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Exact Sequences of Witt Groups

N. Grenier-Boley

M.G. Mahmoudi

Abstract

An exact octagon of Witt groups of central simple algebras with involution is con-
structed, extending an exact sequence of Parimala, Sridharan and Suresh and motivated
by exact sequences obtained by Lewis. From this, we derive relations between the cardinal-
ity of certain Witt groups. An exact octagon of equivariant Witt groups is also obtained,
thus generalizing a similar octagon constructed by Lewis for quaternion algebras.

1 Introduction

Base change is an important tool in the algebraic theory of quadratic forms and of hermitian
forms over division algebras. For a field extension L/K (of characteristic different from 2), we
can consider base change from K to L; if moreover the extension has finite degree, then we
also have the Scharlau transfer. The situation is especially well understood when L/K is of
odd degree or a quadratic extension: see the book of Scharlau [13] for these basic notions and
results. Another classical result, due to Kneser and Springer, concerns hermitian forms over
quaternion algebras (see the appendix written by Springer in [6] ).

The Witt group (and Witt ring for quadratic forms) gives a very useful way to study
quadratic and hermitian forms. The above results can be expressed very efficiently in this
framework. One of the basic result in the theory of quadratic forms is a theorem of Pfister
which determines the kernel of the restriction map r∗L/K : W (K) → W (L) for a quadratic

extension L/K. More precisely, this kernel is the ideal generated by the form < 1,−δ > where
L = K(

√
δ). One can express this result by the exactness of the sequence:

W (K)
t−→ W (K)

r∗
L/K−→ W (L) (1)
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where t is multiplication by the 2-dimensional form < 1,−δ >. By a result of Elman-Lam, the
Scharlau transfer map s∗ : W (L) −→ W (K), can be used to embed (1) in the following exact
triangle (cf. [13, Ch. 2, 5.10]):

W (K) r∗ // W (L)

s∗

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

W (K)

t

__?????????????

(2)

For a quadratic extension L/K (resp. a quaternion division algebra (a, b)K = D) with
nontrivial automorphism − (resp. with canonical involution −), one can consider the trace
map W (L,−) → W (K) (resp. W (D,−) → W (K)). By a result of Jacobson, these maps are
injective (cf. [13, Ch. 10, 1.1, 1.2, 1.7] and [5]).

In [12, Appendix 2], Milnor and Husemoller construct the following exact sequence of W (K)-
modules:

0 −→ W (L,−) −→ W (K) −→ W (L) (3)

where − is the nontrivial automorphism of the quadratic extension L/K. The results concerning
hermitian forms over quaternion division algebras are given in the papers of Lewis [8], [9]. He
found the following exact sequence:

0 −→ W (D,−) −→ W (L,−) −→ W−1(D,−) −→ W (L) (4)

where L = K(
√

a) ⊂ D is stable by −. In fact, in this sequence, D can be also split (cf. [13,
Ch. 10, 3.2]).

Remark 1.1. Note that Lewis uses W (D,∧) instead of W−1(D,−), where ∧ is the orthogonal
involution of D defined by î = −i and ĵ = j where {1, i, j, ij} are usual generators of the
quaternion algebra D. In fact W (D,∧) ' W−1(D,−): this isomorphism is induced by the map
which associates to a hermitian form h over (D,∧), the skew-hermitian form ih over (D,−).

In [2, Appendix 2], Parimala, Sridharan and Suresh obtain this crucial exact sequence of
Witt groups:

W ε(A, σ)
πε
1−→ W ε(Ã, σ1)

ρε
1−→ W−ε(A, σ)

π−ε
2−→ W ε(Ã, σ2) (5)

where A is a central simple algebra with an involution σ of any kind and ε = ±1 (for the
notations, see the beginning of section 2). The exact sequence (4) is a particular case of (5).
In general the map πε

1 is not injective: in fact, 5.3 characterizes the cases where πε
1 is injective.

In [2], (5) is used to prove Serre’s conjecture II for classical groups. In [9], Lewis has found a
longer exact sequence:

0 → W (D,−) → W (L,−) → W−1(D,−) → W (L) → W−1(D,−) →

→ W (L,−) → W (D,−) → 0
(6)

2



This sequence was one of our main motivations in order to embed the exact sequence (5) in an
even longer one. In fact we obtain an exact octagon:

Theorem 1.2. There is an exact sequence of Witt groups (in fact of W (K,σ|K)-modules):

W ε(A, σ)
πε

1 // W ε(Ã, σ1)

ρε
1

ÂÂ?
??

??
??

??
??

??
??

??
??

?

W−ε(Ã, σ2)

ρ−ε
2

??ÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄÄ

W−ε(A, σ)

π−ε
2

²²

W ε(A, σ)

πε
2

OO

W ε(Ã, σ2)

ρε
2

ÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

W ε(Ã, σ1)

ρε
3

__????????????????????

W−ε(A, σ)
π−ε

3

oo

(for the definition of the maps, see section 2).

Remark 1.3. Note that the exact sequence (6) is a particular case of 1.2.

Remark 1.4. One can find a similar exact octagon of Witt groups of Clifford algebras of
quadratic forms with their canonical involution in [11].

The proof of 1.2 can be found in section 5. Because of the nature of Witt groups, the
above octagon does not give, a priori, much information about the behavior of these maps with
respect to isotropy in the semigroups of isometry classes of nondegenerate hermitian forms: in
section 3, theorem 3.4 describes this behavior in the case of division algebras. We also deduce
an alternative proof of 1.2 in the case of division algebras.

