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A Leaky-Integrate-and-Fire Neuron Analogue realized with a Mott insulator
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During the last half century, the tremendous development of computers based on von

Neumann architecture has led to the revolution of the information technology. However, von Neumann computers are outperformed by the mammal brain in numerous data-processing applications such as pattern recognition and data mining. Neuromorphic engineering aims to mimic brain-like behavior through the implementation of artificial neural networks based on the combination of a large number of artificial neurons massively interconnected by an even larger number of artificial synapses. In order to effectively implement artificial neural networks directly in hardware it is mandatory to develop artificial neurons and synapses. A promising advance was made in recent years with the introduction of the components called memristors that might implement synaptic functions. In contrast, the advances in artificial neurons have consisted in the implementation of silicon-based circuits. However, so far, a single component artificial neuron that would bring an improvement comparable to what memristors had brought to synapses is still missing. Here, we introduce a simple two-terminal device, which can implement the basic functions leaky integrate and fire of spiking neurons.

Remarkably, we found that it is realized by the behavior of strongly-correlated narrow-gap Mott insulators subject to electric pulsing.

Introduction

During the last half century, the tremendous development of computers has led to the revolution of the information technology. Nevertheless, the way computers store and process the information has scarcely changed since their inception and relies on the concepts proposed by von Neumann in the 40's. This von Neumann architecture, based on a clear separation between the memory and the processing unit, is extremely powerful in many cases such as high-speed processing of large data streams. However, von Neumann computers are outperformed by the mammal brain in numerous data-processing applications such as pattern recognition and data mining. [1,[START_REF] Mead | Proc. IEEE[END_REF][START_REF] Jain | [END_REF][START_REF] Boahen | Neuromorphic Microchips[END_REF]5,6,7,8] In fact, the brain is organized with a very different architecture, based on a network of closely connected neurons and synapses.

Neuromorphic engineering aims to mimic brain-like behavior through the implementation of artificial neural networks based on the combination of a large number of artificial neurons massively interconnected by an even larger number of artificial synapses. [ 2 , 3 ] In most cases, artificial neural networks are software-implemented in conventional hardware; they are programmed in computers with standard architectures, i.e. on von Neumann architectures. In principle, a much more efficient way to that goal would be to use the so-called neuromorphic systems that allow a direct hardware implementation, that is, systems where each neuron and each synapse consists in a dedicated set of components in an electronic circuit. [ 4 , 5 ] In order to effectively implement artificial neural networks directly in hardware and integrated in high-density chips, it is mandatory to develop two types of devices: artificial neurons and synapses. [ 6 ] The key aspect here is the requirement of a vast number of these interconnected basic building blocks. Therefore any improvement in reducing the complexity, size, and power dissipation in their implementation has a huge impact on the efficiency of the whole neuromorphic system. A promising advance was made in recent years with the introduction of the components called memristors, which are highly-scalable two-terminal devices that might implement synaptic functions. [ 8 , 9, 10] Memristors have a history dependent resistance, which may be exploited to encode a synaptic weight in a neuromorphic circuit. Moreover, they may also be integrated into high-density cross-bar arrays, which simplify the interconnection between a high number of neurons. [11] In contrast, the advances in artificial neurons have consisted in the implementation of silicon-based circuits employing many standard electronic components. A first simplification was recently achieved with the multicomponent neuristor designed with several memristors, resistances and capacitors, and that aims to mimic the action potential of the biological neuron. [12] However, so far, a single component artificial neuron that would bring an improvement comparable to what memristors had brought to synapses is still missing. [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF] Here, we introduce a simple two-terminal device, which can implement a basic function of spiking neurons, namely the leaky integrate and fire.

Remarkably, we found that it is realized by the behavior of strongly-correlated narrow-gap Mott insulators subject to electric pulsing. [14,15,16] 

