with much subsequent work done later (e.g., [2, 6]). Most of the
investigations focused on extending the standard notion of regularity from languages to re-
lations. This effort has followed the long-standing tradition of using equational, operational,
and descriptive formalisms – that is, finite monoids, automata, and regular expressions – for
describing relations, and gave rise to three different classes of relations: the Recognizable,
the Automatic (a.k.a. Regular [2] or Synchronous [6]), and the Rational relations.

The above classes of relations can be seen as three particular examples of a much larger
(in fact infinite) range of possibilities, where relations are described by special languages over
extended alphabets, called synchronizing languages [10]. Intuitively, the idea is to describe
a binary relation by means of a two-tape automaton with two heads, one for each tape,
which can move independently one of the other. In the basic framework of synchronized
relations, one lets each head of the automaton to either move right or stay in the same
position. In addition, one can constrain the possible sequences of head motions by a suitable
regular language C ⊆ {1, 2}∗. In this way, each regular language C ⊆ {1, 2}∗ induces
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2 Resynchronizing Classes of Word Relations

a class of binary relations, denoted Rel(C), which is contained in the class of Rational
relations (due to Nivat’s Theorem [13]). For example, the class of Recognizable, Automatic,
and Rational relations are captured, respectively, by the languages CRec = {1}∗ · {2}∗,
CAut = {12}∗ ·{1}∗∪{12}∗ ·{2}∗, and CRat = {1, 2}∗. However, it should be noted that other
well-known subclasses of rational relations, such as deterministic or functional relations,
are not captured by notion of synchronization. In general, the correspondence between a
language C ⊆ {1, 2}∗ and the induced class Rel(C) of synchronized relations is not one-
to-one: it may happen that different languages C,D induce the same class of synchronized
relations. There are thus fundamental questions that arise naturally in this framework:
When do two classes of synchronized relations coincide, and when is one contained in the
other? Our contribution is a precise algorithmic answer to this type of questions.

More concretely, given a binary alphabet 2 = {1, 2} and another finite alphabet A, a word
w ∈ (2×A)∗ is said to synchronize the pair (w1, w2) ∈ A∗×A∗ if, for both i = 1, 2, wi is the
projection of w on A restricted to the positions marked with i. For short, we denote this by
JwK = (w1, w2) —e.g., J(1, a)(1, b)(2, b)(1, a)(2, c)K = (aba, bc). According to this definition,
every word over 2 × A synchronizes a pair of words over A, and every pair of words over
A is synchronized by (perhaps many) words over of 2 × A. This notion is readily lifted to
languages: a language L ⊆ (2×A)∗ synchronizes the relation JLK = {JwK | w ∈ L} ⊆ A∗×A∗.
For example, J((1, a)(2, a) ∪ (1, b)(2, b))∗K denotes the equality relation over A = {a, b}.

In this setup, one can define classes of relations by restricting the set of admitted syn-
chronizations. The natural way of doing so is to fix a language C ⊆ 2

∗, called control
language, and let L vary over all regular languages over the alphabet 2 × A whose projec-
tions onto 2 are in C. Thus, for every regular C ⊆ 2

∗, there is an associated class Rel(C)
of C-controlled relations, namely, relations synchronized by regular languages L ⊆ (2×A)∗
whose projection onto 2 are in C. Clearly, C ⊆ D ⊆ 2

∗, implies Rel(C) ⊆ Rel(D), but
the converse does not hold: while Rel(CRec) = Recognizable ⊆ Automatic = Rel(CAut),
we have CRec 6⊆ CAut. Moreover, as we have mentioned earlier, different control lan-
guages may induce the same class of synchronized relations. For example, once again,
the class of Recognizable relations is induced by the control language CRec = {1}∗{2}∗,
but also by C ′Rec = {1}∗{2}∗{1}∗, and the class of Automatic relations is induced by
CAut = {12}∗ · {1}∗ ∪ {12}∗ · {2}∗, or equally by C ′Aut = {21}∗ · {1}∗ · {2}∗. This ‘mis-
match’ between control languages and induced classes of relations gives rise to the following
algorithmic problem.

Class Containment Problem
Input: Two regular languages C, D ⊆ 2

∗

Question: Is Rel(C) ⊆ Rel(D) ?

Note that the above problem is different from the (C,D)-membership problem on synchron-
ized relations, which consists in deciding whether R ∈ Rel(D) for a given R ∈ Rel(C),
and which can be decidable or undecidable depending on C,D [5]. The Class Containment
Problem can be seen as the problem of whether every C-controlled regular language L has a
D-controlled regular language L′ so that JLK = JL′K. It was proved in [10] that this problem
is decidable for some particular instances of D, namely, for D = Recognizable,Automatic,
Length-preserving or Rational. More specifically, given a regular language C over the binary
alphabet 2, it is decidable whether Rel(C) is contained or not in Recognizable (respect-
ively, Automatic, Length-preserving and Rational). Our main contribution is a procedure for
deciding the Class Containment Problem in full generality, i.e. for arbitrary C and D.

I Main Theorem. The Class Containment Problem is decidable.
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In addition, our results show that, for positive instances (C,D), one can effectively transform
any regular C-controlled language L into a regular D-controlled language L′ so that JLK =
JL′K. By ‘effectively transform’ we mean that one can receive as input an automaton (or
a regular expression) for L and produce an automaton (or a regular expression) for L′. In
particular, we show a normal form of control languages, implying that every synchronized
class can be expressed through a control language of star-height at most 1.

Related work. The formalization of a framework in which one can describe classes of word
relations by means of synchronization languages is quite recent [10]. As already mentioned,
the class containment problem was only addressed for the classes of Recognizable, Automatic
and Rational relations, for which several characterizations have been proposed [10]. The
formalism of synchronizations has been extended beyond rational relations by means of
semi-linear constraints [9] in the context of path querying languages for graph databases.

The paper [3] studies relations with origin information, as induced by non-deterministic
(one-way) finite state transducers. Origin information can be seen as a way to describe
a synchronization between input and output words – somehow in the same spirit of our
synchronization languages – and was exploited to recover decidability of the equivalence
problem for transducers. The paper [11] pursues further this principle by studying “distor-
tions” of the origin information, called resynchronizations. Despite the similar terminology
and the connection between origins and synchronizing languages, the problems studied in
[3, 11] are of rather different nature than our Class Containment Problem.

Organization. After the preliminaries on subclasses of regular languages, we define in
Section 3 the framework of synchronized relations. Section 4 provides a roadmap with the
three key ingredients of our characterization. Sections 5, 6 and 7 contain the technical details
for these main ingredients. In Section 8 we discuss the computability of the characterization.

2 Preliminaries

We denote by N,Q the sets of non-negative integers and rationals. We use standard interval
notation as in, for example, (a, b]Q = {c ∈ Q | a < c ≤ b}. A,B denote arbitrary finite
alphabets, and 2 the special binary alphabet {1, 2}.

Words and shuffles. For a word w ∈ A∗, |w| is its length, and |w|a is the number of occur-
rences of symbol a in w. We denote by w[i, j] the factor of w between positions i and j (in-
cluded), for 1 ≤ i ≤ j ≤ |w|, and we write w[i] for w[i, i]. We will also make use of the shuffle
operation, which maps a finite set of words w1, . . . , wn to the language shuffle{w1, . . . , wn}
of all words w for which there is a partition I1, . . . , In of [1, |w|] so that each wi is the
projection of w onto Ii. For example, shuffle{ab, cd} = {abcd, cdab, acbd, acdb, . . . }.

Parikh image. The Parikh image of a word w over A is the tuple π(w) associating each
symbol a ∈ A to its number of occurrences |w|a in w. We will mostly use Parikh images
for words over 2∗, which are thus pairs π(w) = (|w|1, |w|2). We naturally extend this to
languages by letting π(L) def= {π(w) | w ∈ L} (⊆ N2). For x̄, x̄1, . . . , x̄n ∈ N2, we denote by
〈x̄, P 〉 the 2-dimensional linear set {x̄+α1x̄1 + · · ·+αnx̄n | α1, . . . , αn ∈ N}, and call x̄ ∈ N2

its basis and x̄1, . . . , x̄n its periods. A semi-linear set is a finite union of linear sets.

Regular languages. We use standard notation for regular expressions without comple-
ment, namely, for expressions build up from the empty set, the empty word ε and the
symbols a ∈ A, using the operations ·, ∪, and ( )∗. For economy of space and clarity we
also use the abbreviated notation ( )k, ( )k∗ —which is a shorthand for (( )k)∗—, ( )≥k, ( )<k,



4 Resynchronizing Classes of Word Relations

and we identify regular expressions with the defined languages. For example, we may write
abbc ∈ a · b≥2 · (c∪ d)∗, b(ab)∗ = (ba)∗b and {a, b}∗ · c = (a∪ b)∗ · c. Given u = a1 · · · an ∈ A∗
and v = b1 · · · bn ∈ B∗, we write u⊗ v for the word (a1, b1) · · · (an, bn) ∈ (A×B)∗. Similarly,
given U ⊆ A∗, V ⊆ B∗, we write U ⊗V ⊆ (A×B)∗ for the set {u⊗ v | u ∈ U, v ∈ V, |u| = |v|}.

The star-height of a regular expression is the maximum number of nestings of Kleene
stars ( )∗. By abuse of terminology, when referring to the star-height of a language, we mean
the star-height of some regular expression that represents it (in particular, we do not need to
work with the minimum star-height over all expressions). Besides regular expressions, we also
work with automata, and use classical techniques on them (notably, pumping arguments).
Given an accepting run γ of an automaton A, we often identify cycles in it, that is, factors
that start and end in the same state, and that can thus be pumped. Such cycles are
called simple if they do not contain proper factors that are also cycles. Moreover, to avoid
mentioning explicitly an automaton for a language L and a run of it, we call cycle of L
(resp. simple cycle of L) the word spelled out by any cycle (resp. simple cycle) of any
accepting run of the minimal deterministic automaton recognizing L, and denote the set of
all cycles (resp. simple cycles) of L by cycles(L) (resp. simple-cycles(L)). We remark that,
however, that the use of the minimal automaton as a presentation of a regular language L
is only to avoid ambiguity when referring to the cycles of L —in fact, our results do not
depend on determinism or minimality, and can thus be applied to arbitrary non-deterministic
automata, without any difference in the characterizations we present.

A regular language C is concat-star (a.k.a. unit-form [1]), if it is of the form

C = C∗1u1C
∗
2u2 · · ·C∗nun, (?)

for n ∈ N, words u1, . . . , un, and regular languages C1, . . . , Cn. Without loss of generality,
we can always assume that the empty word does not belong to any of the languages Ci. The
following trivial decomposition lemma will be used throughout.

I Lemma 1. Every regular language is a finite union of concat-star languages.

The C∗i ’s from (?) are called components of the concat-star language C. Note that (an
expression of) a concat-star language as in (?) has star-height 1 if and only if every Ci is
finite. A component C∗i is homogeneous if C∗i ⊆ 1∗ or C∗i ⊆ 2∗. A component which is
not homogeneous is called heterogeneous (e.g. C∗i = {1, 2}∗). It will also be convenient to
distinguish a few types of concat-star languages. We say that C is

heterogeneous if it contains at least one heterogeneous component, otherwise it is
homogeneous;
smooth if every homogeneous component is a language of the form 1k∗ or 2k∗, for some
k > 0, and there are no consecutive homogeneous components;
simple if it has star-height 1 and it is either homogeneous or smooth heterogeneous.

Hereafter, by “simple language” we mean simple concat-star language. The picture below
summarizes the different types of control languages, together with some separating examples.

s.-h. = 1

s.-h. > 1

simple

homogeneous
smooth

heterogeneous
non-smooth
heterogeneous

non
concat-star

1∗(11)∗2∗

(1∗1)∗2∗

1∗(12)∗2∗

1∗(1∗2)∗2∗

1∗2∗(12)∗

1∗2∗(1∗2)∗

(12)∗1∗ ∪ (12)∗2∗

(1∗2)∗ ∪ (12)∗
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In Section 5 we will see that the Class Containment Problem is reduced to the case of finite
unions of simple languages. The latter languages thus form the basis of our characterization.

3 Synchronized relations

A synchronization of a pair (w1, w2) of words over A is a word over 2 × A so that
the projection on A of positions labeled i is exactly wi, for i = 1, 2 —in other words,
shuffle{1|w1|⊗w1, 2|w2|⊗w2} is the set of all synchronizations of (w1, w2). For example, the
words (1, a)(1, b)(2, a) and (1, a)(2, a)(1, b) are two possible synchronizations of the same
pair (ab, a). Every word w ∈ (2×A)∗ is a synchronization of a unique pair (w1, w2), where
wi is the sequence of A-letters corresponding to the symbol i in the first position of 2× A.
We denote such pair (w1, w2) by JwK and extend the notation to languages L ⊆ (2×A)∗ by
JLK def= {JwK | w ∈ L}.

Given a regular language C ⊆ 2
∗, we define the class of CCC-controlled relations as

Rel(C) def=
{
JLK | L ⊆ C ⊗A∗ is regular,A is some finite alphabet

}
.

A slightly different definition is possible, which restricts the class of C-controlled relations to
be over a fixed alphabet A, that is, one can define RelA(C) = {JLK | L ⊆ C ⊗A∗ regular}.
As far as we are concerned with comparing classes of relations controlled by different lan-
guages, the two definitions are somehow interchangeable, in the sense that containment
between classes is not sensible to whether we fix or not the alphabet. For example, we
will see that, for any alphabet A with at least two symbols, RelA(C) ⊆ RelA(D) iff
Rel(C) ⊆ Rel(D).

For economy of space, we use C ⊆Rel D and C =Rel D as shorthands for Rel(C) ⊆
Rel(D) and Rel(C) = Rel(D), respectively. The following properties are easy to verify.