Section 4 contains the relation between the notion of isotropy over a central simple algebra
A and isotropy over the division algebra D Brauer equivalent to A via Morita equivalence as
well as the Witt decomposition. In fact we point out that there exists a Witt decomposition
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over a central simple algebra with involution. In particular, this implies the existence of an
anisotropic form in every class of the Witt group.

In [10], Lewis constructs an exact octagon of Witt groups of forms invariant under the
action of a finite group G (Witt groups of equivariant forms) for quaternion division algebras.
in section 6, we show likewise that the octagon of 1.2 is exact if we replace Witt groups by
equivariant Witt groups. More precisely:

Theorem 1.5. We suppose that A satisfies the same hypotheses as at the beginning of section
2. If we replace W±ε(A, σ) by W±ε(G,A, σ) and W±ε(Ã, σi) by W±ε(G, Ã, σi) (for i = 1, 2)
in theorem 1.2, we obtain an exact octagon of W (K,σ|K)-modules.

In section 7, by using the exact octagon, we obtain the following result:

Corollary 1.6. Let A be a K-central simple algebra with an involution σ of the first kind.
Then we have |W ε(A, σ)||W−ε(A, σ)| = |W (K)|. In particular W (K) is finite if and only if
W ε(A, σ) and W−ε(A, σ) are finite.

This result was well known for quaternion algebras: see [9].
We thank Eva Bayer-Fluckiger, Detlev Hoffmann and Emmanuel Lequeu for useful conver-

sations about this work and for their comments on earlier versions of this paper.

2 Notation and Definition of the Maps

Let K be a field of characteristic different from 2. All the modules in this paper are supposed
to be right modules which are finitely generated and all the ε-hermitian forms are supposed
to be nondegenerate. Let A be a central simple algebra over K with an involution σ (of any
kind). For ε = ±1, let Sε(A, σ) denote the semigroup of isometry classes of ε-hermitian forms
over (A, σ) and let W ε(A, σ) be the Witt group of (A, σ) (i.e., the quotient of the Grothendieck
group corresponding to Sε(A, σ) by the subgroup generated by metabolic forms, an ε-hermitian
form (V, h) being metabolic if there exists an A-submodule W of V such that W = W⊥ for h).

Remark 2.1. As A is simple, there is of course no difference between the notions of metabolic
and hyperbolic hermitian forms. We use any of these two notions subsequently (except in
section 6).

First, we define the different maps involved in 1.2.As in [2], we suppose that there exist
λ, µ ∈ A∗ such that σ(λ) = −λ, σ(µ) = −µ, µλ = −λµ and such that L = K(λ) is a quadratic

extension of K. We write Ã for the commutant of L in A: this is a central simple algebra over
L . One can easily verify that µÃ = Ãµ, µ2 ∈ Ã, σ(Ã) = Ã and A = Ã ⊕ µÃ. We define

two involutions on Ã in the following way: let σ1 = σ|Ã and let σ2 = Int(µ−1) ◦ σ1 (where
Int(µ−1)(x) = µ−1xµ).

4



¦ Definition of πε
1 and πε

2

We have two L-linear projections: π1 : A → Ã : a1 +µa2 7→ a1 and π2 : A → Ã : a1 +µa2 7→ a2.
If h : V ×V → A is an ε-hermitian space over (A, σ), we define (for i = 1, 2) πε

i (h) : V ×V → Ã

by πε
i (h)(x, y) = πi(h(x, y)). One readily verifies that πε

1(h) is an ε-hermitian space over (Ã, σ1)

and that πε
2(h) is a −ε-hermitian space over (Ã, σ2). In order to see that πε

1 and πε
2 induce

homomorphisms of Witt groups we have to prove that these maps respect regularity, isometry
classes, orthogonality and hyperbolicity. All of these properties come from the fact that:

h(x, y) = 0 ∀y ⇐⇒ πε
1(h)(x, y) = 0 ∀y ⇐⇒ πε

2(h)(x, y) = 0 ∀y

Hence, πε
1 and πε

2 induce homomorphisms of semigroups of isometry classes of nondegenerate
hermitian forms and homomorphisms of Witt groups (again denoted by πε

1 and πε
2)

πε
1 : Sε(A, σ) → Sε(Ã, σ1); πε

1 : W ε(A, σ) → W ε(Ã, σ1)

πε
2 : Sε(A, σ) → S−ε(Ã, σ2); πε

2 : W ε(A, σ) → W−ε(Ã, σ2)

¦ Definition of ρε
1

Let (V, f) be an ε-hermitian space over (Ã, σ1). We associate to it (V ⊗Ã A, ρε
1(f)) where

ρε
1(f)(x ⊗ α, y ⊗ β) = σ(α)λf(x, y)β for x, y ∈ V and α, β ∈ A. We can easily verify that

ρε
1 is well defined and that (V ⊗Ã A, ρε

1(f)) is a −ε-hermitian space over (A, σ). Moreover ρε
1

induces homomorphisms:

ρε
1 : Sε(Ã, σ1) → S−ε(A, σ); ρε

1 : W ε(Ã, σ1) → W−ε(A, σ)

¦ Definition of ρε
2

Let (V, f) be an ε-hermitian space over (Ã, σ2). We associate to it (V ⊗Ã A, ρε
2(f)) where

