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Abstract 

During the last half century, the tremendous development of computers based on von 

Neumann architecture has led to the revolution of the information technology. However, von 

Neumann computers are outperformed by the mammal brain in numerous data-processing 

applications such as pattern recognition and data mining. Neuromorphic engineering aims to 

mimic brain-like behavior through the implementation of artificial neural networks based on 

the combination of a large number of artificial neurons massively interconnected by an even 

larger number of artificial synapses. In order to effectively implement artificial neural 

networks directly in hardware it is mandatory to develop artificial neurons and synapses. A 

promising advance was made in recent years with the introduction of the components called 

memristors that might implement synaptic functions. In contrast, the advances in artificial 

neurons have consisted in the implementation of silicon-based circuits. However, so far, a 

single component artificial neuron that would bring an improvement comparable to what 

memristors had brought to synapses is still missing. Here, we introduce a simple two-terminal 

device, which can implement the basic functions leaky integrate and fire of spiking neurons. 

Remarkably, we found that it is realized by the behavior of strongly-correlated narrow-gap 

Mott insulators subject to electric pulsing. 

 

1. Introduction 

 

During the last half century, the tremendous development of computers has led to the 

revolution of the information technology. Nevertheless, the way computers store and process 

the information has scarcely changed since their inception and relies on the concepts proposed 

by von Neumann in the 40's. This von Neumann architecture, based on a clear separation 

between the memory and the processing unit, is extremely powerful in many cases such as 

high-speed processing of large data streams. However, von Neumann computers are 
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outperformed by the mammal brain in numerous data-processing applications such as pattern 

recognition and data mining. [1, 2, 3, 4, 5, 6, 7, 8] In fact, the brain is organized with a very 

different architecture, based on a network of closely connected neurons and synapses. 

Neuromorphic engineering aims to mimic brain-like behavior through the implementation of 

artificial neural networks based on the combination of a large number of artificial neurons 

massively interconnected by an even larger number of artificial synapses. [2, 3] In most cases, 

artificial neural networks are software-implemented in conventional hardware; they are 

programmed in computers with standard architectures, i.e. on von Neumann architectures. In 

principle, a much more efficient way to that goal would be to use the so-called neuromorphic 

systems that allow a direct hardware implementation, that is, systems where each neuron and 

each synapse consists in a dedicated set of components in an electronic circuit. [4, 5]  

 

In order to effectively implement artificial neural networks directly in hardware and 

integrated in high-density chips, it is mandatory to develop two types of devices: artificial 

neurons and synapses. [6] The key aspect here is the requirement of a vast number of these 

interconnected basic building blocks. Therefore any improvement in reducing the complexity, 

size, and power dissipation in their implementation has a huge impact on the efficiency of the 

whole neuromorphic system. A promising advance was made in recent years with the 

introduction of the components called memristors, which are highly-scalable two-terminal 

devices that might implement synaptic functions. [8, 9, 10] Memristors have a history dependent 

resistance, which may be exploited to encode a synaptic weight in a neuromorphic circuit. 

Moreover, they may also be integrated into high-density cross-bar arrays, which simplify the 

interconnection between a high number of neurons. [11] In contrast, the advances in artificial 

neurons have consisted in the implementation of silicon-based circuits employing many 

standard electronic components. A first simplification was recently achieved with the 

multicomponent neuristor designed with several memristors, resistances and capacitors, and 
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that aims to mimic the action potential of the biological neuron.[12] However, so far, a single 

component artificial neuron that would bring an improvement comparable to what memristors 

had brought to synapses is still missing.[13] Here, we introduce a simple two-terminal device, 

which can implement a basic function of spiking neurons, namely the leaky integrate and fire. 

Remarkably, we found that it is realized by the behavior of strongly-correlated narrow-gap 

Mott insulators subject to electric pulsing. [14,15,16] 

 

2. Results and discussion 
 

 The lacunar spinel compounds AM4Q8 (A = Ga, Ge; M = V, Nb, Ta, Mo; Q = S, Se) 

containing transition-metal tetrahedral clusters are narrow gap Mott insulators with Mott-

Hubbard gaps in the order of 0.1- 0.3 eV. [17] Conventional density functional calculation of 

the band structure yields partially filled bands, however, strong local electronic repulsion turn 

these materials into correlated insulators. [18] Pressure, doping or electric field can destabilize 

this electronic state, “melting” the Mott insulating phase into a correlated metal phase. 