I Lemma 2. For every regular C,D,C ′, D′ ⊆ 2
∗,

P1. if C ⊆ D, then C ⊆Rel D;
P2. if C ⊆Rel D and C ′ ⊆Rel D

′, then C · C ′ ⊆Rel D ·D′ and C ∪ C ′ ⊆Rel D ∪D′;
P3. if C ⊆Rel D, then C∗ ⊆Rel D

∗;
P4. if C ⊆ 1∗ and D ⊆ 2∗, then C ·D =Rel D · C;
P5. if C is finite, then C ·D =Rel D · C;
P6. if C ⊆Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds;
P7. if C is homogeneous concat-star, then C =Rel

⋃
i∈I 1`i∗1ki2ˆ̀

i∗2k̂i for a finite I;
P8. if C is homogeneous concat-star, C ⊆Rel D if and only if π(C) ⊆ π(D).

Proof idea. P1 is immediate from definitions; henceforth we use it without referencing it.
P2 and P3 follow readily from the following decomposition properties.
(a) For every R ∈ Rel(C · C ′), there are R1, . . . , Rn ∈ Rel(C), R′1, . . . , R′n ∈ Rel(C ′) so

that R =
⋃
iRi ·R′i.

(b) For every R ∈ Rel(C ∪ C ′), there are R1 ∈ Rel(C), R2 ∈ Rel(C ′) so that R = R1∪R2.
(c) For every R ∈ Rel(C∗), there are R1, . . . , Rn ∈ Rel(C) and I ⊆ {1, . . . , n}∗ regular so

that R =
⋃
w∈I Rw[1] · · ·Rw[|w|].

P4 can be verified by first decomposing any relation R ∈ Rel(C ·D) into
⋃
iRi ·R′i as in (a),

and then observing that in this case J
⋃
iRi ·R′iK = J

⋃
iR
′
i ·RiK. For P5, it is easy to see that

1 ·D =Rel D · 1 and 2 ·D =Rel D · 2 for any D, and thus by P2 this extends to commuting
with arbitrary finite languages. For P6, observe that if C ⊆Rel D then JC ⊗ a∗K ∈ Rel(D)
for a ∈ A, which means that π(C) ⊆ π(D). P7 is a consequence of P4 and the so-called
Chrobak normal form for regular languages over unary alphabets [7]. Finally, the proof of P8
is a variant of the proof that the operation of shuffle preserves regularity of languages. J
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4 Characterization of the Class Containment Problem

We give an overview of the main ingredients of our decision procedure for class containment.

Decomposition. A first ingredient is a decomposition result for regular control languages
into =Rel-equivalent finite unions of simple languages. Here we only state the result with a
short proof sketch; the complete proof will be given in Section 5.

I Proposition 3. Every regular language C ⊆ 2
∗ is effectively =Rel-equivalent to a finite

union of simple languages.

Proof idea. One first applies Lemma 1, so as to decompose the regular language C into a fi-
nite union of concat-star languages. Then, the concat-star languages are further decomposed
into unions of concat-star languages of star-height 1. For example, (112(12)∗ ∪ 122)∗ =Rel
(122)∗ ∪ (112∪ 122)∗112∪ (112∪ 122)∗11122∪ (112∪ 122)∗1111222. This latter step is more
difficult and exploits the increased flexibility of the relation =Rel compared to equality.
It also exploits in a crucial way properties of linear sets, and more specifically those that
result from taking the Parikh images of concat-star languages. Finally, to get the desired
decomposition, one needs to decompose further the concat-star languages of star-height 1
into finite unions of simple languages as in, for example, (12)∗1∗2∗ =Rel (12)∗1∗ ∪ (12)∗2∗.
This last decomposition makes use of some basic properties from Lemma 2. J

Parikh ratios. The Parikh ratio of a pair x̄ = (n1, n2) ∈ N2 \ {(0, 0)} is ρ(x̄) = n1
n1+n2

.
We naturally extend this to non-empty words w ∈ 2

∗ by letting ρ(w) = ρ(π(w)) (this
describes the proportion of 1’s in w). We further extend the notation to languages: ρ(C) =
{ρ(w) | w ∈ C \ {ε}}. Note that ρ(C) ⊆ [0, 1]Q. It is sometimes useful to think of ρ(C) as
the cone Qπ(C) = {q · π(w) | q ∈ Q, w ∈ C} inside the rational plane Q×Q.

I Example 4. The Parikh images of the languages C = (2(2112)∗)∗ and D = (2 ∪ 2112)∗
are depicted below. Note that ρ(C) =

[
0, 1

2
)
Q, while ρ(D) =

[
0, 1

2
]
Q.

⇡(C) ⇡(D)

1

2

1

2

1

2

Q⇡(C)

1

2

Q⇡(D)

The following lemma summarizes the main properties of Parikh ratios that we will need.

I Lemma 5. The Parikh ratio of a concat-star language C verifies the following properties:
1. If C = C∗1u1 · · ·C∗nun, then ρ(cycles(C)) ⊆ [mini inf ρ(C∗i ),maxi sup ρ(C∗i )]Q;
2. Moreover, if C = D∗ for a finite D, then ρ(C) = ρ(cycles(C)) = [min ρ(D),max ρ(D)]Q.

Synchronizing morphisms. Another fundamental ingredient is the notion of synchron-
izing morphism, which intuitively relates the components of a concat-star language C to the
components of a concat-star language D by comparing the Parikh ratios.

Let C = C∗1u1 · · ·C∗nun be a heterogeneous concat-star language andD = D∗1v1 · · ·D∗mvm
any concat-star language. We say that a function f : [1, n] → [1,m] is a synchronizing
morphism (abbreviated s.m.) from C to D if

it is monotonic: f(i) ≤ f(j) whenever i ≤ j; and
it preserves Parikh-ratio: for every i ∈ [1, n], ρ(C∗i ) ⊆ ρ(D∗f(i)).
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We write C s.m.−−−→ D to denote the existence of such synchronizing morphism. By convention,
if C is homogeneous, then we say that there is always a synchronizing morphism from C to
D. In particular, u s.m.−−−→ v for every u, v ∈ 2∗. The sole purpose of this trivial definition on
homogeneous concat-star languages is to make the characterization statements simpler.

I Example 6. The following function f is a synchronizing morphism:

2⇤ 1⇤ (122 [ 12)⇤ (122)⇤ (112)⇤ 1⇤ 2⇤ (22)⇤

(22)⇤ 1⇤ (122 [ 112)⇤ (11 [ 111)⇤ (12)⇤ 2⇤
f

a

b
c d

Q⇧((112)⇤)

Q⇧((122)⇤)

Q⇧((122 [ 12)⇤)

Q⇧((122 [ 112)⇤)

a:
b:
c:
d:

Observe that synchronizing morphisms are closed under composition and hence s.m.−−−→
defines a pre-order on concat-star languages.

Class Containment Problem for simple languages. The existence of synchronizing
morphism is the key property that characterizes ⊆Rel on simple languages. A complete
proof of the following proposition will be the theme of Section 6.

I Proposition 7. For all simple C,D ⊆ 2
∗, C ⊆Rel D iff π(C) ⊆ π(D) and C s.m.−−−→ D.

Note that the case of C homogeneous follows from P8. Intuitively, for any C smooth
heterogeneous concat-star language of star-height 1, the characterization says that, C ⊆Rel
D iff π(C) ⊆ π(D) and for every component of C, there is a component of D that contains
its Parikh ratio. Further, the matching between components is monotonic. For example,
we have (12)∗(112)∗ ⊆Rel (12 ∪ 11122)∗(121)∗1∗2∗, because the Parikh ratios of (12)∗ and
(112)∗ are included in those of (12∪11122)∗ and (121)∗, respectively. On the other hand, we
have (112)∗(12)∗ 6⊆Rel (12 ∪ 11122)∗(121)∗1∗2∗ because in this case there is no motononic
matching between components.

Generalization to unions of simple languages. Section 7 concerns the generalization
of the characterization to finite unions of simple languages, which cover arbitrary regular
languages up to =Rel-equivalence. The previous characterization for simple languages thus
constitutes the base case of our characterization. The lemma below allows a first generaliz-
ation when C is a union of simple languages and D is a simple language.

I Lemma 8. C1 ∪ C2 ⊆Rel D iff C1 ⊆Rel D and C2 ⊆Rel D.

The analogous of Lemma 8 for unions on the right hand-side does not hold in general,
as shown by the following example.

I Example 9. Let C = (12)∗, D1 = (112 ∪ 1122)∗, and D2 = (122 ∪ 1122)∗12. We have
C ⊆Rel D1 ∪D2, although C 6⊆Rel D1 and C 6⊆Rel D2.

Neither it holds that Parikh image containment together with the existence of s.m. to
one of the disjuncts suffices. For instance, for C ′ = (12)∗, D′1 = (1212)∗, D′2 = 1∗2∗, we
have C ′ 6⊆Rel D

′
1 ∪D′2 although π(C ′) ⊆ π(D′1 ∪D′2) and C ′ s.m.−−−→ D′1.

The characterization we provide is inductive on the number of languages that are unioned
on the right hand-side. Concretely, for a union of two languages, we will show that C ⊆Rel
D1 ∪D2 iff C s.m.−−−→ Di for some i and C \ [Di]π ⊆Rel D3−i, where [Di]π is the closure of Di

under permutations, that is, [Di]π def= {w ∈ 2∗ | π(w) ∈ π(Di)}. The idea that underlies
the proof of the necessity of our characterization is that C can be split into a disjoint union
of C ∩ [Di]π and C \ [Di]π, in such a way that C ∩ [Di]π ⊆Rel Di and C \ [Di]π ⊆Rel D3−i.

For finite unions of simple languages, we have the following characterization. A complete
proof of this theorem will be the theme of Section 7.
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I Theorem 10. For finite unions C =
⋃
i Ci and D =

⋃
j Dj of simple languages, the

following are equivalent:
C ⊆Rel D,
For all i π(Ci) ⊆ π(D) and there is j with Ci

s.m.−−−→ Dj. In addition, if Ci is heterogen-
eous, then Ci \ [Dj ]π is regular and Ci \ [Dj ]π ⊆Rel

⋃
j′ 6=j Dj′ .

Coming back to Example 9, note that ρ(C) = { 1
2}, ρ(D1) = [ 1

2 ,
2
3 ]Q and ρ((122 ∪

1122)∗) = [ 1
3 ,

1
2 ]Q. Therefore, one can explain C ⊆Rel D1 ∪ D2 by the fact of having

C
s.m.−−−→ D1 and C \ [D1]π = (1212)∗12 ⊆Rel D2, where the latter containment holds by the

fact that (1212)∗12 s.m.−−−→ D2 and π((1212)∗12) ⊆ π(D2).
Note that there’s a caveat in the statement of Theorem 10: Ci\ [Dj ]π needs to be regular.

And in fact this is not the case in general: if Ci = 1∗2∗ and Dj = (12)∗, we get a non-regular
language Ci\[Dj ]π = {1n2m | n 6= m}. However, provided Ci

s.m.−−−→ Dj for Ci heterogeneous,
we show that Ci \ [Dj ]π is effectively regular (in the sense that an automaton recognizing
it can be computed from automata recognizing Ci and Dj). This is a non-trivial fact, and
will be proved in Section 5 (Proposition 12).

The second key ingredient is that if Ci ⊆Rel D1 ∪ · · · ∪Dn, then there must be some j
so that Ci

s.m.−−−→ Dj . This will be proved in Section 6 (Lemma 15).

5 Decomposition into simple languages

As already mentioned, we start by reducing the Class Containment Problem for arbitrary
regular languages to the case of finite unions of simple languages (Proposition 3 below). We
do this in two steps. First, we decompose regular languages into finite unions of concat-
star languages of star-height 1 (Lemma 13 below). Then, we further decompose the latter
languages into finite unions of simple languages (Lemma 14 below).

Unions of star-height 1 languages. Lemma 13 relies on two key results, which are also
of independent interest. The first result is a normal form representation of the Parikh image
π(C) of a concat-star language C. Formally, we say that a linear set 〈x̄, P 〉 is in normal
form if the elements of P are linearly independent. We extend this notion to semi-linear
sets by saying that 〈x̄1, P1〉 ∪ · · · ∪ 〈x̄n, Pn〉 is in normal form if the vectors in

⋃
i Pi are

linearly independent. In particular, in dimension 2, this means that there are at most two
vectors in P . Note that if the representation of a semi-linear set is in normal form then all
its linear sets are in normal form, but the converse does not hold —for example, consider
〈0̄, {(2, 0)}〉 ∪ 〈0̄, {(3, 0)}〉. The following lemma shows that Parikh images of concat-star
languages enjoy normal forms.

I Lemma 11. For every concat-star language C = C∗1u1 · · ·C∗nun, there exists a normal
form representation of its Parikh image π(C). Moreover, if C is infinite, the union of the
period sets is {x̄−, x̄+}, where ρ(x̄−) = minj(inf ρ(C∗j )) and ρ(x̄+) = maxj(sup ρ(C∗j )).

Proof idea. Using some basic properties of Parikh images, we reduce to the case where C
is a concatenation of expressions of the form u∗ (for u a non-empty word) or (u∗1 · · ·u∗nu)∗
(for u1, . . . , un, u non-empty words). For any C in this form, the Parikh image of words in
C can be expressed in terms of some words w−, w+ such that π(w−) = x̄− and π(w+) = x̄+.
Then, any word of C can be represented as a constrained iteration of these two words. J

It is worth pointing out the difference with the normal form from [12]. While the normal
form of [12] holds for arbitrary regular languages, our normal form holds only for concat-star
languages over binary alphabets (e.g., it fails for (12)∗ ∪ 1∗ ∪ 2∗). Conversely, the normal
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form from [12] does not guarantee the linear independence of the vectors in the union of the
periods, as we do here instead. Proposition 12 below relies on such an additional property.
(Also, [1] gives a procedure to compute Parikh images, though no normal form is implied.)