ρε
2(f)(x ⊗ α, y ⊗ β) = σ(α)λµf(x, y)β for x, y ∈ V and α, β ∈ A. One can verify that ρε

2

is well defined, that (V ⊗Ã A, ρε
2(f)) is a −ε-hermitian space over (A, σ) and that ρε

2 induces
homomorphism:

ρε
2 : Sε(Ã, σ2) → S−ε(A, σ); ρε

2 : W ε(Ã, σ2) → W−ε(A, σ)

¦ Definition of πε
3

We define πε
3 to be λπε

1, so we obtain homomorphisms:

πε
3 : Sε(A, σ) → S−ε(Ã, σ1); πε

3 : W ε(A, σ) → W−ε(Ã, σ1)

¦ Definition of ρε
3

We define: ρε
3(f) = ρ−ε

1 (λ−1f), i.e., ρε
3(f)(x⊗α, y⊗β) = σ(α)f(x, y)β for x, y ∈ V and α, β ∈ A.

By a straightforward verification we obtain homomorphisms:

ρε
3 : Sε(Ã, σ1) → Sε(A, σ); ρε

3 : W ε(Ã, σ1) → W ε(A, σ)

Remark 2.2. Note that, in these definitions, ε is arbitrary so for example π−ε
1 will be a

homomorphism of Witt groups from W−ε(A, σ) to W−ε(Ã, σ1) and so on for the other maps.

A summary of these definitions can be found in table 8.1.
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3 The Behavior of the Maps for Division Algebras

In this section (D, τ) is a division algebra with an involution τ of any kind. We assume

that (D, D̃, τ, τ1, τ2) satisfies the same hypotheses as the ones mentioned in section 2 for

(A, Ã, σ, σ1, σ2).

Proposition 3.1. (i) If h =< δ > is a one dimensional ε-hermitian form over (D, τ) (with

δ = d1 + µd2, d1, d2 ∈ D̃) then the matrix of πε
1(h) over (D̃, τ1) with respect to the basis {1, µ}

is (
d1 µd2µ

−µ2d2 −µd1µ

)

(ii) If P is the matrix of an ε-hermitian form f over (D̃, τ1) with respect to a basis B, then λP
is the matrix of ρε

1(f) over (D, τ) with respect to the basis B ⊗ 1.
(iii) If h =< δ > is a one dimensional −ε-hermitian form over (D, τ) (with δ = d1 + µd2,

d1, d2 ∈ D̃) then the matrix of π−ε
2 (h) over (D̃, τ2) with respect to the basis {1, µ} is

(
d2 µ−1d1µ
−d1 −µd2µ

)

(iv) If P is the matrix of an ε-hermitian form f over (D̃, τ2) with respect to a basis B, then
λµP is the matrix of ρε

2(f) over (D, τ) with respect to the basis B ⊗ 1.
(v) For a −ε-hermitian form h over (D, τ), the matrix of π−ε

3 (h) with respect to a basis B is λ
times the matrix of πε

1(h) with respect to the basis B ∪ µB.

(vi) If P is the matrix of an ε-hermitian form f over (D̃, τ1) with respect to a basis B, then P
is the matrix of ρε

3(f) over (D, τ) with respect to the basis B ⊗ 1.

Proof. (i) We have :
h(1, 1) = d1 + µd2, h(1, µ) = d1µ + µd2µ, h(µ, 1) = −µd1 − µ2d2 and h(µ, µ) = −µd1µ− µ2d2µ.

As d1, d2 ∈ D̃, we can find the given matrix by applying πε
1 to these relations.

(ii) If (V, f) is an ε-hermitian space over (D̃, τ1) and if {e1, . . . , en} is a basis of V over D̃
then {e1 ⊗ 1, . . . , en ⊗ 1} is a basis of V ⊗D̃ D over D. With the definition of ρε

1, we have:
ρε

1(f)(ei ⊗ 1, ej ⊗ 1) = λf(ei, ej) ∀ i, j = 1, . . . , n.
(iii) By applying π−ε

2 to the four relations found in (i), we deduce the given matrix for π−ε
2 (h).

(iv) If (V, f) is an ε-hermitian space over (D̃, τ2) and if {e1, . . . , en} is a basis of V over D̃
then {e1 ⊗ 1, . . . , en ⊗ 1} is a basis of V ⊗D̃ D over D. With the definition of ρε

2, we have:
ρε

2(f)(ei ⊗ 1, ej ⊗ 1) = λµf(ei, ej) ∀ i, j = 1, . . . , n.
(v) This is obvious by the definition of π−ε

3 .

(vi) If (V, f) is an ε-hermitian space over (D̃, τ1) and if {e1, . . . , en} is a basis of V over D̃
then {e1 ⊗ 1, . . . , en ⊗ 1} is a basis of V ⊗D̃ D over D. By the definition of ρε

3, we have:
ρε

3(f)(ei ⊗ 1, ej ⊗ 1) = f(ei, ej) ∀ i, j = 1, . . . , n. ¤
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The summary of the previous proposition can be found in table 8.2.

Lemma 3.2. If D̃ is commutative then D is a quaternion division algebra, say D = (a, b)K,

D̃ = L = K(λ) with λ2 = a ∈ K and µ2 = b ∈ K.

Proof. D̃ is the commutant of L in D, so it is a central simple algebra of center L. As D̃ is
commutative, we have D̃ = L and the lemma readily follows. ¤

Lemma 3.3. If E is a noncommutative central simple algebra and ? an involution over E,
then for ε = ±1, the set of nonzero ε-hermitian elements with respect to ? is nonempty.