[17,18,19,20] Both, in pressure driven or electronic doping driven insulator-to-metal transition, 

the physics is well accounted for by the Dynamical Mean Field Theory. [18, 21] The mechanism 

behind the destabilization of the Mott state upon electric field, which brings the quantum 

system out of equilibrium, was found recently to be related to an electronic phenomena, 

namely an avalanche breakdown. [14] It is not the purpose of this paper to describe the physics 

behind this new mechanism of resistive switching and to compare it with other mechanisms 

reported in the literature. These issues are addressed in recent review papers. [22] However we 

give hereafter a brief summary on the volatile resistive switching observed above a threshold 

electric field of a few kV/cm in the AM4Q8 compounds. Under an electric pulse exceeding the 

threshold electric field these narrow gap insulators undergo a dramatic resistive transition 

from a high to a low resistance state as described elsewhere. [14,15] This phenomenon may be 

observed using a simple circuit made of a two-terminal narrow-gap Mott insulator crystal 
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connected in series with a load resistor (see Fig. 1 (a)). Fig. 1(b) displays a typical resistive 

transition observed on a GaTa4Se8 sample at 74K during a voltage pulse exceeding a 

threshold voltage Vth. A sudden lowering of the voltage across the sample occurs after a 

(voltage dependent) delay time hereafter called tFIRE and  equal to 89 µs in this case. This 

lowering of the sample voltage is concomitant with an increase of the current intensity 

through the sample (called hereafter “firing” event). As a consequence, a resistive transition 

from a high to a low resistance state is observed (see bottom panel in Fig. 1(b)). An essential 

feature of this transition is that when the voltage pulse on the sample ends the sample returns 

to its original high resistance value after a brief delay time. This resistive transition is 

therefore called volatile. This volatile transition is due to the unique ability of the Mott 

material to locally commute between a stable insulator state and a metastable conductive 

state, through an electric-field driven insulator to metal transition. [15,14,20] The conductive 

state is characterized by metastable metallic filamentary structures bridging the electrodes and 

fading in time after the pulse. [16] Previous numerical modeling studies have suggested that the 

relaxation of the metastable metallic domains within the conducting filaments is thermally 

activated. [16]  

To gain more understanding of this relaxation phenomenon, the evolution of the resistance 

after the pulse is terminated was measured and is presented in Fig. 1(c). This measurement 

provides the insight that the relaxation involves in fact two successive processes. Initially, 

right after the pulse is over, the resistance rises sharply. This may be ascribed to the 

filamentary conductive structure rapidly tapering itself and losing percolation. Then, once the 

filament is destroyed the resistance follows a long-time exponential relaxation law. This may 

be associated to the isolated metallic granular domains that get further reabsorbed through a 

thermally activated behavior as suggested by previous numerical modeling studies. [16] 

According to these studies, the relaxation time may be simply characterized by fitting the long 

time relaxation with an exponential form. Hence, we assume the form, 
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 ( ) 0
/1 ReR t τ−−=   (1) 

which provides the satisfactory fit shown in Fig. 1(c). In Eq. (1), R0 denotes the resistance of 

the pristine sample, and τ the experimental relaxation time. From the fit we can extract τ = 

518 ± 100 µs. This value of τ is related to the energy barrier of the metastable metallic state, 

which is material dependent. 

 The volatile nature of the resistive transition described here prevents its use to 

implement synaptic functions like Spike-Timing-Dependent-Plasticity (STDP), which 

requires a non-volatile resistive switching as found in memristors. In contrast, the two features 

described above, namely a delay time tFIRE and a relaxation time τ open the way to the 

implementation of a novel functionality “Leaky Integrate and Fire” (LIF), which realizes an 

analogue to a basic spiking neuron behavior. Fig. 2 illustrates this functionality. It 

demonstrates the spiking response of the current (i.e. firing) after a number of voltage pulses 

NFIRE are applied. The main idea is to apply a train of short pulses with duration tON and 

separation tOFF such that tON < tFIRE and tOFF < τ. For instance, in Fig. 2(a) we have tON = 20µs 

< tFIRE = 89 µs (cf. Fig. 1(b)) and tOFF=30µs < τ = 518 µs, which yields a resistive transition in 

the GaTa4Se8 system after NFIRE = 6 pulses. The fact that the transition can be triggered with 

pulses of shorter duration than tFIRE demonstrates that the effect is cumulative, i.e. integrated 

by the system. Moreover, Fig. 2(a) brings about the third feature of the LIF neuromorphic 

functionality. Indeed, the applied pulse-time elapsed until the firing (~ 6 x 20 µs) is longer 

than tFIRE = 89 µs. This deviation from perfect integration is of course simply due to the 

relaxation between pulses (i.e. during tOFF), which in other words realizes the leaky feature. 