Results and discussion

The lacunar spinel compounds AM4Q8 (A = Ga, Ge; M = V, Nb, Ta, Mo; Q = S, Se) containing transition-metal tetrahedral clusters are narrow gap Mott insulators with Mott-Hubbard gaps in the order of 0.1-0.3 eV. [17] Conventional density functional calculation of the band structure yields partially filled bands, however, strong local electronic repulsion turn these materials into correlated insulators. [18] Pressure, doping or electric field can destabilize this electronic state, "melting" the Mott insulating phase into a correlated metal phase. [17,18,19,20] Both, in pressure driven or electronic doping driven insulator-to-metal transition, the physics is well accounted for by the Dynamical Mean Field Theory. [18,21] The mechanism behind the destabilization of the Mott state upon electric field, which brings the quantum system out of equilibrium, was found recently to be related to an electronic phenomena, namely an avalanche breakdown. [14] It is not the purpose of this paper to describe the physics behind this new mechanism of resistive switching and to compare it with other mechanisms reported in the literature. These issues are addressed in recent review papers. [22] However we give hereafter a brief summary on the volatile resistive switching observed above a threshold electric field of a few kV/cm in the AM4Q8 compounds. Under an electric pulse exceeding the threshold electric field these narrow gap insulators undergo a dramatic resistive transition from a high to a low resistance state as described elsewhere. [14,15] This phenomenon may be observed using a simple circuit made of a two-terminal narrow-gap Mott insulator crystal connected in series with a load resistor (see Fig. 1 (a)). Fig. 1(b) displays a typical resistive transition observed on a GaTa4Se8 sample at 74K during a voltage pulse exceeding a threshold voltage Vth. A sudden lowering of the voltage across the sample occurs after a (voltage dependent) delay time hereafter called tFIRE and equal to 89 µs in this case. This lowering of the sample voltage is concomitant with an increase of the current intensity through the sample (called hereafter "firing" event). As a consequence, a resistive transition from a high to a low resistance state is observed (see bottom panel in Fig. 1(b)). An essential feature of this transition is that when the voltage pulse on the sample ends the sample returns to its original high resistance value after a brief delay time. This resistive transition is therefore called volatile. This volatile transition is due to the unique ability of the Mott material to locally commute between a stable insulator state and a metastable conductive state, through an electric-field driven insulator to metal transition. [15,14,20] The conductive state is characterized by metastable metallic filamentary structures bridging the electrodes and fading in time after the pulse. [16] Previous numerical modeling studies have suggested that the relaxation of the metastable metallic domains within the conducting filaments is thermally activated. [16] To gain more understanding of this relaxation phenomenon, the evolution of the resistance after the pulse is terminated was measured and is presented in Fig. 1(c). This measurement provides the insight that the relaxation involves in fact two successive processes. Initially, right after the pulse is over, the resistance rises sharply. This may be ascribed to the filamentary conductive structure rapidly tapering itself and losing percolation. Then, once the filament is destroyed the resistance follows a long-time exponential relaxation law. This may be associated to the isolated metallic granular domains that get further reabsorbed through a thermally activated behavior as suggested by previous numerical modeling studies. [16] According to these studies, the relaxation time may be simply characterized by fitting the long time relaxation with an exponential form. Hence, we assume the form,

( ) 0 / 1 R e R t τ - - =
(1) which provides the satisfactory fit shown in Fig. 1(c). In Eq. ( 1), R0 denotes the resistance of the pristine sample, and τ the experimental relaxation time. From the fit we can extract τ = 518 ± 100 µs. This value of τ is related to the energy barrier of the metastable metallic state, which is material dependent.

The volatile nature of the resistive transition described here prevents its use to implement synaptic functions like Spike-Timing-Dependent-Plasticity (STDP), which requires a non-volatile resistive switching as found in memristors. In contrast, the two features described above, namely a delay time tFIRE and a relaxation time τ open the way to the implementation of a novel functionality "Leaky Integrate and Fire" (LIF), which realizes an analogue to a basic spiking neuron behavior. Fig. 2 illustrates this functionality. It demonstrates the spiking response of the current (i.e. firing) after a number of voltage pulses NFIRE are applied. The main idea is to apply a train of short pulses with duration tON and separation tOFF such that tON < tFIRE and tOFF < τ. For instance, in Fig. 2(a) we have tON = 20µs < tFIRE = 89 µs (cf. Fig. 1(b)) and tOFF=30µs < τ = 518 µs, which yields a resistive transition in the GaTa4Se8 system after NFIRE = 6 pulses. The fact that the transition can be triggered with pulses of shorter duration than tFIRE demonstrates that the effect is cumulative, i.e. integrated by the system. Moreover, Fig. 2(a) brings about the third feature of the LIF neuromorphic functionality. Indeed, the applied pulse-time elapsed until the firing (~ 6 x 20 µs) is longer than tFIRE = 89 µs. This deviation from perfect integration is of course simply due to the relaxation between pulses (i.e. during tOFF), which in other words realizes the leaky feature. Thus, NFIRE depends (at a given VPULSE) on the values of tON and tOFF. Hence, raising tON or tOFF should have opposite effects on the leaky integration and lead respectively to a decrease or an increase of NFIRE which is in fact seen in Figs. 2b-c.