The second result shows that, under certain conditions, one can intersect a regular lan-
guage C by a language of the form [D]π = π−1(π(D)), with D concat-star, and obtain a
language that is again regular. This result not only enables the decomposition into star-
height 1 languages, but will be used also later to formalize a recursive characterization of
⊆Rel for unions of simple languages (cf. Section 7).

I Proposition 12. Given C regular and D concat-star so that ρ(cycles(C)) ⊆ ρ(cycles(D)),
the languages C ∩ [D]π and C \ [D]π are effectively regular. If in addition D is of the form
D∗1u, then C ∩ [D]π ⊆Rel D.

Proof idea. We exploit the fact that words in 2∗ are in bijection with paths inside N2 that
originate in 0̄ = (0, 0) and, furthermore, that words with the same Parikh image correspond
to paths with the same endpoints. The claim boils down to considering some word w ∈ 2∗
and proving that, under suitable hypotheses, the path induced by w can be approximated by
a path inside π(D) that stays sufficiently close to the former path. The use of Lemma 11 will
be crucial here, since it gives a normal form

⋃
i〈x̄i, Pi〉 for the latter set π(D). Intuitively,

it implies that the words from [D]π are represented by paths that never get too far from
the linear set 〈0̄,

⋃
i Pi〉. For example, by pairing this property with the assumption that

ρ(cycles(C)) ⊆ ρ(cycles(D)), one can show that the path induced by a word w ∈ C stays
close to 〈0̄,

⋃
i Pi〉, and hence also to π(D). Stronger variants of this property are shown,

that take into account the exact displacement of points along the path induced by w from
the points in π(D). These latter properties are used by suitable automata that recognize
the languages C ∩ [D]π and C \ [D]π. J

As we explained in the proof sketch, the above proposition relies on the normal form
for the semi-linear set π(D), which in turns relies on the fact that D is concat-star. The
proposition does not hold if we replace D with an arbitrary regular language. For instance,
consider C = 1(11)∗2(22)∗ and D = (12)∗ ∪ (11)∗(22)∗, and observe that ρ(cycles(C)) =
[0, 1]Q = ρ(cycles(D)), but C ∩ [D]π = {1(11)n2(22)n | n ∈ N} is clearly not regular.

Although Proposition 12 is stated in full generality, that is, for every regular language
C so that ρ(cycles(C)) ⊆ ρ(cycles(D)), in the proof of the decomposition result below we
will use it only for a smooth heterogeneous concat-star language C so that C s.m.−−−→ D (this
is sufficient but not necessary for verifying the hypothesis ρ(cycles(C)) ⊆ ρ(cycles(D))).

I Lemma 13. Every regular C ⊆ 2
∗ is =Rel-equivalent to a finite union

⋃
iDi of concat-star

languages of star-height 1.

Towards the proof of this lemma, note that, by Lemma 1, C is a finite union of concat-
star languages C∗1u1 · · ·C∗nun. The lemma then follows from applying Claim 1 below to each
component of the concat-star languages, and then using P2.

I Claim 1. Every regular D∗ is =Rel-equivalent to a finite union
⋃
iD
∗
i ui, with finite Di’s.

Proof idea of Claim 1. Since π(D∗) is a finite union of linear sets, from the latter we can
extract languages of the formD∗i ui. Then we can decomposeD∗ as the union ofD∗∩[D∗i ui]π.
From there, the result follows easily from Proposition 12 and P2. J

Unions of simple languages. We finally show how to decompose into simple languages.
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I Lemma 14. Every concat-star C ⊆ 2
∗ of star-height 1 is =Rel-equivalent to a finite union⋃

i Ci of simple languages.

Proof idea. By using the basic properties given in Lemma 2, we can reduce the problem to
the case where C is of the form 1k∗2k̂∗w∗ for some heterogeneous word w and some natural
numbers k, k̂. This case is easy to prove by using again those basic properties. J

As a corollary of Lemmas 13 and 14, we have our desired result.

I Proposition 3. Every regular language C ⊆ 2
∗ is effectively =Rel-equivalent to a finite

union of simple languages. J

6 Simple languages

We prove the characterization result for simple languages, which we recall here.

I Proposition 7. For all simple C,D ⊆ 2
∗, C ⊆Rel D iff π(C) ⊆ π(D) and C s.m.−−−→ D.

For the left-to-right direction, by P6, C ⊆Rel D implies π(C) ⊆ π(D). The proof that
C ⊆Rel D implies C s.m.−−−→ D is given in a more general setup where D is a finite union of
simple languages. This statement will be used in the characterization of the next section.

I Lemma 15. For C a simple language and D =
⋃
iDi finite union of simple languages, if

C ⊆Rel D, then C s.m.−−−→ Di for some i. In particular, for C,D simple languages, if C ⊆Rel
D, then C s.m.−−−→ D. Further, the statement holds even if we consider RelA-containment for
any A with at least two letters.

Proof idea. The idea is to construct a relation R ∈ Rel(C) so that from R ∈ Rel(D), using
suitable pumping arguments, one can extract a synchronizing morphism from C to some Di.
The relation R must depend on both languages C,D, but the underlying alphabet can be
fixed and taken binary, say A = {a, b}. For example, if C is of the form C∗1 and contains
two words u− and u+ with minimum and maximum Parikh ratios, and if the automaton
for D has a single strongly connected component, then one can define the relation R =q
(u−⊗ a|u−|)∗ · (u+⊗ b|u+|)∗

y
. In this case, R ∈ Rel(D) would imply ρ(u−), ρ(u+) ∈ ρ(D),

and hence C s.m.−−−→ D. This construction can be modified for more general languages C,D,
by using words with different Parikh ratios from each component of C and by increasing the
number of alternations between these ratios on the basis of the number of components of
D. While the construction is more involved in the general case, and in particular needs to
include iterations of words which are not necessarily of minimum or maximum Parikh ratios
for a component, the intuition remains the same. J

I Observation 16. The previous Lemma 15 does not hold for arbitrary concat-star languages
C. For example, consider (12)∗1∗2∗ =Rel (12)∗1∗ ∪ (12)∗2∗, where there is no s.m. from
(12)∗1∗2∗ to (12)∗1∗, nor from (12)∗1∗2∗ to (12)∗2∗.

Conversely, to show that the conditions π(C) ⊆ π(D) and C
s.m.−−−→ D are sufficient to

have C ⊆Rel D, where C,D are simple, it is useful to introduce a normal form for languages
of the form C∗, with C finite.

I Lemma 17. For every p, q > 0, finite C ⊆ 2
∗, and u−, u+ ∈ C so that ρ(u−) = min ρ(C)

and ρ(u+) = max ρ(C), there exists a finite C ′ ⊆ C∗ so that C∗ =Rel (up− ∪ u
q
+)∗ · C ′.
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In particular, the lemma implies that C∗ =Rel (u− ∪ u+)∗ · C ′ for some finite C ′ ⊆ C∗

and u−, u+ words of C of minimum and maximum ratio. In other words, it just suffices
to iterate two words from C and then append tails of bounded length to obtain the class
Rel(C∗). With this in mind, we can easily prove our characterization for simple languages.

Proof idea of Proposition 7. The left-to-right direction follows from P6 and Lemma 15.
For the opposite direction, the case where C is homogeneous is straightforward by P8. For
C heterogeneous, we use P5 to we assume wlog that C = C∗1 · · ·C∗nu and D = D∗1 · · ·D∗mv.
Since every Ci is finite (recall that simple languages have star-height 1), we can con-
sider words wi,−, wi,+ of minimum and maximum Parikh ratio. Using the normal form
of Lemma 17 plus the existence of s.m., we obtain C∗i ⊆Rel D

∗
f(i)C

′
i for a finite C ′i ⊆ C∗i .

Thus, C∗1 · · ·C∗nu ⊆Rel D
∗
j1
C ′1 · · ·D∗jn

C ′nu =Rel D
∗
j1
· · ·D∗jn

C ′1 · · ·C ′nu ⊆Rel D
∗
1 · · ·D∗mv. J

7 Regular languages

We now prove the characterization theorem for unions of simple languages. Thanks to
this theorem and to Proposition 3, we will obtain an effective characterization for arbitrary
regular languages, and thus solve the Class Containment Problem in its full generality.

I Theorem 10. For finite unions C =
⋃
i Ci and D =

⋃
j Dj of simple languages, we have

C ⊆Rel D if and only if for all i π(Ci) ⊆ π(D), there is j with Ci
s.m.−−−→ Dj and if Ci is

heterogeneous, then Ci \ [Dj ]π is regular and Ci \ [Dj ]π ⊆Rel
⋃
j′ 6=j Dj′ .

Note in particular that the conditions in the characterization of Theorem 10 require that
Ci \ [Dj ]π is regular. Despite that, this property is always verified when Ci

s.m.−−−→ Dj and Ci
is heterogeneous by Proposition 12 from Section 5. Indeed, Ci

s.m.−−−→ Dj for Ci heterogeneous
implies that all components of Ci are mapped to components of Dj . In view of Lemma 5 and
the fact that Ci and Dj have star-height 1, this implies that ρ(cycles(Ci)) ⊆ ρ(cycles(Dj)),
and hence, by Proposition 12, Ci \ [Dj ]π is regular. We are now ready to prove the theorem.

Proof of Theorem 10. For the left-to-right implication, by Lemma 8, we have that Ci ⊆Rel
D for every i. Containment of Parikh images follows then from P6. For any fixed i, if Ci
is homogeneous we have Ci

s.m.−−−→ Dj for every j, and if it is smooth heterogeneous, then
Lemma 15 yields the existence of some j so that Ci

s.m.−−−→ Dj . By Proposition 12, Ci \ [Dj ]π
is regular, and we now prove that Ci \ [Dj ]π ⊆Rel

⋃
j′ 6=j Dj′ . Take R ∈ Rel(Ci \ [Dj ]π)

and a regular L ⊆ (Ci \ [Dj ]π)⊗A∗ so that JLK = R. Since Ci \ [Dj ]π ⊆ Ci, we have
R ∈ Rel(Ci) ⊆ Rel(D), by P1 and hypothesis. Let L′ ⊆ D⊗A∗ be a regular language so
that JL′K = JLK = R. Since the projection onto 2 of L and L′ have necessarily the same
Parikh image, it follows that L′ ∩ (Dj ⊗A∗) = ∅, and thus that L′ ⊆ (

⋃
j′ 6=j Dj′)⊗A∗ or,

in other words, that R ∈ Rel(
⋃
j′ 6=j Dj′).

For the right-to-left implication, for Ci homogeneous, π(Ci) ⊆ π(D) implies Ci ⊆Rel D

by P8. For Ci heterogeneous, we have Ci = (Ci \ [Dj ]π) ∪ (Ci ∩ [Dj ]π). By hypothesis
plus property P1, Ci \ [Dj ]π ⊆Rel D. Then, by Lemma 8, it only remains to check that
Ci∩ [Dj ]π ⊆Rel D. Now, by Proposition 12 and Proposition 3, Ci∩ [Dj ]π is =Rel-equivalent
to a finite union of simple languages (C ′k)k∈K . Note that C ′k ⊆Rel Ci for all k ∈ K. Then,
by the left-to-right direction of Proposition 7, we have C ′k

s.m.−−−→ Ci for all k. By composition
of synchronizing morphisms, we obtain C ′k

s.m.−−−→ Dj for all k ∈ K. Since we also have that
π(C ′k) ⊆ π(Dj), by the right-to-left direction of Proposition 7, we have that C ′k ⊆Rel Dj for
all k ∈ K. Then, from Lemma 8 it follows that Ci ⊆Rel Dj ⊆ D. Since this happens for
every Ci, again by Lemma 8 the statement follows. J
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8 Decidability and complexity

We have given a characterization of the pairs C,D of regular languages that satisfy C ⊆Rel
D. We argue that this characterization is effective.

As explained in Section 7, there are three main steps that one need to take for deciding
whether C ⊆Rel D, for two given regular languages C,D: First, one needs to decompose C
and D as finite unions

⋃
i Ci and

⋃
j Dj of simple languages. This preprocessing relies on two

constructions: the computation of the normal form for semi-linear sets and the construction
of an automaton for C ∩ [D]π, proving that is regular. A close inspection of these proofs in
Section 5 shows that both procedures are effective, and thus so is the decomposition.

Then, based on the characterization of Theorem 10, one has to identify suitable syn-
chronizing morphisms from each Ci to some Dj . This step boils down to checking whether
two components C∗i,i′ and D∗j,j′ of concat-star languages satisfy ρ(C∗i,i′) ⊆ ρ(D∗j,j′). Thanks
to the insight of Lemma 5, the containment of Parikh ratios and thus the existence of such
synchronizing morphism is decidable.

Finally, the third step uses Theorem 10, reducing the problem
⋃
i Ci ⊆Rel

⋃
j Dj to

sub-problems of the form Ci \ [Dji
]π ⊆Rel

⋃
j′ 6=ji

Dj′ , which has a smaller union in the right
hand-side and thus can be solved recursively (but in principle non-elementary).

The above arguments show that the Class Containment Problem is decidable. Once we
know that C ⊆Rel D for two given regular languages C,D, it is reasonable to ask whether it
is possible to resynchronize any relation from C to D, namely, whether there is an algorithm
that transforms any automaton A recognizing L ⊆ C⊗A∗ into an automaton A′ recognizing
L′ ⊆ D⊗A∗ so that JL′K = JLK. A close inspection to our decision procedure for C ⊆Rel D

gives a positive answer to the question. Indeed, all our proofs are constructive.
We can summarize the above arguments with the following corollary.

I Corollary 18. There is a non-elementary algorithm that, given two regular languages
C,D ⊆ 2

∗, decides whether C ⊆Rel D.
There is also a non-elementary algorithm that, given an automaton for L ⊆ C ⊗ A∗, con-
structs an automaton for some L′ ⊆ D ⊗ A∗ so that JL′K = JLK, provided C ⊆Rel D.