Proof. This is a consequence of [13, Ch. 8, 7.5]. ¤

The following theorem determines completely the behavior of the maps π1, ρ1, π2, ρ2, π3 and
ρ3 with respect to isotropy.

Theorem 3.4. (i) Let h ∈ Sε(D, τ). If D̃ is commutative and ε = 1, then πε
1(h) ∈ Sε(D̃, τ1)

is isotropic if and only if h is isotropic. Otherwise, πε
1(h) is isotropic if and only if there exists

c ∈ D̃∗ with τ2(c) = −εc such that h contains a subform isometric to < µc >.

(ii) Suppose that f ∈ Sε(D̃, τ1). If D̃ is commutative, ε = 1 and dim(f) = 2, then ρε
1(f) ∈

S−ε(D, τ) is isotropic if and only if f is isotropic or f is isometric to the two dimensional
anisotropic form < c,−bc > where c ∈ K∗ and b = µ2 (see 3.2). Otherwise ρε

1(f) is isotropic

if and only if there exist d1, d2 ∈ D̃ such that τ1(d1) = εd1, τ2(d2) = −εd2 and f = f1⊥f2 for
some nondegenerate

f1 '
(

d1 µd2µ
−µ2d2 −µd1µ

)
.

(iii) For h ∈ S−ε(D, τ), π−ε
2 (h) ∈ Sε(D̃, τ2) is isotropic if and only if there exists c ∈ D̃∗ with

τ1(c) = −εc such that h contains a subform isometric to < c >.

(iv) For f ∈ Sε(D̃, τ2), ρε
2(f) ∈ S−ε(D, τ) is isotropic if and only if there exist d1, d2 ∈ D̃ such

that τ1(d1) = −εd1, τ2(d2) = εd2 and f = f1⊥f2 for some nondegenerate

f1 '
(

d2 µ−1d1µ
−d1 −µd2µ

)
.

(v) Let h ∈ S−ε(D, τ). If D̃ is commutative and ε = −1, then π−ε
3 (h) ∈ Sε(D̃, τ1) is isotropic

if and only if h is isotropic. Otherwise, π−ε
3 (h) is isotropic if and only if there exists c ∈ D̃∗

with τ2(c) = εc such that h contains a subform isometric to < µc >.

(vi) Suppose that f ∈ Sε(D̃, τ1). If D̃ is commutative, ε = −1 and dim(f) = 2, then ρε
3(f) ∈

Sε(D, τ) is isotropic if and only if f is isotropic or f is isometric to the two dimensional
anisotropic form < λc,−λbc > where c ∈ K∗ and b = µ2 (see 3.2). Otherwise ρε

3(f) is isotropic
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if and only if there exist d1, d2 ∈ D̃ such that τ1(d1) = −εd1, τ2(d2) = εd2 and f = f1⊥f2 for
some nondegenerate

f1 '
(

λd1 λµd2µ
−λµ2d2 −λµd1µ

)
.

Proof. Let IHε denote an ε-hyperbolic plane.
(i) First, suppose that D̃ is commutative and ε = 1. By 3.2, we know that D is a quaternion
division algebra. The equivalence comes from the fact that, in this case, the trace form of h is
isotropic if and only if h is isotropic.

Next, suppose that the previous case is excluded. If h is anisotropic and πε
1(h) is isotropic

then we can find x ∈ V − {0} such that πε
1(h(x, x)) = 0, i.e., h(x, x) = µc with c ∈ D̃∗. As

τ(h(x, x)) = εh(x, x), we conclude that τ2(c) = −εc. It readily follows that h contains < µc >.

Now consider the case where h is isotropic. We have IHε '< µc,−µc > for all c ∈ D̃∗ with
τ2(c) = −εc, provided such a c exists. If ε = −1 then we can take c = 1. If ε = 1 then

we only have to show that there exists c ∈ D̃ such that τ2(c) = −c. By assumption D̃ is
noncommutative, and one can apply 3.3 to conclude. Conversely, suppose that h contains a
subform isometric to < µc > as in the assertion. By applying 3.1 (i) to the form < µc >, we
easily deduce that πε

1(h) is isotropic.

(ii) First suppose that D̃ is commutative, ε = 1 and dim(f) = 2. We are in the situation of
3.2. If f is isotropic or f '< c,−bc >, it is obvious that ρε

1(f) is isotropic. Conversely suppose
that for a two dimensional form f =< c, d >, ρε

1(f) =< λc, λd > is isotropic. So there exists
q ∈ D∗ such that

τ(q)λcq + λd = 0. (7)

Write q = z1 + µz2 with z1, z2 ∈ D̃. By replacing q with z1 + µz2 in (7), by using the fact that
{1, µ} is an L-basis of D and by remarking that τ2 = idL, we obtain the following system:

{
τ1(z1)cz1 + τ1(z2)bcz2 + d = 0
z1z2 = 0

If z2 = 0, then τ1(z1)cz1 + d = 0; this means that f is isotropic. If z1 = 0 then d = −τ1(z2)bcz2,
so f '< c,−τ1(z2)bcz2 >'< c,−bc >.