This "Leaky Integrate and Fire" functionality can be well understood within the framework of the model of the resistive transition in narrow-gap Mott insulators describe in details in reference [16]. To summarize, in that model the system is represented as a discretized 2D array of cells that form a resistor network (see Fig. 2). As depicted in Fig. 2(a), each cell may be in either one of two phases, which correspond to the two physical states of the system: a stable high-resistivity Mott insulator (MI) or a metastable low-resistivity correlated metal (CM). The key assumptions of the model are that the transition MI→CM can be induced by the action of a local electric field ~qΔV, with a transition rate PMI→CM = c ( )

T k V q E B B e / ∆ - -
, where EB is the energy barrier with respect to the insulator state, ΔV is the voltage drop on the cell, c is a constant and q is set to unity. It is further assumed that the cells excited to the metastable state relax back thanks to a thermal activation law with a rate PCM→MI = c ( )

T k E E B M B e / - -
, where EB-EM represents the energy barrier (see Fig. 3a).

The key quantity here nCM = NCM/N is the ratio of the number of correlated metallic cells (NCM) to the total number of cells (N). [16] Its dynamics follows

( ) ∑ - → - → + - = ∂ ∂ cells MI CM MI MI CM CM CM P N t p P n n t 1 , (2) 
where the first (loss) term account for the relaxation of CM cells back to the MI state and the second (gain) term accounts for excitation of MI cells to the CM state. Since EB >> kBT, the rate PMI→CM and therefore the gain term only become significant during the voltage pulses.

Hence the function p(t) assumed to be p(t)=1 during the pulses and 0 otherwise is introduced to account for the fact that no CM sites are created without voltage. Note that while the relaxation rate PCM->MI is independent of the voltage on the cell, the excitation rate PMI->CM depends on the cell's local drop ΔV. This introduces a strong non-linearity in the problem.

The dynamical behavior can, nevertheless, be investigated in detail by numerical simulations. [16] As evidenced in reference [23] the firing event, i.e. the sudden growth of a filament that percolates through the system, is found to occur when the fraction nCM attains a critical value nC. An example of the evolution of nCM vs time is shown in Fig. 3(c). It is interesting to observe, that the growth of the filament occurs abruptly (compare Fig. 3(d), 3(e) and Fig.

3(f))

, due to the strong non-linearity of Eq. ( 2). Until the firing event, and during the action of the applied voltage, the fraction nCM increases approximately linearly in time (see Fig. 3(c)). This is because the CM cells form sparse isolated clusters (nCM << 1), hence the electric field remains rather homogeneous through the system, yielding an almost constant production rate of CM cells, except when the number of CM cells becomes very close to the critical value nC.

There, the non-linear behavior kicks in, the production rate increases sharply and the filament percolates through the system. An important notion to realize is that for the firing event to occur, the production rate should dominate over the relaxation, which requires the applied voltage to be larger than a finite threshold value VTH. [START_REF] Indiveri | Neuromorphic Silicon Neuron Circuits[END_REF] Thus, we may rewrite Eq. ( 2) as ( )

t p A P n n t MI CM CM CM + - = ∂ ∂ → ; V > VTH, nCM < nC ( 3 
)
where A is the production rate and nC is a (model parameter dependent) critical value where the conductive filament formation suddenly occurs.

In this study we have applied this model of resistive transition to the case of train of short pulses. Importantly, Fig. 4 demonstrates that the qualitative behavior found in the case of a single pulse also occurs for application of a train of pulses, i.e., adopting a p(t) that subsequently switches between 1 and 0, during respective intervals tON and tOFF. Specifically, during tON the CM fraction growth linearly in time (integrate), and during the tOFF it decays exponentially in time (leaky). Hence, the modeling (Fig. 4) reproduces nicely the qualitative dependence of NFIRE with tON and tOFF as observed experimentally (Fig. 2). Moreover, it confirms that the formation of the metallic path is a sudden process occurring during a single pulse (Fig. 4d to 4g).

As we shall see below, the central result of the present work is to demonstrate that thanks to this behavior the Mott system can be considered as an analogue of a spiking neuron.