9 Discussion

The overall picture we obtain from our results is that Rel(C) ⊆ Rel(D) depends on com-
paring the ratio growth of the two coordinates on the cycles of the transition graph of the
automata AC , AD recognizing C,D. Concretely, our reduction into synchronizing morph-
isms for simple languages can be thought of restricting our attention to cycles c1, . . . , cn
of AC so that: ci+1 is reachable from ci, and ci or ci+1 is heterogeneous (recall that in a
simple concat-star language, there are no consecutive homogeneous components). Intuit-
ively, Rel(C) ⊆ Rel(D) whenever π(C) ⊆ π(D) and for every sequence of cycles c1, . . . , cn
as before, there exists a corresponding sequence of cycles c′1, . . . , c′n in AD with the same
properties so that ci and c′i have the same Parikh ratio for every i.

We also recall (cf. proof of Lemma 15) that our characterization holds for the containment
problem Rel(C) ⊆ Rel(D), but also for any variant with a fixed alphabet of cardinality at
least 2. For the variant with a unary alphabet A, it is easy to see that RelA(C) ⊆ RelA(D)
is equivalent to π(C) ⊆ π(D). As concerns relations of higher arity defined by control
languages C ⊆ k

∗ = [1, k]∗, it is not clear if a similar characterization may hold. For
example, the normal form of Lemma 11 does not generalize to control alphabets of more
than two letters. Finally, we leave for future work the issue of determining the precise
complexity of the Class Containment Problem.
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A Missing proofs to Section 3

I Lemma 2. For every regular C,D,C ′, D′ ⊆ 2
∗,

P1. if C ⊆ D, then C ⊆Rel D;
P2. if C ⊆Rel D and C ′ ⊆Rel D

′, then C · C ′ ⊆Rel D ·D′ and C ∪ C ′ ⊆Rel D ∪D′;
P3. if C ⊆Rel D, then C∗ ⊆Rel D

∗;
P4. if C ⊆ 1∗ and C ′ ⊆ 2∗, then C · C ′ =Rel C

′ · C;
P5. if C is finite, then C · C ′ =Rel C

′ · C;
P6. if C ⊆Rel D then π(C) ⊆ π(D); moreover, if C is finite, the converse also holds;
P7. if C is homogeneous concat-star, then C =Rel

⋃
i∈I 1`i∗1ki2ˆ̀

i∗2k̂i for a finite I;
P8. if C is homogeneous concat-star, C ⊆Rel D if and only if π(C) ⊆ π(D).

In order to prove Lemma 2, we will first prove the following decomposition properties.

I Lemma A.1. For every regular C,C ′ ⊆ 2
∗,

(a) If R ∈ Rel(C · C ′), then R =
⋃
iRi · R′i for some R1, . . . , Rn ∈ Rel(C), R′1, . . . , R′n ∈

Rel(C ′).
(b) If R ∈ Rel(C ∪ C ′), then R = R1 ∪R2 for some R1 ∈ Rel(C) and R2 ∈ Rel(C ′).
(c) If R ∈ Rel(C∗), then R =

⋃
w∈I Rw[1] · · ·Rw[|w|] for some regular I ⊆ {1, . . . , n}∗ and

some R1, . . . , Rn ∈ Rel(C).

Proof. (a). Since R ∈ Rel(C · C ′) there is some regular language L ⊆ (2×A)∗ controlled
by C · C ′ with JLK = R. Let A = (Q, q0, δ, F ) be the NFA accepting L. For every w ∈ L
there are w1 C-controlled, w2 C

′-controlled and q ∈ Q so that w1 · w2 = w and there is an
accepting run of A that reads w1 and reaches to q, and then from q reads w2 and reaches a
final state. We note this last fact as w1 ∈ L(A[q0, {q}]), w2 ∈ L(A[q, F ]). For q ∈ Q let

Lq1 = {w′1 | w′1 is C-controlled and w′1 ∈ L(A[q0, {q}])},
Lq2 = {w′2 | w′2 is C ′-controlled and w′2 ∈ L(A[q, F ])}.

It follows that Lq1 · L
q
2 is (C · C ′)-controlled for every q ∈ Q, and we have JLq1 · L

q
2K =

JLq1K · JL
q
2K ⊆ R. Moreover, by construction,

⋃
q∈QJLq1K · JL

q
2K = R. It remains to see that

each Lqi is regular, which is true due to the following facts:
Let Hq = {w ∈ (2× A)∗ | w is C-controlled}, H ′q = {w ∈ (2× A)∗ | w is C ′-controlled}.
This languages are regular by closure under inverse morphisms of regular languages (the
morphism being (i, a) 7→ i for every i ∈ 2, a ∈ A).
Let L̃q1 be the closure under prefixes of L and L̃q2 the closure under suffixes of L, these
are regular since regular languages are closed under prefix closure and suffix closure.
Finally, Lqi is regular since it is the intersection of two regular languages: Lq1 = L̃q1 ∩Hq,
Lq2 = L̃q2 ∩H ′q.

Note that the property does not necessary hold with n = 1. For example for C = C ′ = {1}
and R = {(aa, ε), (bb, ε)}, since whenever R ⊆ R1 · R2 for some R1, R2 ∈ Rel(C), we have
that R1 ·R2 contains also the pair (ab, ε).

(b). Since R ∈ Rel(C ∪ C ′), there is some regular language L ⊆ (2 × A)∗ controlled by
C ∪ C ′ with JLK = R. For every w ∈ L, w is either C-controlled or C ′-controlled. Let

L1 = {w ∈ L | w is C-controlled},
L2 = {w ∈ L | w is C ′-controlled}.

It follows that L1 ∪ L2 is (C ∪ C ′)-controlled and we have R = JL1 ∪ L2K = JL1K ∪ JL2K. It
remains to see that each Li is regular, which is true due to the following facts:
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Let H = {w ∈ (2 × A)∗ | w is C-controlled}, H ′ = {w ∈ (2 × A)∗ | w is C ′-controlled}.
This languages are regular by closure under inverse morphisms of regular languages (the
morphism being (i, a) 7→ i for every i ∈ 2, a ∈ A).
Finally, Li is regular since it is the intersection of two regular languages: L1 = L ∩H,
L2 = L ∩H ′.

(c). We are going to use similar arguments to the ones used in the proof of (a). Spe-
cifically, instead of factorizing a word w ∈ L ⊆ (2 × A)∗ into an C-controlled prefix and
an C ′-controlled suffix, we factorize it as w = w1 · w2 · · ·w`, for some ` ∈ N and some
C-controlled words w1, w2, . . . , w`, in such a way that there exist a sequence q0, . . . , q` of
states of A such that each language Lqj−1,qj

= L(A[qj−1, qj ])∩ (C ⊗A∗) contains the factor
wj . Then we have that J

∏`
j=1 Lqj−1,qj

K =
∏`
j=1JLqj−1,qj

K ⊆ R. Moreover, by construction,⋃
q0...q`∈Q∗

∏`
j=1JLqj−1,qj

K = R, from which one easily obtains the desired equation by taking
I = {(q0, q1)(q1, q2) · · · (ql−1, ql) | ql is a final state} ⊆ Q2 and R(q,q′) = JLq,q′K. J

Proof of Lemma 2. P1. It follows immediately from the definitions.

P2. Let R ∈ Rel(C · C ′). By (a) there are R1, . . . , Rn ∈ Rel(C) ⊆ Rel(D) and
R′1, . . . , R

′
n ∈ Rel(C ′) ⊆ Rel(D′) so that

⋃
iRi · R′i = R. It is straightforward from

the definition of J K to verify that Ri ·R′i ∈ Rel(D ·D′) for all i. And, from there, we finally
get, using similar arguments, that R =

⋃
iRi ·R′i ∈ Rel(D ·D′). The proof for the union is

similar but using (b) instead of (a).

P3. As we use (a) to prove P2, we can use (c) to prove that this property holds. Given
R ∈ Rel(C∗), we know from (c) that there are some relations R1, . . . , Rn ∈ Rel(C) and a
regular language I ⊆ {1, . . . , n}∗ such that R =

⋃
i∈I
∏
j=1,...,|i|Ri[j], where i[j] denotes the

j-th letter of the word i ∈ I (in particular, i[j] ∈ {1, . . . , n}). Since R1, . . . , Rn ∈ Rel(C) ⊆
Rel(D), there are some regular languages L1, . . . , Ln ⊆ D ⊗ A∗ such that JL1K = R1, . . . ,
JLnK = Rn. In particular, we derive that

R =
⋃
i∈I
∏
j=1,...,|i|JLi[j]K =

q⋃
i∈I
∏
j=1,...,|i| Li[j]

y
=

q
I[k/Lk]

y

where I[k/Lk] denotes the language over 2×A that is obtained from I by substituting every
letter k ∈ {1, . . . , n} with the corresponding regular language Lk. From the fact that regular
languages are closed under regular substitutions, we get that I[k/Lk] is a regular language
too. Finally, it is easy to see that I[k/Lk] is controlled by D∗, and hence R ∈ Rel(D∗).

P4. Let A = (Q, q0, δ, F ) be a NFA so that L(A) is (C ·C ′)-controlled (and thus JL(A)K ∈
Rel(C · C ′)). Note that

L(A) =
⋃
q∈Q

Lq0,q · Lq,F for

Lq0,q = L(A[q0, {q}]) ∩ (C ⊗A∗),
Lq,F = L(A[q, F ]) ∩ (C ′⊗A∗).

Since C and C ′ have disjoint alphabets, we have that

JL(A)K = J
⋃
q∈Q

Lq0,q · Lq,F K

= J
⋃
q∈Q

Lq,F · Lq0,qK ∈ Rel(C ′ · C),
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which proves the statement.

P5. First note that, by the second assertion in P2, it is enough to prove the result for
C = {w}, a singleton language. Moreover, by the first assertion of P2, it suffices to prove
the result for the cases where w is a single letter (i.e. w = 1 or w = 2). We will prove it
for w = 1, the other case is symmetric. We will see that Rel({1} · C ′) ⊆ Rel(C ′ · {1}),
the other containment can be proved in a similar way. Let R ∈ Rel({1} · C ′) and A =
(Q, q0, δ, F ) a NFA such that L(A) is {1} · C ′-controlled and JL(A)K = R. Let Qa1 = {q ∈
Q | ∃ a transition (q0, (1, a), q1) ∈ δ}. Consider an automaton A′ with states (q, a) ∈ Q×A
and transitions

δ′ = {((q, a′), (1, a′), (q′, a))}a′∈A,(q,(1,a),q′)∈δ ∪ {((q, a′), (2, a), (q′, a′))}a′∈A,(q,(2,a),q′)∈δ.

We don’t specify its initial or final states because it is not necessary for our proof.
It is easy to check that

J
⋃

a,a′∈A,
qf∈F,

q1∈Qa
1

L(A′[(q1, a), {(qf , a′)}]) · {(1, a′)}K = R

and that
⋃

a,a′∈A,
qf∈F,

q1∈Qa
1

L(A′[(q1, a), {(qf , a′)}]) · {(1, a′)} is a regular C ′ · {1}-controlled language

which concludes the proof.

P6. Let suppose that Rel(C) ⊆ Rel(D). Towards a contradiction, assume that there
exists an element (α, β) ∈ π(C) \ π(D). Now consider the one letter alphabet A = {a}
and the singleton relation R = {(aα, aβ)}. It is easy to check that this relation is in
Rel(C)\Rel(D) which is a contradiction. Note that the converse does not hold in general,
consider for example C = (12)∗(1∗|2∗), D = 1∗2∗. It is clear that π(C) ⊆ π(D) (in fact
they are equal) but one can easily prove that R = {(u, v) | u = v} ∈ Rel(C) \Rel(D). By
P2, to prove that the converse holds for any finite C, it is enough to prove it for C = {w}
a singleton language. By hypothesis about Parikh images, there exist v ∈ D such that
π(w) = π(w′). Then it suffices to prove that {w} ⊆Rel {w′}. For R ∈ Rel(w), consider
a NFA A = (Q, q0, δ, F ) such that L(A) is w-controlled and JL(A)K = R. Since w and w′
have the same amount of 1’s and 2’s, for every w⊗ v ∈ L(A), there exists a shuffle ṽ of v
such that Jw⊗ vK = Jw′⊗ ṽK. Then we can construct a NFA A′ such that L(A′) = {w′⊗ ṽ |
there exists w⊗ v ∈ L(A) s.t. Jw⊗ vK = Jw′⊗ ṽK}. The result then follows immediately.

P7. Let C = C∗1u1 · · ·C∗nun be concat-star language with all components C∗i homogeneous.
By property P4 we can swap any two consecutive components C∗i and C∗i+1, with C∗i ⊆ 2∗
and C∗i+1 ⊆ 1∗, while preserving =Rel-equivalence. Iterating this operation results in a
language of the form C ′1 · C ′2, with C ′1 ⊆ 1∗ and C ′2 ⊆ 2∗. In particular, C ′1 and C ′2 are
languages over unary alphabets. There is a special normal form for automata over unary
alphabets, called Chrobak normal form [7], that implies that all languages over the unary
alphabet {1}, can be written as unions of languages of the form 1`i∗1ki , for i ranging over a
finite set I, and similarly for regular languages over {2}. This proves that C =Rel C

′
1 ·C ′2 =⋃

i∈I 1`i∗1ki2ˆ̀
i∗2k̂i .