Next, suppose that the previous case is excluded. If f is anisotropic and ρε
1(f) is isotropic,

let z = x1⊗1+y1⊗µ be a nonzero isotropic vector for ρε
1(f). By the definition of ρε

1, we obtain
(λf(x1, x1) − µλf(y1, y1)µ) + (λf(x1, y1)µ − µλf(y1, x1)) = 0 and so we obtain the following
system: {

f(x1, x1) + µf(y1, y1)µ = 0
µf(y1, x1) + f(x1, y1)µ = 0

(8)

As f is anisotropic, thanks to this system, we can suppose that both x1 and y1 are nonzero.
Moreover, x1 and y1 are linearly independent over D̃. In fact, if x1 and y1 are linearly dependent
then x1 = y1d with d ∈ D̃∗ and by replacing x1 with y1d in (8), we obtain the following system:

{
τ(d)f(y1, y1)d + µf(y1, y1)µ = 0
µf(y1, y1)d + τ(d)f(y1, y1)µ = 0

(9)

8



From the second equation of (9), we obtain that τ(d)f(y1, y1) = −µf(y1, y1)dµ−1. By replacing
τ(d)f(y1, y1) by −µf(y1, y1)dµ−1 in the first equation of (9), we obtain µf(y1, y1)(−dµ−1d+µ) =

0. As the second factor is non zero for all d ∈ D̃, f(y1, y1) = 0 which is a contradiction with

the anisotropy of f . Now, y1 and x1 span a two dimensional subspace W over D̃ and if we
denote d1 = f(y1, y1), d2 = µ−1f(y1, x1)µ

−1, the matrix M of f |W with respect to the basis
{y1, x1} is exactly the one given in the proposition. As f1 = f |W is nondegenerate (since f
is anisotropic), we can write f = f1⊥f2 so f contains the given form. Now consider the case

where f is isotropic. If D̃ is noncommutative, we take d1 = 0 and we can find d2 ∈ D̃ such that
τ2(d2) = −εd2 and it is obvious that

IHε '
(

0 µd2µ
−µ2d2 0

)
,

so f contains the given form. If D̃ is commutative and ε = −1, we take d1 = 0 and d2 = 1
and IH−1 is isometric to the matrix given in the proposition. If D̃ is commutative, ε = 1 and
dim(f) ≥ 3 then f ' IH1⊥f1 with dim(f1) ≥ 1. If f1 '< a, ... > then f '< µaµ,−µaµ, a, ... >
so, for d1 = a, d2 = 0, f contains the given form. Conversely, with the same notations as (ii),
3.1 (ii) and a straightforward calculation show that (µ, 1) is an isotropic vector for ρε

1(f1).
(iii) If h is anisotropic and π−ε

2 (h) is isotropic then we can find x ∈ V − {0} such that

π−ε
2 (h(x, x)) = 0, that is h(x, x) = c ∈ D̃∗. We conclude as in (i). If h is isotropic and

ε = 1 then h '< λ,−λ > ⊥h1 and we can take c = λ. If h is isotropic and ε = −1, h ' IH1⊥h1

and all we have to do is to find c ∈ D̃∗ such that τ1(c) = c; we can take c = 1.
The converse is an easy consequence of 3.1 (iii).

(iv) If f is anisotropic and ρε
2(f) is isotropic, let z = x1 ⊗ 1 + y1 ⊗ µ be an isotropic vector

for ρε
2(f). With a straightforward computation we find the same system as in the proof of (ii).

Proceeding in the same way, we can suppose that x1 and y1 are nonzero and span a two
dimensional subspace W over D̃. If d1 = −f(x1, y1) and d2 = f(y1, y1) then the matrix of f |W
with respect to the basis {y1, x1} is exactly the one given in the proposition. Now consider the
case where f is isotropic. If ε = 1, we take d2 = 0 and d1 = λ. If ε = −1, we take d2 = 0 and
d1 = 1.

Conversely, (µ, 1) is an isotropic vector for ρε
2(f1).

(v) If D̃ is commutative and ε = −1 then the equivalence between π−ε
3 (h) being isotropic and

h being isotropic readily comes from (i).
Next, we suppose that the previous case is excluded. If h is anisotropic and π−ε

3 (h) is
isotropic we can conclude as in (i) and (iii). If h is isotropic then h '< µc,−µc > ⊥h1 for all

c ∈ D̃∗ such that τ2(c) = εc and we only have to find such a c. If D̃ is noncommutative this

is clear. If D̃ is commutative then τ2 = idL. As ε = 1 we can take c = 1. Conversely, we only
have to apply 3.1 (v).

(vi) First, suppose that D̃ is commutative, ε = −1 and dim(f) = 2 then we are in the situation
of 3.2. The proof goes as in (ii). We leave it to the reader.
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Next suppose that the previous case is excluded. If f is anisotropic and ρε
3(f) is isotropic,

let z = x1 ⊗ 1 + y1 ⊗ µ be an isotropic vector for ρε
3(f). We have the following system:

{
f(x1, x1) − µf(y1, y1)µ = 0
f(x1, y1)µ − µf(y1, x1) = 0

Now, let d1 = λ−1f(y1, y1) and d2 = µ−1λ−1f(y1, x1)µ
−1. Let W be the two dimensional D̃-

subspace generated by x1 and y1 (the proof of the fact that x1 and y1 are linearly independent

over D̃ is similar to (ii)). The matrix of f |W with respect to the basis {y1, x1} is exactly the
one given in the proposition (the form f |W is nondegenerate because f is anisotropic). Now

consider the case where h is isotropic. If D̃ is noncommutative, we take d1 = 0 and d2 ∈ D̃
such that τ2(d2) = εd2. If D̃ is commutative and ε = 1, f ' IH1⊥f1 and we take d2 = 1 and

d1 = 0. If D̃ is commutative, ε = −1 and dim(f) ≥ 3, we conclude as in (ii). Conversely, (µ, 1)
is an isotropic vector for ρε

3(f1). ¤

In particular, if f and h are anisotropic, we obtain table 8.3. From 3.1 and 3.4, we obtain the
following result:

Corollary 3.5. The octagon of 1.2 is exact when A is a division algebra.