Specifically, the dynamics given by Eq. ( 3) is analogous to the transfer function of the leaky integrate-and-fire model (LIF) of spiking neuromorphic systems. [24] These systems are a class of artificial neural networks that deal with data represented as sequences of pulses, or "spikes". The LIF model aims to describe a basic function of the neuron behavior related to the accumulation of electric charge through the cellular membrane (Fig. 4(a)). Following early work of Lapicque's, the LIF model sketched in Fig. 4(b) represents the membrane as a capacitor with a leaking resistor in parallel. [25] The increase in the membrane potential, resulting of synaptic processes (i.e., spikes arriving from other neurons) is generally modeled as current pulses that inject electrical charges into the capacitor. When the voltage reaches a given threshold the neuron fires an output electric spike. The nature of this output spike (that would represent the action potential in biological neurons) as well as the concomitant reset of the capacitor charge are usually not considered part of the model . [24,26] Within the LIF model of an artificial neuron that has one synaptic excitatory input-current the time dependence of the voltage v across the membrane is ( )

t s C w RC v v t + - = ∂ ∂ 1 , (4) 
with R the leaky resistance and C the capacitance of the membrane. s(t) represents a train of spikes arriving to the neuron. In fact, a peculiarity of the LIF model and of spiking neuromorphic systems in general, is that the information is encoded in the timing of the spikes (i.e., temporal sequence) not in their amplitude, width, etc. [14] . Furthermore, we should note that in actual neuromorphic hardware, spikes may adopt electric pulses of arbitrary shape since only their timing is relevant. The effect of the incoming spikes is controlled by the synaptic weight w, which we assume a constant since the LIF model does not include the behavior of synapses.

At this stage the equivalence between the behavior of Mott insulators and the behavior of artificial neurons based on the LIF model becomes clear, as both, Eqs. ( 3) and ( 4), are analogous. Figure 5 and Table 1 summarize the equivalence between our Mott system and the LIF model. In the former, incoming spikes are represented by a train of voltage pulses and the output spike is a current pulse. As highlighted in Fig. 5, a key feature of the analogy is that the role of charge accumulation in the LIF model is played in the Mott system by the accumulation of correlated metallic sites.

Finally, we illustrate the experimental validation of Eq. ( 3) by computing the predicted number of spikes (i.e. pulses) required to produce a fire event for a train with given parameters tON and tOFF and applied voltage V. In this case, the expression for the required number of pulses NFIRE can be obtained in closed form, under the simplifying assumption that the production rate of CM sites, remains constant in time (see Eq. ( 3)), (5) Since NFIRE is an integer number of pulses, we use the ceiling function which maps a real number to the smallest following integer. It is worth noting that Eq. ( 5) does not contain any free parameter. Both tFIRE and the relaxation time τ are indeed obtained experimentally for a given fixed applied voltage. For our experimental conditions, we determined τ = 518 μs and tFIRE = 89 μs (cf Fig. 1). Fig. 6(a) and 6 (b) show the parametric dependence of NFIRE with tON and tOFF measured experimentally along with the theoretical prediction using Eq. ( 5). The simultaneous agreement for the behavior of NFIRE as a function of both, tON and tOFF, provides a remarkable validation of our neuromorphic Mott device as an analogue of an artificial neuron with the LIF functionality.
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Conclusion

We have demonstrated that the LIF neuron model can be implemented by a single component device based on a Mott insulator compound. The system implements all three basic spiking neuron processes: Leaky, Integrate and Fire. It is important to note that, this novel functionality of our Mott device goes even beyond the LIF model, as it readily implements a Firing spike by delivering an outgoing current pulse. In fact, this is one of the most complex part to implement by neuromorphic hardware. Hence, the downscaling of this simple two-terminal device may open the way for the realization of long sought after dense spiking neuromorphic networks.

In the reviewing process of our article several interesting works were published that aims to realize artificial neurons with graphene oxide [ 27 , 28 ] or RRAM materials [ 29 ]. All these studies fully confirm that the realization of downscalable artificial neurons will rapidly emerge as an active field of research in neuromorphic engineering. (b). The relaxation of the resistance is shown in (c), and the fit of the long-time relaxation with Eq. ( 1) in (d). For the sake of the demonstration these experiments were performed at 74 K using as sample a slice of GaTa4Se8 crystal so that the resistive switching can reach almost three orders of magnitude. The inter-electrodes distances was about 40 µm which explains the large voltage needed to trigger the switching. A simple downscaling would reduce both the voltages and currents required to operate the device. (d-g) show snapshots of the microscopic state of the resistor network during each of the 4 pulses shown in panel (a). We observe that the formation of the conductive bridge is a sudden process, which occurs within the duration of a single pulse, i.e., in that case the fourth one. 