P8. The proof is essentially based on the fact that regularity of languages is preserved
under shuffles. Suppose that π(C) ⊆ π(D) and consider a regular language L ⊆ C⊗A∗. By
property P8 we can assume that C =

⋃
i∈I 1`i∗1ki2ˆ̀

i∗2k̂i , and hence L =
⋃
i∈I L1,i ·L2,i, for

some regular languages L1,i ⊆ (1`i∗1ki)⊗ A∗ and L2,i ⊆ (2ˆ̀
i∗2k̂i)⊗ A∗. For each b ∈ {1, 2}
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and i ∈ I, let Ab,i be an automaton recognizing Lb,i, and assume that the states spaces of
the Ab,i are pairwise disjoint. Further let D be an automaton recognizing D. We construct
an automaton B that recognizes L′ ⊆ D⊗A∗ so that JL′K = JLK. The automaton B has for
states the triples of states A1,i, A2,i and D, for all i. When B is in a control state of the form
(q1, q2, r), with q1 state of A1,i and q2 state of A2,i, and it reads a letter (b, a) ∈ 2 × A, it
simulates a transition of D on b, which moves from r to r′, and simultaneously a transition
of Ab,i on (b, a), which moves from qi to q′i, and accordingly updates the control state to
(q′1, q′2, r′), where q′3−b = q3−b. Because π(C) ⊆ π(D), we know that B accepts all and
only the words w ∈ D so that w ∈ shuffle{w1, w2} for some w1, w2, i so that w1 ∈ L1,i and
w2 ∈ L2,i. This proves that JwK = Jw1w2K. J
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B Missing proofs to Section 4

I Lemma 5. The Parikh ratio of a concat-star language C verifies the following properties:
1. If C = C∗1u1 · · ·C∗nun, then ρ(cycles(C)) ⊆ [mini inf ρ(C∗i ),maxi sup ρ(C∗i )]Q;
2. Moreover, if C = D∗ for a finite D, then ρ(C)(= ρ(cycles(C))) = [min ρ(D),max ρ(D)]Q.

Proof. For the first item, it is enough to prove that mini(inf(ρ(C∗i ))) = inf(ρ(cycles(C)))
(and similarly for the maximum). Note that w.l.o.g. we can assume that C is of the form
C∗1 · · ·C∗n since inf ρ(cycles(C)) = inf ρ(cycles(C∗1 · · ·C∗n)). Now, if C = C∗1 · · ·C∗n, every
cycle w of C has Parikh image

∑
i π(wi) for some words wi ∈ C∗i ; therefore ρ(w) ≥

mini(inf(ρ(C∗i ))). It follows then that inf(ρ(cycles(C))) ≥ mini(inf(ρ(C∗i ))). The other
inequality follows from the fact that C∗i ⊆ cycles(C) for all i.

For the second item, consider an arbitrary rational number r ∈ [min ρ(D),max ρ(D)]Q.
For convenience, we fix two words w− and w+ in D so that ρ(w−) = min ρ(D) and ρ(w+) =
min ρ(D). Since r = ρ((w−)i · (w+)j) for some i, j, and C = D∗, we have that r ∈ ρ(C). J

I Lemma 8. C1 ∪ C2 ⊆Rel C iff C1 ⊆Rel C and C2 ⊆Rel C.

Proof. The left-to-right direction is immediate by transitivity of ⊆Rel and language inclu-
sion: Ci ⊆Rel C1 ∪C2 for i = 1, 2. The right-to-left direction is a particular case of P2. J
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Figure 1 Forest corresponding to (((12
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)∗1
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)∗ (112
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)∗12
w4

)∗ (11
w5

)∗.

C Missing proofs to Section 5

I Lemma 11. For every concat-star language C = C∗1u1 · · ·C∗nun, there exists a normal
form representation of its Parikh image π(C). Moreover, if C is infinite, the union of the
period sets is {x̄−, x̄+}, where ρ(x̄−) = minj(inf ρ(C∗j )) and ρ(x̄+) = maxj(sup ρ(C∗j )).

For the proof of Lemma 11, we introduce the notion of forest-like regular expression, and
we show that for every concat-star regular expression there is a forest-like expression with
‘almost’ the same Parikh image and finally, we reduce the proof of Lemma 11 to the case
of forest-like expressions. We say that a regular expression is forest-like if it is defined by
the following grammar:

F : def= ε | (Fu)∗ | FF for u 6= ε.

We abstract each forest-like expression as a finite forest whose nodes are labelled with
vectors from N2 in the following way:

The forest associated to ε is the empty forest.
The forest associated to an expression (Fu)∗ is a tree with a root labeled π(u) and set
of children F , where F is the forest associated to F .
The forest associated to an expression F1F2 is the disjoint union of the forests F1 and
F2 associated to F1 and F2 respectively.

Note that, by definition of forest-like, the empty word is in every forest-like expression.
Regardless that, no node of the corresponding forest carries a label (0, 0).

I Example C.1. For the forest-like expression

F = (((12)∗1)∗(112)∗12)∗(11)∗

we obtain the forest depicted in Figure 1. Intuitively, the ancestor relation represents the
dependence between the non-empty words involved in F . Concretely, if a node corresponding
to an occurrence of a word u is an ancestor of a node corresponding to an occurrence of a
word v, then the regular expression F does not allow any iteration of that occurrence of v
without iterating at least once that occurrence of u (have in mind that the same word could
occur many times in the expression). In Figure 1 , the node labeled with (1, 0) corresponding
to the word 1 in F will be an ancestor of the blue node labeled with (1, 1) corresponding
with the first occurrence of 12 in F .

I Lemma C.2. Given a concat-star regular expression C = C∗1u1 · · ·C∗nun, there exists a
forest-like regular expression F such that π(C) = π(Fu1 · · ·un).
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Proof. We use the following simple facts about Parikh images. For all regular expressions
D1, . . . , Dn, D

′
1, D

′
2, words v1, . . . , vn and forest-like expression F we have:

1. π((
⋃n
i=1 Di)∗) = π(D∗1 · · ·D∗n);

2. π(D∗1v1 · · ·D∗nvn) = π(D∗1 · · ·D∗nv1 · · · vn);
3. if π(D1) = π(D′1) and π(D2) = π(D′2), then π(D1D2) = π(D′1D′2);
4. if π(D1) = π(D′1), then π((D1)∗) = π((D′1)∗);
5. π(D1ε) = π(D1) = π(εD1); and
6. π(F ∗) = π(F ).
We now prove the statement by induction on the star-height of C.

Base case: If C has star height 0, then C = {u1} and we take the forest-like expression
F = ε.
Inductive step: Suppose that C has star-height s > 0. Then for every i = 1, . . . , n
we have Ci =

⋃
j∈Ii

Ci,j for |Ii| < ∞ and Ci,j concat-star expressions of star-height
strictly smaller than s for all j ∈ Ii. Then, by inductive hypothesis, we have forest-like
expressions Fi,j such that π(Fi,jui,j) = π(Ci,j) for some words ui,j for all i = 1, . . . , n
and j ∈ Ii. We can take F = E1,1 · · ·E|I1|,1 · · ·E1,n · · ·E|In|,n where

Ei,j =
{
Fi,j if ui,j = ε

(Fi,jui,j)∗ otherwise
.

The result then follows from using fact 2 to move the ui’s to the end, then facts 1 and
3 combined to split the unions inside each Ci, then facts 4 and 3 combined to apply the
inductive hypothesis and finally facts 3, 4, 5 and 6 combined to get rid of possible empty
words and useless nesting of stars. J

I Corollary C.3. For any expression of the form C = C∗1 · · ·C∗n, and the forest-like expression
F given by Lemma C.2, the forest associated to F has nodes i−, i+ labelled x̄i− and x̄i+
respectively, so that ρ(x̄i−) = minj(inf(ρ(C∗j ))) and ρ(x̄i+) = maxj(sup(ρ(C∗j ))).

Proof. Note that it is enough to prove that

min
j

(inf(ρ(C∗j ))) =(1) inf(ρ(C)) =(2) inf(ρ(F )) =(3) min
i∈I

ρ(x̄i)

where I is the set of nodes of the forest and x̄i is the label of i ∈ I (the case of max is
analogous).
(1) Since C = C∗1 · · ·C∗n, every word w ∈ C has Parikh image

∑
j π(wj) for some words wj ∈

C∗j ; therefore ρ(w) ≥ minj(inf(ρ(C∗j ))). It follows then that inf(ρ(C)) ≥ minj(inf(ρ(C∗j ))).
The other inequality follows from the fact that C∗j ⊆ C for all j = 1, . . . , n.

(2) It is immediate from the fact that π(C) = π(F ) (Lemma C.2).
(3) By the grammar defining forest like expressions, every word w in F has Parikh image∑

i∈I mix̄i for some natural numbers mi; therefore ρ(w) ≥ mini∈I ρ(x̄i). It follows
then that inf(ρ(F )) ≥ mini∈I ρ(x̄i). For the other inequality, let i0 ∈ I be such that
ρ(x̄i0) = mini∈I ρ(x̄i). Now observe that for all m ∈ N we can construct words wm ∈ F
such that limm→∞ ρ(wm) = ρ(x̄i0) and ρ(wm) ≥ ρ(x̄i0) for all m ∈ N (for example
the ones that correspond to iterate a word with Parikh image x̄i0 m times and all the
words corresponding to the ancestors of the node labeled x̄i0 once). Then inf(ρ(F )) ≤
mini∈I ρ(x̄i). J

The following lemma is the last ingredient before giving the proof of Lemma 11.
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I Lemma C.4. For every non-empty words u1, u2, u3 ∈ 2∗ such that ρ(u1) ≤ ρ(u2) ≤ ρ(u3),
there exist k1, k2, k3 ∈ N such that k1 > 0 and π(uk1

2 ) = π(uk2
1 · u

k3
3 ). Moreover, if ρ(u1) <

ρ(u2), we can choose k3 > 0 and if ρ(u2) < ρ(u3), we can choose k2 > 0.

Proof. Linear algebra. J

Proof of Lemma 11. We assume, wlog, that u1 = · · · = un = ε. Indeed, note that if we
have a normal form representation

⋃
i〈x̄i, Pi〉 of π(C∗1 · · ·C∗n), it follows that we have the

normal form
⋃
i〈ȳ + x̄i, Pi〉 for π(C), where ȳ = π(u1 · · ·un).

Since we are only interested in the Parikh image of C, by Lemma C.2, wlog we can
assume that we have a forest-like representation of C. Let I be the set of nodes of the
corresponding forest and for all i ∈ I, let x̄i be the label of the node i. Let also ≺ ⊆ I × I
be the ancestor relation.

Let’s fix the following notation:
minj(inf(ρ(C∗j ))) = c−

d− with c−, d− coprime, maxj(sup(ρ(C∗j ))) = c+

d+ with c+, d+

coprime.
I− = {i ∈ I | ρ(x̄i) = minj(inf(ρ(C∗j )))}, I+ = {i ∈ I | ρ(x̄i) = maxj(sup(ρ(C∗j )))},
k− = lcm(ki | i ∈ I−) with ki such that x̄i = ki(c−, d− − c−), k+ = lcm(ki | i ∈ I+)
with ki such that x̄i = ki(c+, d+ − c+).

Then wlog we can assume (it doesn’t change the Parikh image) that for every i ∈ I−, i has
a sibling with label k−(c−, d− − c−), and similarly for I+.

Let x̄− = k−(c−, d− − c−) and x̄+ = k+(c+, d+ − c+). Then, for each i ∈ I, by Lemma
C.4, there exist li > 0, ji ≥ 0, ki ≥ 0 (ji, ki not both equal to 0) such that lix̄i = jix̄

−+kix̄+.
Moreover, we can take ji = 0 if and only if i ∈ I− and ki = 0 if and only if i ∈ I+.

Let i−, i+ ∈ I such that x̄i− = x̄−, x̄i+ = x̄+, and N0 = max({(
∑
s≺i− js+

∑
s≺i+ js)

li
ji

+
li−1}i∈I\I+ , {(

∑
s≺i− ks+

∑
s≺i+ ks)

li
ki

+ li−1}i∈I\I− , {li}i∈I). Now consider the following
linear sets that we split into four types:

Type A: 〈
∑
i∈I0

aix̄i, {x̄−, x̄+}〉 for a set I0 ⊆ I and (ai)i∈I0 such that
for all i ∈ I0, 0 < ai ≤ N0,
I0 is closed under ≺,
there exists i ∈ I− such that every ancestor of i belongs to I0 and
there exists i ∈ I+ such that every ancestor of i belongs to I0.

Type B: 〈
∑
i∈I0

aix̄i, {x̄−}〉 for a set I0 ⊆ I such that
for all i ∈ I0, 0 < ai ≤ N0,
I0 is closed under ≺ and
there exists i ∈ I− such that every ancestor of i belongs to I0

Type C: 〈
∑
i∈I0

aix̄i, {x̄+}〉 for a set I0 ⊆ I such that
for all i ∈ I0, 0 < ai ≤ N0,
I0 is closed under ≺ and
there exists i ∈ I+ such that every ancestor of i belongs to I0

Type D: 〈
∑
i∈I0

aix̄i, ∅〉 for a set I0 ⊆ I such that
for all i ∈ I0, 0 < ai ≤ N0 and
I0 is closed under ≺.

It is straightforward to check that the union of all these linear sets is included in π(C).
Now we are going to prove that π(C) is included in the union. Let w ∈ C, then there

exists Ĩ0 ⊆ I closed under ≺ such that π(w) =
∑
i∈Ĩ0

mix̄i with mi 6= 0 for all i ∈ Ĩ0. We are
going to split the proof in four cases according to the possibilities of having or not iterated
at least one word with minimum or maximum Parikh ratio. Intuitively, if we have iterated
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at least once a word with minimum Parikh ratio, then we are "allowed" to iterate one with
Parikh image x̄− as many times as we want. If not, maybe we didn’t need it because we
only have iterated a bounded amount of times the cycles that "involve" it. If we want to
iterate them many times, then they should be at least as many as we need to allow us to
iterate a word with Parikh image x̄− (see the bound N0 above).

Case I: I− ∩ Ĩ0 6= ∅ and I+ ∩ Ĩ0 6= ∅. Then note that there exist i ∈ I− such that all its
ancestors belong to Ĩ0 (and similarly for I+). Then it is easy to check that π(w) belongs
to the type A linear set given by

I0
def= Ĩ0 and ai def=

{
mi mod li if mi 6≡ 0 (li)
li otherwise.