Thus, NFIRE depends (at a given VPULSE) on the values of tON and tOFF. Hence, raising tON or 

tOFF should have opposite effects on the leaky integration and lead respectively to a decrease 

or an increase of NFIRE which is in fact seen in Figs. 2b-c.  
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This “Leaky Integrate and Fire” functionality can be well understood within the framework of 

the model of the resistive transition in narrow-gap Mott insulators describe in details in 

reference [16]. To summarize, in that model the system is represented as a discretized 2D 

array of cells that form a resistor network (see Fig. 2). As depicted in Fig. 2(a), each cell may 

be in either one of two phases, which correspond to the two physical states of the system: a 

stable high-resistivity Mott insulator (MI) or a metastable low-resistivity correlated metal 

(CM). The key assumptions of the model are that the transition MI→CM can be induced by 

the action of a local electric field ~qΔV, with a transition rate PMI→CM = c ( ) TkVqE BBe /∆−− , where 

EB is the energy barrier with respect to the insulator state, ΔV is the voltage drop on the cell, c 

is a constant and q is set to unity. It is further assumed that the cells excited to the metastable 

state relax back thanks to a thermal activation law with a rate PCM→MI = c ( ) TkEE BMBe /−− , where 

EB-EM represents the energy barrier (see Fig. 3a).  

 

The key quantity here nCM = NCM/N is the ratio of the number of correlated metallic cells 

(NCM) to the total number of cells (N). [16] Its dynamics follows 

( ) ∑
−

→
−

→ +−=
∂
∂

cellsMI
CMMIMICMCMCM PNtpPnn

t
1 , (2) 

where the first (loss) term account for the relaxation of CM cells back to the MI state and the 

second (gain) term accounts for excitation of MI cells to the CM state. Since EB >> kBT, the 

rate PMI→CM and therefore the gain term only become significant during the voltage pulses. 

Hence the function p(t) assumed to be p(t)=1 during the pulses and 0 otherwise is introduced 

to account for the fact that no CM sites are created without voltage. Note that while the 

relaxation rate PCM->MI is independent of the voltage on the cell, the excitation rate PMI->CM 

depends on the cell’s local drop ΔV. This introduces a strong non-linearity in the problem. 

The dynamical behavior can, nevertheless, be investigated in detail by numerical simulations. 

[16] As evidenced in reference [23] the firing event, i.e. the sudden growth of a filament that 
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percolates through the system, is found to occur when the fraction nCM attains a critical value 

nC. An example of the evolution of nCM vs time is shown in Fig. 3(c). It is interesting to 

observe, that the growth of the filament occurs abruptly (compare Fig. 3(d), 3(e) and Fig. 

3(f)), due to the strong non-linearity of Eq. (2). Until the firing event, and during the action of 

the applied voltage, the fraction nCM increases approximately linearly in time (see Fig. 3(c)). 

This is because the CM cells form sparse isolated clusters (nCM << 1), hence the electric field 

remains rather homogeneous through the system, yielding an almost constant production rate 

of CM cells, except when the number of CM cells becomes very close to the critical value nC. 

There, the non-linear behavior kicks in, the production rate increases sharply and the filament 

percolates through the system. An important notion to realize is that for the firing event to 

occur, the production rate should dominate over the relaxation, which requires the applied 

voltage to be larger than a finite threshold value VTH. [13] Thus, we may rewrite Eq. (2) as 

( )tpAPnn
t MICMCMCM +−=
∂
∂

→
 ; V > VTH, nCM < nC  (3) 

where A is the production rate and nC is a (model parameter dependent) critical value where 

the conductive filament formation suddenly occurs.  