Fig. 1 .

 1 Fig.1. Experimental setup (a) and typical resistive switching experiments obtained on applying a long single voltage pulse(b). The relaxation of the resistance is shown in(c), and the fit of the long-time relaxation with Eq. (1) in (d). For the sake of the demonstration these experiments were performed at 74 K using as sample a slice of GaTa4Se8 crystal so that the resistive switching can reach almost three orders of magnitude. The inter-electrodes

Fig. 2 .

 2 Fig. 2. Experimental resistive switching obtained by applying trains of short pulses of various tON and tOFF. Using tON = 20 µs and tOFF = 30 µs leads to NFIRE =6 (a). Increasing tON to 30 µs leads to a decrease of NFIRE to 4 (b).Increasing tOFF to 80 µs leads to an increase of NFIRE to 8 (c).

Fig. 3 .

 3 Fig. 3. Description of the energy landscape (a) and 2D resistor network (b) used for the modeling of the resistive switching in reference (16). Typical output of the model (c) showing before resistive switching the linear increase with time of the fraction of metallic sites. Figs. (d) and (e) display the resistance network at different time before resistive switching. A few metallic sites are created randomly. Fig. f shows, on the other hand, that the resistive switching is associated with the formation of a filamentary metallic path between the bottom and top electrodes.

Fig. 4 .

 4 Fig. 4. Modeling of resistive switching obtained with trains of short pulses of various tON and tOFF Panels (a-c). Panels(d-g) show snapshots of the microscopic state of the resistor network during each of the 4 pulses shown in panel (a). We observe that the formation of the conductive bridge is a sudden process, which occurs within the duration of a single pulse, i.e., in that case the fourth one.

Fig. 5 .

 5 Fig. 5. Schematic representation of a biological neuron receiving input spikes from other neurons and triggering an ouput action potential when the membrane potential reaches the threshold value (a). The LIF artificial neurons based on Lapicke's model reproduces the evolution of the membrane potential thanks to an RC circuit accumulating electrical charges (b). The Mott artificial neuron sketched in (c) reproduces the LIF behavior thanks to the accumulation of correlated metallic sites.

Fig. 6 .

 6 Fig. 6. Evolution of the number of pulses necessary to "fire" the Mott Neuron versus the pulse duration tON (a) and the separation time between pulses tOFF (b). Remarkably the parameter-free theoretical prediction established for the LIF model (Eq.5, see in text), shown as red curves, reproduces nicely the experimental dependences.

Table 1

 1 Comparison of variables and equations used in the LIF and Mott neuron models. Both models are analogue and lead to the same equation for the number of pulse for FIRE. The ceiling function maps a real number to the smallest following integer.

							LIF model												Mott LIF neuron
	Integrated variable		Membrane potential ν									Fraction metallic regions n CM
	Model	t ∂ ∂	v	=	-	v	RC 1	+	C w	s	( ) t						t ∂ ∂	n CM	=	-	n CM	P CM	→	MI	+	A	p	( ) t
	Input variable			Dirac delta function									Voltage pulse
	Output variable						Not defined												Current pulse
	Leaking time-constant								RC														1/P CM→MI
	Synaptic input				s	=	( ) ∑ -i i t t δ							p	=	i ∑	[ H	( ) ( --i t H t t	-	t	i	-	t	ON	) ]
	Spike contribution								w/C														A t ON
	Number of pulses for FIRE			N	FIRE	=	ceiling	      	1	-	ln	  	e	OFF t	/τ	-t	/ FIRE OFF ON t t	τ (	e	OFF t	/τ	-	) 1	  	      

Acknowledgements

The authors thanks the Région Pays de la Loire for funding the present work in the framework of the "Pari Scientifique Neuro-Mott" and J. Gesrel for his help in preparing the figures.

Received: ((will be filled in by the editorial staff))

Revised: ((will be filled in by the editorial staff))

The table of contents entry should be 50-60 words long, and the first phrase should be bold.

The mammal brain is based on a network of closely connected neurons and synapses.

The implementation of artificial neural networks directly in hardware requires therefore to develop artificial neurons and synapses that can be integrated in high-density chips. Here, we demonstrate that a two-terminal device made of narrow-gap strongly-correlated Mott insulators implement the processing functions of the leaky-integrate-and-fire artificial neuron.