Case II: I− ∩ Ĩ0 6= ∅, I+ ∩ Ĩ0 = ∅. Then there exists i ∈ I− such that all its ancestors
belong to Ĩ0. If for all i ∈ Ĩ0 \ I−, mi ≤ N0, then it is easy to check that π(w) belongs
to the type B linear set given by

I0
def= Ĩ0 and ai def=


mi if i ∈ Ĩ0 \ I−

mi mod li if i ∈ Ĩ0 ∩ I− and mi 6≡ 0 (li)
li otherwise.

If there exist i0 ∈ Ĩ0\I− such thatmi0 > N0, then b
mi0
li0
c > N0+1−li0

li0
and so, by definition

of N0 plus the fact that i0 6∈ I− ∪ I+, (bmi0
li0
c − 1)ji0 >

∑
s≺i+ js and (bmi0

li0
c − 1)ki0 >∑

s≺i+ ks. Then, it is not difficult to check that π(w) belongs to the type A linear set
given by I0

def= Ĩ0 ∪ {s ∈ I | s ≺ i+} and

ai
def=

{
mi mod li if i ∈ Ĩ0 and mi 6≡ 0 (li)
li if mi ≡ 0 (li) or i ∈ {s ∈ I | s ≺ i+} \ Ĩ0.

Case III: I− ∩ Ĩ0 = ∅, I+ ∩ Ĩ0 6= ∅. It is symmetric to the previous case.
Case IV: I− ∩ Ĩ0 = ∅, I+ ∩ Ĩ0 = ∅. If for all i ∈ Ĩ0, mi ≤ N0, then π(w) belongs
to the type D linear set given by I0

def= Ĩ0 and ai
def= mi for all i ∈ Ĩ0. If there exist

i0 ∈ Ĩ0 such that mi0 > N0, then b
mi0
li0
c > N0+1−li0

li0
and so, by definition of N0 plus

the fact that i0 6∈ I− ∪ I+, (bmi0
li0
c − 1)ji0 >

∑
s≺i− js +

∑
s≺i+ js and (bmi0

li0
c − 1)ki0 >∑

s≺i− ks +
∑
s≺i+ ks. Then, it is not difficult to check that π(w) belongs to the type A

linear set given by I0
def= Ĩ0 ∪ {s ∈ I | s ≺ i−} ∪ {s ∈ I | s ≺ i+} and

ai
def=

{
mi mod li if i ∈ Ĩ0 and mi 6≡ 0 (li)
li if mi ≡ 0 (li) or i ∈ ({s ∈ I | s ≺ i−} ∪ {s ∈ I | s ≺ i+}) \ Ĩ0.

J

I Proposition 12. Given C regular and D concat-star so that ρ(cycles(C)) ⊆ ρ(cycles(D)),
the languages C ∩ [D]π and C \ [D]π are effectively regular. If in addition D is of the form
D∗1u, then C ∩ [D]π ⊆Rel D.

For the proof of Proposition 12, we need some auxiliary notation and lemmas.
We will measure the distance of a vector x̄ ∈ N2 from a given set S ⊆ N2 of vectors by

using the ∞-norm, namely, by letting dist(x̄, S) def= min{‖x̄− ȳ‖∞ : ȳ ∈ S}.
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ȳ̄y

UU

ȳ̄y
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Figure 2 Distance of ȳ ∈ U from the linear sets 〈0̄, P 〉 and 〈x̄, P ′〉, with P ′ = {x̄+}.

I Lemma C.5. Let L be the language recognized by a minimal deterministic automaton with
k states and let simple-cycles(L) = {w1, . . . , wn}. For every factor w of a word in L, there
exists a word w0 with |w0| ≤ k and k1, . . . , kn ∈ N so that w ∈ shuffle{w0, w

k1
1 , . . . , wkn

n }.

Proof. Let A be an automaton with k states that recognizes L. By way of contradiction,
suppose that w is a word of minimal length that violates the claim. In particular, w is a
factor of some word in L and its length exceeds k (otherwise, w ∈ shuffle{w0} for w0 = w).
Since w is a factor of a word in L, there exist u, v and a successful run γ1 γ2 γ3 of A, where
γ1 reads u, γ2 reads w, and γ3 reads v. Since |w| > k, γ2 can be further decomposed into
γ′1 γ

′
2 γ
′
3, with γ′2 simple cycle. Let u′, w′, v′ be the words read by γ′1, γ

′
2, γ
′
3, respectively,

so that w = u′ · w′ · v′. Since γ′2 is a simple cycle, w′ = wi for some 1 ≤ i ≤ n, and
hence w ∈ shuffle{u′v′, wi}. Moreover, since w′ 6= ε, u′v′ is shorter than w, and hence
by the minimality of w, u′v′ must satisfy the claim: u′v′ ∈ shuffle{w0, w

k1
1 , . . . , wkn

n }, for
some w0 of length at most k and some k1, . . . , kn ∈ N. By transitivity we conclude that
w ∈ shuffle{w0, w

k′1
1 , . . . , w

k′n
n } where k′i = ki + 1 and k′j = kj for all j 6= i. J

I Corollary C.6. Let L be the language recognized by a minimal deterministic automaton
with k states. For every factor u of a word in L, dist(π(u), π(simple-cycles(L)∗)) ≤ k.

I Lemma C.7. Let P = {x̄−, x̄+}, with ρ(x̄−) < ρ(x̄+), let C ⊆ 2
∗ be regular so that

ρ(cycles(C)) ⊆ [ρ(x̄−), ρ(x̄+)]Q, and let 〈x̄, P ′〉 be a linear set with P ′ ⊆ P . There is a
constant k so that for every prefix w of a word in C ∩ π−1(〈x̄, P ′〉), dist(π(w), 〈x̄, P ′〉) ≤ k.

Proof. We will exploit a natural correspondence between words in 2∗ and paths inside the
discrete plane N2. Intuitively, each word u ∈ 2

∗ induces a path that starts at the origin
0̄ = (0, 0) of the plane and visits all the vectors corresponding to the Parikh images of
prefixes of u. In particular, paths with the same endpoints correspond to words with the
same Parikh image. Our first goal is to prove a slightly different claim that concerns the
factors of words in C (not necessarily having Parikh image in 〈x̄, P ′〉). We prove that such
factors are at bounded distance from the linear set 〈0̄, P 〉.

I Claim. For every factor u of a word in C, dist(π(u), 〈x̄, P 〉) ≤ k1+k2, where k1 is the num-
ber of states of the minimum deterministic automaton for C and k2 = max(‖x̄−‖∞, ‖x̄+‖∞).

Proof of claim. We fix a factor u of some word in C, and consider the induced path U =
{π(u′) | u′ prefix of u}. For this proof the reader can refer to the left hand-side of Figure
2. There, the path U is depicted in blue, and the linear set 〈0̄, P 〉 is represented by a gray
grid. Consider a point ȳ ∈ U , which corresponds to a prefix u′ of u. Since u′ is a factor of a
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word in C, by Corollary C.6 ȳ is at distance at most k1 from π(simple-cycles(C)∗). Figure
2 represents the points in π(simple-cycles(C)∗) by the red dots.

Recall that ρ(cycles(C)) ⊆ [ρ(x̄−), ρ(x̄+)]Q. Intuitively, this means that π(cycles(C)) is
contained in a ‘cone’ with slopes between ρ(x̄−) and ρ(x̄+) (this is represented by the gray
shaded area behind the grid). We formalize this notion of ‘cone’ as follows: given any subset
S of the discrete plane, we let QS = {αz̄ | α ∈ Q, z̄ ∈ S}, which is precisely our cone living
in the rational plane Q2. We generalize in the obvious way the distance function to points
z̄ and subsets QS of the rational plane (for this we need to take the infimum instead of the
minimum of the distances of z̄ from the points of QS).

From the previous containments, we obtain π(cycles(C)) ⊆ Q〈0̄, P 〉. Moreover, by con-
struction, every point in Q〈0̄, P 〉 is at distance at most k2 = max(‖x̄−‖∞, ‖x̄+‖∞) from the
linear set 〈0̄, P 〉. Since π(simple-cycles(C)∗) ⊆ π(cycles(C)), we conclude by transitivity
that ȳ is at distance at most k1 + k2 from 〈0̄, P 〉. J

Now, it remains to extend the previous property to any linear set 〈x̄, P ′〉, with x̄ ∈ N2 and
P ′ ( P . We restrict our attention to the case P ′ = {x̄+} (the case P ′ = {x̄−} is symmetric,
the case P ′ = ∅ is straightforward, and the case P ′ = P follows readily from the previous
claim). We also use different hypotheses that those of the claim: here we assume that u ∈ C
and its Parikh image belongs to 〈x̄, P ′〉. Under these hypotheses, we prove that the points
along the induced path U = {π(u′) | u′ prefix of u} are at distance at most k from 〈x̄, P ′〉,
where k = k1 + k2 + k3, with k1, k2 defined as in the claim and k3 = ‖x̄‖∞. For this proof
the reader may refer to the middle of Figure 2. For example, the black dots represent the
set 〈x̄, P ′〉. It will be convenient to have a shorthand notation for denoting neighborhoods
of sets of points: given any set S ⊆ N2, we let Nk(S) = {x̄ ∈ N2 | dist(x̄, S) ≤ k}.

Suppose by way of contradiction that there is a point ȳ ∈ U such that dist(ȳ, 〈x̄, P ′〉) >
k = k1 + k2 + k3. This is equivalent to having Nk({ȳ}) ∩ 〈x̄, P ′〉 = ∅ (this is represented
in the figure by a blue square disjoint from the black dots). We first claim that Nk({ȳ}) is
above 〈x̄, P ′〉. Indeed, ȳ is the Parikh image of a factor of some word in C, and hence from
the previous claim dist(ȳ, 〈0̄, P 〉) ≤ k1 + k2. This is equivalent to saying that Nk1+k2({ȳ})
intersects 〈0̄, P 〉, and hence, since k = k1 + k2 + ‖x̄‖∞, Nk({ȳ}) intersects 〈x̄, P 〉. However,
by our assumption, Nk({ȳ}) does not intersect 〈x̄, P ′〉. Since there is no point in 〈x̄, P 〉 that
is strictly below 〈x̄, P ′〉, we conclude that Nk({ȳ}) must be disjoint and above 〈x̄, P ′〉.

Now, we consider the linear sets 〈ȳ, P 〉 and 〈ȳ, P ′〉 that originate in the point ȳ (these
are not shown in the figure). Because Nk({ȳ}) is disjoint from 〈x̄, P ′〉, Nk(〈ȳ, P ′〉) too is
disjoint from 〈x̄, P ′〉. Moreover, because Nk({ȳ}) is above 〈x̄, P ′〉, Nk(〈ȳ, P ′〉) too is above
〈x̄, P ′〉. This implies that Nk(〈ȳ, P 〉) is disjoint from 〈x̄, P ′〉.

Towards a conclusion, consider the vector z̄ = π(u) − ȳ, which corresponds to another
factor of a word in C. From the usual arguments it follows that dist(z̄, 〈0̄, P 〉) ≤ k1 + k2, or
equally z̄ ∈ Nk1+k2(〈0̄, P 〉), which implies π(u) ∈ Nk(〈ȳ, P 〉). Together with Nk(〈ȳ, P 〉) ∩
〈x̄, P ′〉 = ∅, this implies π(u) 6∈ 〈x̄, P ′〉, which contradicts the initial hypothesis. J

We are now ready to prove Proposition 12 (recall that this concerns the regularity of the
languages C ∩ [D]π and C \ [D]π).

Proof of Proposition 12. To prove the first claim, it suffices to construct an automaton D
for C∩[D]π (from this it will follow that the language C\[D]π is also effectively regular, since
it can be rewritten as C \ (C ∩ [D]π) and regular languages are closed under set difference).
We fix a word u ∈ C ∩ [D]π and we consider the induced set U of Parikh images of prefixes
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of u. Let 〈x̄1, P1〉 ∪ · · · ∪ 〈x̄n, Pn〉 be the normal form of the semi-linear set π(D) obtained
from Lemma 11, where Pi ⊆ {x̄−, x̄+} for some vectors x̄−, x̄+ so that ρ(x̄−) ≤ ρ(x̄+).

Since ρ(cycles(C)) ⊆ ρ(cycles(D)), we have ρ(cycles(C)) ⊆ [ρ(x̄−), ρ(x̄+)]Q (Lemma 5).
Moreover, since u ∈ [D]π, there is an index i so that u ∈ π−1(〈x̄i, Pi〉). The construction
that follows depends implicitly on the index i, which needs to be correctly guessed by the
automaton D that recognizes C ∩ [D]π.

By Lemma C.7, we know that the path U can be approximated by another path that is
contained in the semi-linear set 〈x̄i, Pi〉, but that remains also sufficiently close to U (cf. the
black dots in the right hand-side of Figure 2). More precisely, there is a constant k that
depends only on C and D and so that for every j = 0, . . . , |u|, the following set is non-empty:

Sj
def= 〈x̄i, Pi〉 ∩ Nk

(
π(u[1, j])

)
(here we reuse the notation N for neighborhoods of sets of points, that was introduced in
the proof of Lemma C.7).

The automaton D exploits the above property to parse the input u while simulating
the transitions of an automaton for C, and, at the same time, guessing a series of points
ȳ0 ≤ ȳ1 ≤ · · · ≤ ȳ|u| from the sets S0, S1, . . . , S|u|. In fact, D only maintains in memory the
offset z̄j = ȳj − π(u[1, j]) associated with the current position j — this is possible because
z̄j ranges over the finite domain [−k, k]2. The possible choices for the next offset z̄j+1 can
be computed knowing the current offset z̄j and the current input symbol u[j + 1]. Indeed,
we have z̄j+1 − z̄j = ȳj+1 − ȳj − π(u[j + 1]) and ȳj+1 − ȳj ∈ 〈0̄, Pi〉, which implies that z̄j+1
must range in the set

(
z̄j − π(u[j + 1]) + 〈0̄, Pi〉

)
∩ [−k, k]2. In the end, the automaton D

accepts the input u if u ∈ C and the final vector z̄|u| is 0̄, namely, if u ∈ C ∩ π−1(〈x̄i, Pi〉).