 

In this study we have applied this model of resistive transition to the case of train of 

short pulses. Importantly, Fig. 4 demonstrates that the qualitative behavior found in the case 

of a single pulse also occurs for application of a train of pulses, i.e., adopting a p(t) that 

subsequently switches between 1 and 0, during respective intervals tON and tOFF. Specifically, 

during tON the CM fraction growth linearly in time (integrate), and during the tOFF it decays 

exponentially in time (leaky). Hence, the modeling (Fig. 4) reproduces nicely the qualitative 

dependence of NFIRE with tON and tOFF as observed experimentally (Fig. 2). Moreover, it 

confirms that the formation of the metallic path is a sudden process occurring during a single 

pulse (Fig. 4d to 4g). 
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 As we shall see below, the central result of the present work is to demonstrate that 

thanks to this behavior the Mott system can be considered as an analogue of a spiking neuron. 

Specifically, the dynamics given by Eq. (3) is analogous to the transfer function of the leaky 

integrate-and-fire model (LIF) of spiking neuromorphic systems. [24] These systems are a class 

of artificial neural networks that deal with data represented as sequences of pulses, or 

“spikes”. The LIF model aims to describe a basic function of the neuron behavior related to 

the accumulation of electric charge through the cellular membrane (Fig. 4(a)). Following 

early work of Lapicque’s, the LIF model sketched in Fig. 4(b) represents the membrane as a 

capacitor with a leaking resistor in parallel. [25] The increase in the membrane potential, 

resulting of synaptic processes (i.e., spikes arriving from other neurons) is generally modeled 

as current pulses that inject electrical charges into the capacitor. When the voltage reaches a 

given threshold the neuron fires an output electric spike. The nature of this output spike (that 

would represent the action potential in biological neurons) as well as the concomitant reset of 

the capacitor charge are usually not considered part of the model . [24, 26] 

 

Within the LIF model of an artificial neuron that has one synaptic excitatory input-current the 

time dependence of the voltage v across the membrane is 

( )ts
C
w

RC
vv

t
+−=

∂
∂ 1 ,  (4) 

 

with R the leaky resistance and C the capacitance of the membrane. s(t) represents a train of 

spikes arriving to the neuron. In fact, a peculiarity of the LIF model and of spiking 

neuromorphic systems in general, is that the information is encoded in the timing of the spikes 

(i.e., temporal sequence) not in their amplitude, width, etc. [14]. Furthermore, we should note 

that in actual neuromorphic hardware, spikes may adopt electric pulses of arbitrary shape 

since only their timing is relevant. The effect of the incoming spikes is controlled by the 
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synaptic weight w, which we assume a constant since the LIF model does not include the 

behavior of synapses. 

 

 At this stage the equivalence between the behavior of Mott insulators and the behavior 

of artificial neurons based on the LIF model becomes clear, as both, Eqs. (3) and (4), are 

analogous. Figure 5 and Table 1 summarize the equivalence between our Mott system and the 

LIF model. In the former, incoming spikes are represented by a train of voltage pulses and the 

output spike is a current pulse. As highlighted in Fig.5, a key feature of the analogy is that the 

role of charge accumulation in the LIF model is played in the Mott system by the 

accumulation of correlated metallic sites.  

 

Finally, we illustrate the experimental validation of Eq. (3) by computing the predicted 

number of spikes (i.e. pulses) required to produce a fire event for a train with given 

parameters tON and tOFF and applied voltage V. In this case, the expression for the required 

number of pulses NFIRE can be obtained in closed form, under the simplifying assumption that 

the production rate of CM sites, remains constant in time (see Eq. (3)), 

( )




























−−

−=
τ

ττ

/

1ln
1

//

OFF

t

ON

FIREt

FIRE t

e
t
t

e
ceilingN

OFFOFF

 (5) 

 

Since NFIRE is an integer number of pulses, we use the ceiling function which maps a real 

number to the smallest following integer. It is worth noting that Eq. (5) does not contain any 

free parameter. Both tFIRE and the relaxation time τ are indeed obtained experimentally for a 

given fixed applied voltage. For our experimental conditions, we determined τ = 518 μs and 

tFIRE = 89 μs (cf Fig. 1). Fig. 6(a) and 6(b) show the parametric dependence of NFIRE with tON 

and tOFF measured experimentally along with the theoretical prediction using Eq. (5). The 
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simultaneous agreement for the behavior of NFIRE as a function of both, tON and tOFF, provides 

a remarkable validation of our neuromorphic Mott device as an analogue of an artificial 

neuron with the LIF functionality. 