4 Isotropy of Hermitian Forms over Central Simple Al-

gebras

The goal of this section is to prove that there exists a Witt decomposition for nondegenerate
ε-hermitian forms over a central simple algebra with involution (A, σ), i.e., for any form h,
h ' h1⊥h2 with h1 hyperbolic and h2 anisotropic (a notion that we have to define) unique up
to isometry.

The notion of isotropy that we are going to use is the following:

Definition 4.1. A nondegenerate ε-hermitian space (V, h) over (A, σ) is said to be isotropic if
there exists x ∈ V − {0} such that h(x, x) = 0.

Remark 4.2. In the case where A is a division algebra, this notion is exactly the one usually
given in the literature.

Now, we recall a crucial notion: Morita-equivalence. The following definition is based upon
[4].

Definition 4.3. Let (A, σ) and (B, τ) be two central simple algebras over K such that σ and
τ are two K/k-involutions. Let δ = 1 if σ and τ are of the second kind or of the first kind and
of the same type and δ = −1 if σ and τ are of the first kind and of different type.
A δ-Morita equivalence ((A, σ), (B, τ),M,N, f, g, ν) between the algebra with involutions (A, σ)
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and (B, τ) is a tuple consisting of :
• an (A,B)-bimodule M (i.e., a left A-module and a right B-module with compatible struc-
tures);
• a (B,A)-bimodule N ;
• two nonzero bimodule homomorphisms f : M ⊗B N → A and g : N ⊗A M → B which are
associative, i.e., f(m ⊗ n).m′ = m.g(n ⊗ m′) et g(n ⊗ m).n′ = n.f(m ⊗ n′) for all m, m′ ∈ M ,
n, n′ ∈ N ;
• a linear bijective map ν : M → N which verifies ν(amb) = τ(b)ν(m)σ(a) for all a ∈ A,
m ∈ M , b ∈ B.

Remark 4.4. Note that we do not suppose that σ and τ are of the same type as in [4]:that is
why we call this notion δ-Morita equivalence.

Remark 4.5. In fact one can prove that f (resp. g) is a bimodule isomorphism between
M ⊗B N and A (resp. N ⊗A M and B), see [4, §1.1].

Now, we suppose that B = D denotes the division algebra Brauer equivalent to A. By Al-
bert’s theorem, we know that there exists an involution τ over D such that τ is of the same
kind as σ. By [4, §1.4], one can find M, N, f, g and ν as in 4.3 and δ ∈ {±1} such that
((A, σ), (D, τ),M,N, f, g, ν) is a δ-Morita equivalence. We can define semigroup homomor-
phisms:

F : Sε(A, σ) → Sδε(D, τ); (V, h) 7→ (V ⊗A M, b0h)

G : Sδε(D, τ) → Sε(A, σ); (W,φ) 7→ (W ⊗D N, b
′

0φ)

where:

(b0h)(v ⊗ m, v′ ⊗ m′) = g(ν(m) ⊗ h(v, v′)m′) ∀v, v′ ∈ V,m, m′ ∈ M
(b′0φ)(w ⊗ n,w′ ⊗ n′) = f(ν−1(n) ⊗ φ(w,w′)n′) ∀w, w′ ∈ W,n, n′ ∈ N.

In fact, we can prove that F is a semigroup isomorphism and G is its inverse and that they
induce isomorphisms of Witt groups. The details of proofs can be found in [7, I.9, 3.5].

Remark 4.6. From now on, when we will use an argument involving Morita theory, we will
implicitly refer to [7, I.9].

We have:

Lemma 4.7. (i) M is a simple left A-module and N is a simple right A-module. (ii) The maps
F and G respect the rank of hermitian spaces (recall that the rank of a hermitian space (V, h)
over (A, σ), where V is a right (resp. left) A-module, is defined to be the positive integer n such
that V ' T n where T is a simple right (resp. left) A-module).
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Proof. (i) We prove it for N , the proof for M being similar. As A is a simple algebra, N is
a semisimple right A-module and we can write N ' T n where n ∈ IN − {0} and T is a simple
right A-module. But, we know from 4.5 that N ⊗A M ' D as (D,D)-bimodules so:

D
g−1

' N ⊗A M ' (T ⊗A M)n

as right D-vector spaces. A dimension argument shows that n = 1 and N is simple as a right
A-module.
(ii) We prove it for F , the proof for G is similar. If (V, h) is a right A-module of rank n then
we have V ' T n where T is a simple right A-module; by (i), we can take T = N . As D is a
division algebra, D is a simple right D-module and we have:

V ⊗A M ' (N ⊗A M)n g' Dn.

So we deduce that the rank of V ⊗A M is n. ¤

Now, we can prove (for fixed A, σ and D as before):

Proposition 4.8. (V, h) is isotropic over (A, σ) if and only if for every δ-Morita equivalence
((A, σ), (D, τ),M,N, f, g, ν), F (V, h) is isotropic over (D, τ).