We now turn to the proof of the second claim. We assume, without any loss of generality,
that the concact-star language D is of the form u0D

∗
1 , since this will simplify notation. Note

that nevertheless u0D
∗
1 =Rel D

∗
1u0 by P5, and hence we also have that π(u0D

∗
1) = π(D∗1u0)

and [u0D
∗
1 ]π = [D∗1u0]π. Namely, we will show that C ∩ [D]π ⊆Rel D whenever D = u0D

∗
1 .

The basic idea it to lift the previous construction for the automaton D to a resynchronization
from (C ∩ [D]π) ⊗ A∗ to D ⊗ A∗, namely, to a functional transducer T that maps words
w ∈ (C ∩ [D]π) ⊗ A∗ to words ŵ ∈ D ⊗ A∗ so that JwK = JŵK. Intuitively, the transducer
T will use the offsets z̄0, z̄1, . . . , z̄|w| guessed by the previous automaton D and associate
with them a corresponding sequence of outputs ŵ0, ŵ1, . . . , ŵ|w|, with ŵ0 ∈ u0D

∗
1 ⊗A∗ and

ŵj ∈ D∗1 ⊗A∗ for all j > 0. The concatenation of such outputs will give precisely the word
ŵ ∈ D ⊗ A∗ such that JŵK = JwK. Once the transducer T is defined, it could be used
to compute from any given regular language L ⊆ (C ∩ [D]π) ⊗ A∗ a new regular language
T (L) ⊆ D ⊗ A∗ so that JLK = JL′K, thus showing that C ∩ [D]π ⊆Rel D holds effectively.

To avoid heavy notation, it is convenient to lift the operation of concatenation from
words over A to pairs of words over A in a pointwise manner. Accordingly, we say that a
pair p is a prefix of another pair p′ if there is a third pair p′′ so that p′ = p · p′′; similarly,
we say that p = (w1, w2) has length |p| = (n1, n2) if |w1| = n1 and |w2| = n2. Thanks to
this, we can succinctly write equations like Jw[1, j + 1]K = Jw[1, j]K · Jw[j + 1]K, or say that
Jw[1, j]K has length π(w[1, j]) for any w ∈ (2 × A)∗. We extend further this notation by
working with words (or even pairs of words) over the free group A ∪ A−1. For example,
we could write (abc) · (bc)−1 = (abc) · c−1 · b−1 = a. We will tacitly assume that we never
construct words with irreducible factors of the form a · b−1 with a 6= b. Moreover, by a slight
abuse of terminology, we say that a word has length −` if it is the inverse of a word over
A of length `, and similarly for pairs (note that we do not define the length of words that
contain both symbols from A and symbols from A−1, since these should be first reduced).
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As usual, we restrict our attention to an arbitrary word w = u⊗ v with control sequence
u ∈ C∩π−1(〈x̄i, Pi〉), for some i = 1, . . . , n. We recall that the automaton D that recognizes
C ∩ [D]π can guess the same index i, and a series of offsets z̄0, z̄1, . . . , z̄|w| so that, for all
j = 0, . . . , |w|,

ȳj = z̄j + π(u[1, j]) ∈ Sj = 〈x̄i, Pi〉 ∩ Nk
(
π(u[1, j])

)
.

The transducer T will simulate the guesses of D internally.
Now, let pj denote the unique prefix of the pair JwK that has length ȳj . Since ȳj ≤ ȳj+1,

each pj is a prefix of pj+1. We define the gap at position j = 1, . . . , |w|, as the difference
between two consecutive pairs pj and pj+1:

gj
def= (pj)−1 · pj+1.

Note that every gj is a word over A, because pj is a prefix of pj+1. The goal of the transducer
is to produce first a synchronization for the pair p0, and then some synchronizations for
the gaps g1, . . . , g|w|, so that the total output will be a synchronization of p|w|. Under
the assumption that the automaton D for C ∩ π−1(〈x̄i, Pi〉) accepts the underlying control
sequence u, we will have that z̄|w| = 0̄ and hence ȳ|w| = z̄|w| + π(u) = π(u). This will imply
p|w| = JwK. Below we explain in more detail how T can produce the correct outputs.

We introduce a second object, called lag:

`j
def= Jw[1, j]K−1 · pj .

Intuitively, `j is for T what the offset z̄j was for D, namely, `j is the difference between the
pair pj of length ȳj and the pair encoded by the prefix w[1, j] of the input. Observe that
`j ∈ (A∗ ∪ (A−1)∗)× (A∗ ∪ (A−1)∗). This means that `j may contain words over A−1, even
if it is maximally reduced. For example, if pj is a prefix of Jw[1, j]K, then the lag `j consists
of a pair of words over A−1, meaning that both coordinates of pj are ‘lagging behind’ the
coordinates of Jw[1, j]K. In general, each coordinate of pj can lag behind or ahead of the
corresponding coordinate of Jw[1, j]K.

We observe that |`j | = ȳj − π(u[1, j]) = z̄j ∈ [−k, k]2, which means that lags can be
maintained by T using finitely many states. More precisely, at each position j, T guesses
`j as any pair of words over (A∗ ∪ (A−1)∗)× (A∗ ∪ (A−1)∗) of length z̄j (the latter vector is
available from the underlying automaton D). The correctness of the guesses for the lags `j
are verified implicitly when performing concatenations: if at any moment a concatenation
with `j or its inverse induces an irreducible factor ab−1, with a 6= b, then the computation
fails, meaning that some words were wrongly guessed.

We now relate the lags to the gaps:

gj = (pj)−1 · pj+1 (by definition of gap)

=
(
Jw[1, j]K−1 · pj

)−1 · Jw[j + 1]K ·
(
Jw[1, j + 1]K−1 · pj+1

)
(by definition of lag)

= (`j)−1 · Jw[j + 1]K · `j+1. (by reducing factors)

Intuitively, the gap can be equally seen as the difference between two consecutive lags,
adjusted by taking into account the current input letter w[j+ 1]. The above property shows
that T can compute gj using only the bounded amount of information relative to `j , `j+1,
and w[j + 1].

Summing up, the transducer T parses the input w, while guessing some offsets z̄0, . . . , z̄|w|
and some lags `0, . . . , `|w|, and producing some outputs ŵ0, . . . , ŵ|w|. More precisely, the
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first output ŵ0 must belong to the language (u0D
∗
1)⊗A∗ and must synchronize the pair p0

(i.e., Jŵ0K = p0). Such a word ŵ0 exists because p0 has length ȳ0 ∈ 〈x̄i, Pi〉 ⊆ π(u0D
∗
1). In a

similar way, every subsequent output ŵj , for j = 1, . . . , |w|, must be belong to the language
D∗1 and must synchronize the gap gj (i.e., JŵjK = gj). Such a word ŵj exists because gj
has length |pj+1| − |pj |, which belong to the linear set 〈0̄, Pi〉 ⊆ π(D∗1). By construction,
the total output produced by T will be ŵ = ŵ0 · ŵ1 · · · ŵ|w|, which belongs to D ⊗ A∗ and
satisfies JŵK = p|w| = JwK. J

I Observation C.8. In general, C ∩ [D]π and C \ [D]π are not regular if we do not impose
any restriction. For example, 1∗2∗ ∩ (12)∗ = {1n2n | n ∈ N}.

I Corollary C.9. C ∩ [D∗u]π ⊆Rel D
∗u for every regular C,D and word u.

Proof. Let C ′ = C∩ [D∗u]π. In order to be able to apply Proposition 12 for C ′ and D∗u, we
need to prove that ρ(cycles(C ′)) ⊆ ρ(cycles(D∗)). After that, the result follows immediately
from that proposition.

If w ∈ cycles(C ′), then there exist words û, v̂ such that ûw∗v̂ ⊆ C ′. Since π(C ′) ⊆
π(D∗u), this implies that for all n ∈ N, there exists un ∈ D∗ such that π(ûwnv̂) =
π(unu). Then it follows that inf ρ(cycles(D∗)) ≤ limn→∞ ρ(un) = limn→∞ ρ(unu) =
limn→∞ ρ(ûwnv̂) = ρ(w). In a similar way, one can prove that ρ(w) ≤ sup ρ(cycles(D∗)). J

To complete the proof of Lemma 13, it only remains to provide the missing details for
Claim 1:

I Claim 1. Every regular D∗ is =Rel-equivalent to a finite union
⋃
iD
∗
i ui, with finite Di’s.

Proof. Let 〈x̄1, P1〉∪· · ·∪〈x̄n, Pn〉 = π(D∗), and let Di and ui be so that π(D∗i ui) = 〈x̄i, Pi〉,
for every i = 1, . . . , n. We show that D∗ =Rel

⋃
iD
∗
i ui. The left-to-right containment holds

by

D∗ =
⋃
i

(D∗ ∩ [D∗i ui]π) (since π(D∗) = π(
⋃
iD
∗
i ui))

⊆Rel
⋃
i

D∗i ui, (by Corollary C.9 plus P2)

and the right-to-left containment follows from Lemma 8 and the fact that for every i,

D∗i ui = D∗i ui ∩ [D∗]π (since π(D∗i ui) ⊆ π(D∗))
⊆Rel D

∗. (by Corollary C.9)

J

I Lemma 14. Every concat-star C ⊆ 2
∗ of star-height 1 is =Rel-equivalent to a finite union⋃

i Ci of simple languages.

Proof. First note that wlog we can assume that C is of the form

H0D
∗
1H1D

∗
2H2 · · ·D∗mHm
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where D∗i are the heterogeneous components (non empty) and Hi are homogeneous concat-
star languages (eventually empty). This is due to P5 and P2. Moreover, by using also
P7, we can further assume that for all i = 0, . . . ,m Hi = 1ki∗2k̂i∗ for some ki, k̂i. We can
also assume that C is heterogeneous (otherwise the statement follows trivially), i.e. that
m ≥ 1. Since D∗i are non empty heterogeneous components, for all i = 1, . . . ,m, there exist
a heterogeneous word wi ∈ D∗i . Then

C = H0w
∗
1D
∗
1H1w

∗
2D
∗
2H2 · · ·w∗mD∗mw∗mHm

and so, by what we said before and again P5 and P2, we can assume wlog that C is of
the form 1k∗2k̂∗w∗ (the case w∗1k∗2k̂∗ that we may need for the last homogeneous com-
ponent is analogous). Then it only remains to prove the case where C = 1k∗2k̂∗w∗ for
k, k̂ > 0 and w a heterogeneous word. By P8, 1k∗2k̂∗ ⊆Rel 1k∗(1kk̂|w|12k̂k|w|2)∗(2k̂)<k|w|2 ∪
2k̂∗(1kk̂|w|12k̂k|w|2)∗(1k)<k̂|w|1 ⊆Rel 1k∗w∗(2k̂)<k|w|2 ∪ 2k̂∗w∗(1k)<k̂|w|1 . Then, it follows eas-
ily that C = 1k∗2k̂∗w∗ =Rel 1k∗w∗(2k̂)<k|w|2 ∪ 2k̂∗w∗(1k)<k̂|w|1 which concludes the proof.

J
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D Missing proofs to Section 6

I Lemma 15. For C a simple language and D =
⋃
iDi finite union of simple languages, if

C ⊆Rel D, then C s.m.−−−→ Di for some i. In particular, for C,D simple languages, if C ⊆Rel D,
then C s.m.−−−→ D. Further, the statement holds even if we consider RelA-containment for any
A with at least two letters.

Proof. If C is homogeneous the statement follows immediately. Let us then assume that C
is smooth heterogeneous of star-height 1.

The rough idea is to construct a relation R ∈ Rel(C) in such a way that from C ⊆Rel D

one derives R ∈ Rel(D), and from this, using suitable pumping arguments, one extracts a
synchronizing morphism from C to someDi. The relation R will depend on both languages C
and D, but the underlying alphabet A will only depend on C. In fact, this latter dependency
is mainly for simplifying the proof. Towards the end, we will explain how to avoid the
dependency on C and construct a relation R over a fixed alphabet. This basically shows
that semantics of ⊆Rel with a fixed alphabet has the same characterization.

Consider a smooth heterogeneous language C = C∗1u1 · · ·C∗kuk =Rel C∗1 · · ·C∗ku, for
u = u1 · · ·uk, and recall that there are no consecutive homogeneous components C∗i , C∗i+1.
Without any loss of generality, assume that k is odd and C∗i is heterogeneous for all even
indices i.

We let D be a finite union of concat-star languages Di = D∗i,1ui,1 · · ·D∗i,ki
ui,ki , and

denote by A some automaton with h states that recognizes D.
The relation R is defined by taking into account the structure of the concat-star language

C∗1 · · ·C∗ku and the number h of states of A. Formally, we introduce the alphabet A =
{ãi,j , ai,j , b̃i,j , bi,j | 1 ≤ i ≤ k, 1 ≤ j ≤ h} ∪ {ak+1} and, for each 1 ≤ j ≤ k, we denote
by u−j , u

+
j some words in Cj that have minimum and maximum Parikh ratios, respectively

(minimum and maximum exists because C has star height 1). If j is odd, then we assume
u−j = u+

j . We also let u∼j ∈ C∗j be any heterogeneous word for each even index j. We then
define R = JLK, where

L = L1,1 · · ·L1,h · · ·Lk,1 · · ·Lk,h · (u⊗ a|u|k+1) and

Li,j =


(
u−j ⊗ a

|u−
j
|

i,j

)∗ if j is odd(
u∼j ⊗ ã

|u∼j |
i,j

)∗ · (u−j ⊗ a|u−j |i,j

)∗ · (u∼j ⊗ b̃|u∼j |i,j

)∗
.
(
u+
j ⊗ b

|u+
j
|

i,j

)∗ if j is even.