 

3. Conclusion 

We have demonstrated that the LIF neuron model can be implemented by a single 

component device based on a Mott insulator compound. The system implements all three 

basic spiking neuron processes: Leaky, Integrate and Fire. It is important to note that, this 

novel functionality of our Mott device goes even beyond the LIF model, as it readily 

implements a Firing spike by delivering an outgoing current pulse. In fact, this is one of the 

most complex part to implement by neuromorphic hardware. Hence, the downscaling of this 

simple two-terminal device may open the way for the realization of long sought after dense 

spiking neuromorphic networks. 

In the reviewing process of our article several interesting works were published that 

aims to realize artificial neurons with graphene oxide [27,28] or RRAM materials [29]. All these 

studies fully confirm that the realization of downscalable artificial neurons will rapidly 

emerge as an active field of research in neuromorphic engineering.  
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Fig. 1. Experimental setup (a) and typical resistive switching experiments obtained on applying a long single 
voltage pulse (b). The relaxation of the resistance is shown in (c), and the fit of the long-time relaxation with Eq. 
(1) in (d). For the sake of the demonstration these experiments were performed at 74 K using as sample a slice of 
GaTa4Se8 crystal so that the resistive switching can reach almost three orders of magnitude. The inter-electrodes 
distances was about 40 µm which explains the large voltage needed to trigger the switching. A simple 
downscaling would reduce both the voltages and currents required to operate the device.  
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Fig. 2. Experimental resistive switching obtained by applying trains of short pulses of various tON and tOFF. Using 
tON = 20 µs and tOFF = 30 µs leads to NFIRE =6 (a). Increasing tON to 30 µs leads to a decrease of NFIRE to 4 (b). 

Increasing tOFF to 80 µs leads to an increase of NFIRE to 8 (c). 
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Fig. 3. Description of the energy landscape (a) and 2D resistor network (b) used for the modeling of the resistive 
switching in reference (16). Typical output of the model (c) showing before resistive switching the linear 
increase with time of the fraction of metallic sites. Figs. (d) and (e) display the resistance network at different 
time before resistive switching. A few metallic sites are created randomly. Fig. f shows, on the other hand, that 
the resistive switching is associated with the formation of a filamentary metallic path between the bottom and top 
electrodes.  
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Fig. 4. Modeling of resistive switching obtained with trains of short pulses of various tON and tOFF Panels (a-c). 
Panels (d-g) show snapshots of the microscopic state of the resistor network during each of the 4 pulses shown in 
panel (a). We observe that the formation of the conductive bridge is a sudden process, which occurs within the 
duration of a single pulse, i.e., in that case the fourth one. 
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Fig. 5. Schematic representation of a biological neuron receiving input spikes from other neurons and triggering 
an ouput action potential when the membrane potential reaches the threshold value (a). The LIF artificial 
neurons based on Lapicke’s model reproduces the evolution of the membrane potential thanks to an RC circuit 
accumulating electrical charges (b). The Mott artificial neuron sketched in (c) reproduces the LIF behavior 
thanks to the accumulation of correlated metallic sites. 
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Fig. 6. Evolution of the number of pulses necessary to “fire” the Mott Neuron versus the pulse duration tON (a) 
and the separation time between pulses tOFF (b). Remarkably the parameter-free theoretical prediction established 
for the LIF model (Eq.5, see in text), shown as red curves, reproduces nicely the experimental dependences.  
 

 
 
  

(a)

(b)
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Table 1 
Comparison of variables and equations used in the LIF and Mott neuron models. Both models are analogue and 
lead to the same equation for the number of pulse for FIRE. The ceiling function maps a real number to the 
smallest following integer. 
 

 LIF model Mott LIF neuron 
Integrated 
variable Membrane potential ν 

Fraction metallic  
regions nCM 

Model ( )ts
C
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t
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∂ 1

 
( )tpAPnn

t MICMCMCM +−=
∂
∂

→
 

Input variable Dirac delta function Voltage pulse 

Output 
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Leaking time-
constant RC 1/PCM→MI 
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itts δ
 

( ) ( )[ ]∑ −−−−=
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The mammal brain is based on a network of closely connected neurons and synapses. 
The implementation of artificial neural networks directly in hardware requires therefore to 
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