Proof. Let x ∈ V − {0} be such that h(x, x) = 0 and ((A, σ), (D, τ),M,N, f, g, ν) be a
δ-Morita equivalence. We can easily see that there exists m ∈ M such that x ⊗ m 6= 0; in
fact if x ⊗ m = 0 for all m ∈ M then we have V1 ⊗A M = 0 where V1 = xA 6= 0. Now N is
a simple right A-module by 4.7, so we have V1 = ⊕d

i=1N , d > 1. Therefore we conclude that

0 = V1⊗A M ' ⊕d
i=1(N⊗A M)

g' Dd which is a contradiction. Now x⊗m is clearly an isotropic
vector for b0h so F (V, h) is isotropic. If F (V, h) is isotropic and if ((A, σ), (D, τ),M,N, f, g, ν)
is a δ-Morita equivalence, let y 6= 0 be an isotropic vector for b0h. By the same argument as
before one can find n ∈ N such that y ⊗ n 6= 0. Using the definition of F−1(= G) we see that
y ⊗ n is an isotropic vector for b′0b0h for all n ∈ N . But (V ⊗A M ⊗D N, b′0b0h) is isometric to
(V, h) so we can conclude the existence of an x ∈ V − {0} such that h(x, x) = 0. ¤

Using this proposition and the fact that the Witt decomposition exists over (D, τ), we conclude
the existence of a Witt decomposition over (A, σ). Namely, if (V, h) is an ε-hermitian space
over (A, σ), then F (V, h) ' φ1⊥φ2 where φ1 is hyperbolic and φ2 anisotropic over (D, τ). We
have :

(V, h) ' (G ◦ F )(V, h) ' G(φ1)⊥G(φ2)

By the previous proposition, G(φ1) is hyperbolic and we can show that G(φ2) is anisotropic.
By the same type of argument, we can show that this decomposition is unique up to isometry
because it is the case over (D, τ). So:

Corollary 4.9. (i) There exists a Witt decomposition over (A, σ).
(ii) For all [h] ∈ W ε(A, σ), there exists an anisotropic form h0 over (A, σ) such that [h] = [h0]
in W ε(A, σ).
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Remark 4.10. This result should be well known, but we could not find an explicit statement
of it in the literature.

5 Exactness of the Octagon for Central Simple Algebras

Let (A, σ) be a central simple algebra over K (char K 6= 2) with involution. We make the
same hypotheses as in 2: namely we suppose that there exist λ, µ ∈ A∗ such that σ(λ) = −λ,

σ(µ) = −µ, µλ = −λµ and that L = K(λ) is a quadratic extension of K. We write Ã for the

commutant of L in A. We have µÃ = Ãµ, µ2 ∈ Ã, σ(Ã) = Ã and A = Ã ⊕ µÃ. We define two

involutions on Ã in this way: let σ1 = σ|Ã and let σ2 = Int(µ−1) ◦ σ1.

Proof of theorem 1.2: thanks to [2, Appendix 2], we already know that imπε
1 = ker ρε

1 and
im ρε

1 = ker π−ε
2 . First, we prove that this sequence is a complex from π−ε

2 up to ρε
3.

ρε
2π

−ε
2 = 0 : let (V, h) be a (−ε)-hermitian space over (A, σ), so π−ε

2 (h) is an ε-hermitian

form over (Ã, σ2) and ρε
2π

−ε
2 (h) will be a (−ε)-hermitian form over (A, σ). It is enough to find

a self orthogonal right A-submodule of V ⊗Ã A with respect to ρε
2π

−ε
2 (h). Let

W = {x.µ ⊗ 1 + x ⊗ µ| x ∈ V }. (10)

Now, W is readily seen to be a right A-submodule of VÃ ⊗Ã A and an easy calculation shows
that this space is a totally isotropic subspace of ρε

2π
−ε
2 (h). By dimension count over K, we have

W = W⊥ (with respect to ρε
2π

−ε
2 (h)) and so ρε

2π
−ε
2 (h) is hyperbolic.

π−ε
3 ρε

2 = 0 : let (V, h) be an ε-hermitian space over (Ã, σ2). Let

W ′ = {x ⊗ 1| x ∈ V } ⊂ V ⊗Ã A. (11)

Then W ′ is a Ã-submodule of VA ⊗Ã A and it is a totally isotropic subspace for π−ε
3 ρε

2(h). By

a dimension argument one has W ′ = W ′⊥ and so π−ε
3 ρε

2(h) is hyperbolic.
ρε

3π
−ε
3 = 0 : it is obvious from the definition that ρε

3π
−ε
3 = 0.

Next we prove that the sequence is exact from π−ε
2 up to πε

1.

ker(ρε
2) ⊂ im(π−ε

2 ) : let (W, f) be an ε-hermitian form over (Ã, σ2) such that ρε
2(f) is

hyperbolic. We may assume that f is anisotropic thanks to 4.9. There exists an A-submodule
W1 of W ⊗Ã A such that W⊥

1 = W1 (with respect to ρε
2(f)). Let W ⊗µ = {w⊗µ|w ∈ W}. Let

w1 ∈ W1∩ (W ⊗µ) (w1 = w⊗µ with w1 ∈ W1 and w ∈ W ). As ρε
2(f)(w1, w1) = 0, f(w,w) = 0

and so w1 = w⊗µ = 0 since f is anisotropic. Moreover dimK W1 = 1
2
dimK W⊗ÃA = dimK W⊗