We exploit the fact that R ∈ Rel(C ′) and C ′ ⊆Rel D to derive R ∈ Rel(D), and so
R = JL′K for some regular language L′ ⊆ D ⊗ A∗. Let B be an automaton recognizing L′
and, without loss of generality, assume that B is a refinement of A (this will be used later
to transfer properties of cycles of B to properties of cycles of A).

Now, consider the following word from the language L:

w = w1,1 · · ·w1,h · · ·wk,1 · · ·wk,h · (u⊗ a|u|k+1) with

wi,j =


(
u∼j ⊗ ã

|u∼j |
i,j

)n · (u−j ⊗ a|u−j |i,j

)n · (u∼j ⊗ b̃|u∼j |i,j

)n
.
(
u+
j ⊗ b

|u+
j
|

i,j

)n if j is even,(
u−j ⊗ a

|u−
j
|

i,j

)n if j is odd,

where n is chosen large enough so as to exceed the number of states of B. Since JLK = R =
JL′K, we know that B accepts some word w̃ with Jw̃K = JwK = (w1, w2). Let γ be a successful
run of B on w̃.
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Now fix an arbitrary coordinate ` ∈ 2, an index 1 ≤ j ≤ k, and a letter c̃ ∈ Ãj =
{ãi,j , b̃i,j | 1 ≤ i ≤ h}. Consider the first and last positions i1, i2 on γ that read (`, c), and
consider any arbitrary cycle between those positions i1 and i2. We claim that the cycle

1. reads only letters from 2× {c̃},
2. has Parikh ratio ρ(u∼j ).

Indeed, the positions of w` that carry the letter c̃ form a factor of w`. This implies that
all the positions on γ between i1 and i2, and in particular, the positions of the cycle, either
read (`, c̃) or read a symbol c′ on the opposite coordinate 3−`. If the cycle reads at least two
different letters on coordinate 3− `, then by pumping the cycle we obtain an inconsistency.
Otherwise, if the cycle reads always the same letter c′ on coordinate 3− `, and c′ 6= c̃, then
by removing the cycle we would remove a positive number of occurrences of (`, c̃) but no
occurrence of (3− `, c̃), thus obtaining a word w̃′ ∈ L′ so that π(w̃′)(1,c̃)

π(w̃′)(1,c̃)+π(w̃′)(2,c̃) 6= ρ(u∼j ),
and hence Jw̃′K 6∈ R, which is a contradiction. So the cycle must read the same letter c̃
on coordinate 3 − `. Finally, if the Parikh ratio of the cycle is not precisely ρ(u∼j ), then
by removing the cycle and by arguing as before, we would obtain a word w̃′ ∈ L′ so that
Jw̃′K 6∈ R (again a contradiction).

Now consider again an arbitrary coordinate ` ∈ 2 and the maximal factors of w` that
remain sandwiched between the previous factors identified by the symbols from

⋃
j Ãj . By

construction every such sandwiched factor reads the same letter c everywhere, for some
c ∈ Aj = {ai,j , bi,j | 1 ≤ i ≤ h} and some ≤ j ≤ k. Consider the first and last positions
i1, i2 of γ that read (`, c). We claim that every cycle on γ between i1 and i2

1. reads only letters from 2× {c};
2. if c = ai,j for some 1 ≤ i ≤ h, then it has Parikh ratio ρ(u−j ); if in addition ρ(u−j ) = 0

(and hence ` = 2), then it reads only letters (2, ai,j); symmetrically, if ρ(u−j ) = 1 (and
hence ` = 1), then it reads only letters (1, ai,j);

3. if c = bi,j for some 1 ≤ i ≤ h, then it has Parikh ratio ρ(u+
j ); if in addition ρ(u+

j ) = 0
(and hence ` = 2), then it reads only letters (2, bi,j); symmetrically, if ρ(u+

j ) = 1 (and
hence ` = 1), then it reads only letters (1, bi,j).

Note that if we are in the second case, i.e.ai,j , but ρ(u−j ) 6= 0, then, we could reach a
contradiction by reasoning as we did before, that is, by removing the cycle and obtaining a
word w̃′ ∈ L′ so that Jw̃′K 6∈ R. Similarly, it cannot happen that c = bi,j and ρ(u+

j ) 6= 0.
So the interesting case here is when c is, for example, of the form ai,j and ρ(u−j ) = 0. If on
coordinate 3 − ` the cycle reads at least two different letters, we get an absurd as before.
Otherwise, if it reads at least one letter (3− `, c′) for some c̃ ∈

⋃
j Ãj , we get an absurd by

removing the cycle and changing the ratio of letters c̃. Finally, if it reads at least one letter
(3 − `, c′) for some other c′ ∈ Aj′ with j 6= j′, it means that there is some c̃ ∈

⋃
j Ãj so

that all the (1, c̃) letters occur before position i1 and all the (2, c̃) letters occur after position
i2 on γ, or viceversa, the (1, c̃)’s occur after i2 and the (2, c̃)’s occur before i1. This is in
contradiction with the previous claim on cycles inside factors of letters from

⋃
j Ãj . The

remaining cases are similar.

The previous claims imply that the letters

a1,1, . . . , a1,h, ã2,1, a2,1, b̃2,1, b2,1 . . . ã2,h, a2,h, b̃2,h, b2,h, . . .

. . . , ak−1,1, . . . , ak−1,h, ãk,1, ak,1, b̃k,1, bk,1 . . . ãk,h, ak,h, b̃k,h, bk,h
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(assuming k is even), induce cycles in γ of Parikh ratios

ρ(u−1 ), . . . , ρ(u−1 )︸ ︷︷ ︸
h times

, ρ(u∼2 ), ρ(u−2 ), ρ(u∼2 ), ρ(u+
2 ), . . . , ρ(u∼2 ), ρ(u−2 ), ρ(u∼2 ), ρ(u+

2 )︸ ︷︷ ︸
4h times

, . . .

. . . , ρ(u−k−1), . . . , ρ(u−k−1)︸ ︷︷ ︸
h times

, ρ(u∼k ), ρ(u−k ), ρ(u∼k ), ρ(u+
k ), . . . , ρ(u∼k ), ρ(u−k ), ρ(u∼k ), ρ(u+

k )︸ ︷︷ ︸
4h times

in this precise order. By choice of h, this means that there are k SCC’s in A, say Q1, . . . , Qk,
so that

Qi+1 is reachable from Qi for every i, and
Qi contains a cycle with ratio ρ(u−i ) if i is odd, and cycles with ratios ρ(u−i ), ρ(u+

i ) if i
is even.

From this, using the second claim of Lemma 5, it is easy to conclude that there exists an
index i and a synchronizing morphism from C to Di.

It remains to explain how to modify the proof so as to have a relation R over a fixed
alphabet. The main modification consists in removing the subscripts j from all the letters
ãi,j , ai,j , b̃i,j , bi,j , ak+1 in A, thus defining a new alphabet A′ = {ã, a, b̃, b} (by same principle,
using more clumsy notation, we could even restrict to any alphabet with at least two letters).
Accordingly, the language L is redefined as

L′ = L′1,1 · · ·L′1,h · · ·L′k,1 · · ·L′k,h · (u⊗ a|u|) where

L′i,j =
{(
u−j ⊗ a

|u−
j
|)∗ if j is odd(

u∼j ⊗ ã|u
∼
j |
)∗ · (u−j ⊗ a|u−j |)∗ · (u∼j ⊗ b̃|u∼j |)∗.(u+

j ⊗ b
|u+

j
|)∗ if j is even.

As before, we derive the existence of a regular language L′′ ⊆ D ⊗ A∗ so that JL′K = JL′′K.
However, due to the modification, we cannot rely on the indexed letters to apply the

remaining arguments. Nonetheless, we can overcome the problem by introducing a new
automaton C that is a refinement of B (and hence also a refinement of A) and that recognizes
the old language L with the correctly indexed letters. The idea is that C reads indexed
letters, while simulating B on the letters devoid of the indices, and checking at the same
time the series of indices is correct. For this, C need to stores the current control state of
the automaton B and the last letters c1, c2 from the parsed prefix of the input that were
associated with each coordinate in 2. For example, when reading a letter (1, ai,j), C simulates
a transition of B on (1, a) , and checks that the last letter c1 associated with coordinate 1 is
either ai,j or ãi,j (namely, the only two possible letters that could have preceded the current
letter (1, ãi,j) in an arbitrary word from the language L).

From there, one follows basically the same arguments as before: first, construct a word
w ∈ L inducing cycles in a successful run of C (here n needs to exceed the number of states of
C). Then, argue that the cycles of C have the appropriate Parikh rations in the appropriate
order. Finally, one transfers the latter properties to the successful runs of B and A, so as to
witness a synchronizing morphism. J

I Lemma 17. For every p, q > 0, finite C ⊆ 2
∗, and u−, u+ ∈ C so that ρ(u−) = min ρ(C)

and ρ(u+) = max ρ(C), there exists a finite C ′ ⊆ C∗ so that C∗ =Rel (up− ∪ u
q
+)∗ · C ′.

Before turning to the proof of Lemma 17, we need to first prove a few technical lemmas.
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I Lemma D.1. For every finite language C = {u−, u+, u1, . . . , un} with ρ(u−) = min(ρ(C))
and ρ(u+) = max(ρ(C)), there are k1, . . . , kn > 0 so that

C∗ =Rel (u− ∪ u+)∗ · u<k1
1 · · ·u<kn

n .

Proof. We proceed by induction on n. The base case n = 0 is immediate. For the inductive
case, suppose n > 0, and let k > 0 and k′, k′′ ≥ 0 be so that

π(ukn) = π(uk
′

− · uk
′′

+ ) (1)

by Lemma C.4. Thus,

C∗ = ((Ĉ∗ · un)k)∗ · (Ĉ∗ · un)<k · Ĉ∗ for Ĉ = C \ {un}

=Rel Ĉ
∗ · (Ĉ∗ · un)<k · Ĉ∗ (by (1) cum P5, P6, P2, P3)

=Rel Ĉ
∗ · Ĉ∗ · u<kn · Ĉ∗ =Rel Ĉ

∗ · u<kn (by P5)

=Rel (u− ∪ u+)∗ · u<k1
1 · · ·u<kn−1

n−1 · u<kn , (by inductive hypothesis on Ĉ)

proving the statement. J

I Lemma D.2. For every p > 0, u1, u2 ∈ 2∗ we have

(u1 ∪ u2)∗ =Rel (up1 ∪ u2)∗ · u<p1 .

Proof. We have

(u1 ∪ u2)∗ = u∗2(u1u
∗
2)p∗(u1u

∗
2)<p

=Rel (up1 ∪ u2)∗(u1u
∗
2)<p =Rel (up1 ∪ u2)∗u∗2u

<p
1 (by P5)

= (up1 ∪ u2)∗u<p1 J

I Corollary D.3 (of Lemma D.2). For every p, q > 0, u1, u2 ∈ 2∗ we have

(u1 ∪ u2)∗ =Rel (up1 ∪ u
q
2)∗ · u<q2 · u

<p
1 .

Proof. It follows easily from Lemma D.2 (applied twice) plus P2. J

Proof of Lemma 17. Straightforward application of Lemma D.1 and Corollary D.3 plus
P2. J

I Proposition 7. For all simple C,D ⊆ 2
∗, C ⊆Rel D iff π(C) ⊆ π(D) and C s.m.−−−→ D.

Proof. The left-to-right direction follows from P6 and Lemma 15. For the right-to-left direc-
tion, if C is homogeneous, the fact that π(C) ⊆ π(D) yields C ⊆Rel D by P8. Suppose then
that C is heterogeneous. For any concat-star C∗1u1 · · ·C∗nun, note that C∗1u1 · · ·C∗nun =Rel
C∗1 · · ·C∗n · u for u = u1 · · ·un and π(C∗1u1 · · ·C∗nun) = π(C∗1 · · ·C∗n · u). Thus, we can as-
sume wlog that C and D are of the form C = C∗1 · · ·C∗nu and D = D∗1 · · ·D∗mv, and let
u = u1 · · ·un, v = v1 · · · vm. Note also that, by a similar argument, we can assume wlog
that Ci 6= {ε} for all i = 1, . . . , n.

Since all Ci are finite, one can take wi,−, wi,+ be the minimum and maximum Parikh-
ratio words of each Ci respectively —note that they could have the same Parikh-ratio, or
even be the same word.
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Let us fix some i. Since ρ(C∗i ) ⊆ ρ(D∗ji
) for some ji, there are words ŵ1, ŵ2 ∈ D∗ji

so that
ρ(wi,r) = ρ(ŵr) for r ∈ {−,+} or, in other words, there are p, q > 0 so that π(wpi,−) = π(ŵ1)
and π(wqi,+) = π(ŵ2).

By Lemma 17, we have

C∗i =Rel (wpi,− ∪ w
q
i,+)∗ · C ′i (for a finite C ′i ⊆ C∗i )

⊆Rel D
∗
ji
· C ′i

Thus,

C∗1 · · ·C∗nu ⊆Rel D
∗
j1
· C ′1 · · ·D∗jn

· C ′n · u
=Rel D

∗
j1
· · ·D∗jn

· C ′1 · · ·C ′n · u
⊆Rel D

∗
1 · · ·D∗mC ′1 · · ·C ′n · u (by monotonicity of s.m.)

⊆Rel D
∗
1 · · ·D∗mv

proving the statement. For the last step, note that π(c1 · · · cnu) ∈ π(D∗1 · · ·D∗nv) for all
ci ∈ C ′i and so the containment follows from P6 and P2. J
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