µ so W ⊗Ã A = W1 ⊕ (W ⊗ µ) as Ã-modules. This implies that for all w ∈ W , there exists

w′ ∈ W such that w⊗1+w′⊗µ ∈ W1. Since A is a free Ã-module, w′ is uniquely determined by
w and we write J(w) := w′. By definition of J , we have J2(w) = wµ−2 and J(wa) = J(w)µaµ−1

for all w ∈ W and a ∈ Ã. As W1 = W⊥
1 , ρε

2(f)(x ⊗ 1 + J(x) ⊗ µ, y ⊗ 1 + J(y) ⊗ µ) = 0 for all
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x, y ∈ W and we obtain the following system:
{

f(x, y) + µf(J(x), J(y))µ = 0
f(x, J(y))µ + µf(J(x), y) = 0

(12)

By means of J , we define an A-module structure over W by

w.µ = J(w)µ2

for all w ∈ W . We denote by WJ the A-module W equipped with this new action. Let h be
the map defined by

h(x, y) = µf(x, J(y))µ + µf(x, y) (13)

for all x, y ∈ WJ . By the definition of J and (12), we conclude that (WJ , h) is a (−ε)-hermitian
space over (A, σ). Let us show that h is sesquilinear on the left with respect to σ: h is clearly

biadditive, so it suffices to show this fact for µ and for elements of Ã. We have:

h(x.µ, y) = h(J(x)µ2, y)
= µf(J(x)µ2, J(y))µ + µf(J(x)µ2, y)
= µ3f(J(x), J(y))µ + µ3f(J(x), y)
= −µ2f(x, y) − µ2f(x, J(y))µ (using (12))
= σ(µ)h(x, y)

Sesquilinearity on the left for elements of Ã and linearity on the right are done in the same
way. Let us prove that h is −ε-hermitian with respect to σ:

h(y, x) = µf(y, J(x))µ + µf(y, x)
= εσ(f(J(x), y))µ2 + εσ(f(x, y))µ
= −εσ(µ−1f(x, J(y))µ)µ2 − εσ(µf(x, y)) (using (12))
= −εσ(h(x, y))

If h is degenerate, by (13), there exists a non zero x ∈ W such that f(x, y) = 0 for all y ∈ W .
In particular, this implies that f is isotropic which is a contradiction. Now, (WJ , h) is the
antecedent of (W, f) by π−ε

2 , i.e. ((WJ)Ã, π−ε
2 (h)) is isometric to (W, f) (the isometry is given

by the identity map). We conclude that ker(ρε
2) ⊂ im(π−ε

2 ).
ker(π−ε

3 ) ⊂ im(ρε
2): let (V, h) be a (−ε)-hermitian space over (A, σ) such that π−ε

3 (h) is

hyperbolic. We can assume that h is anisotropic thanks to 4.9. There exists an Ã-submodule
W of VÃ such that W⊥ = W (with respect to π−ε

3 (h)). This implies that h(x, y) ∈ µÃ, for all

x, y ∈ W . We define a map f : W × W → Ã where:

f(x, y) = µ−1λ−1h(x, y) (14)

for x, y ∈ W . Since h is anisotropic, f is nondegenerate, we can easily see that (W, f) is an

ε-hermitian form over (Ã, σ2) and (W ⊗Ã A, ρε
2(f)) is isometric to (V, h) via Φ(w⊗ a) = wa for
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all w ∈ W , a ∈ A. We conclude that ker π−ε
3 ⊂ im ρε

2.
The exactness of

W−ε(A, σ)
π−ε
3→ W ε(Ã, σ1)

ρε
3→ W ε(A, σ)

follows from theexactness of W ε(A, σ)
πε
1→ W ε(Ã, σ1)

ρε
1→ W−ε(A, σ); in fact we have:

ker(ρε
3) = λ ker(ρ−ε

1 ) = λ im(π−ε
1 ) = im(π−ε

3 ).

The exactness of

W ε(Ã, σ1)
ρε
3→ W ε(A, σ)

πε
2→ W−ε(Ã, σ2)

follows from the exactness of

W ε(Ã, σ1)
ρε
1→ W−ε(A, σ)

π−ε
2→ W ε(Ã, σ2).

The exactness at W−ε(Ã, σ2) follows from the exactness at W ε(Ã, σ2).
Finally, we have ker πε

1 = λ−1 ker πε
3 = λ−1 im ρ−ε

2 = im ρ−ε
2 which shows the exactness of

W−ε(Ã, σ2)
ρ−ε
2→ W ε(A, σ)

πε
1→ W ε(Ã, σ1)

thus completing the proof. ¤

Remark 5.1. The proof of 1.2 is based on the one given in [10] for quaternion algebras.
Nevertheless, one can also give a proof of it by an induction argument as in [2, Appendix 2].

We need the following trivial but useful lemma:

Lemma 5.2. Suppose that B is a central simple algebra over K with an involution τ . Then
(i) W (B, τ) = 0 if and only if B is split and τ is of the first kind and of symplectic type.
(ii) W−1(B, τ) = 0 if and only if B is split and τ is of the first kind and of orthogonal type.

Proof. For (i), if B is split and τ is of the first kind and of symplectic type it is clear that
W (B, τ) = 0. Conversely let suppose that W (B, τ) = 0. First we show that B is split. In
fact let B0 be the Brauer-equivalent division algebra of B. By Albert’s theorem there exists an
involution τ0 on B0 of the same kind than τ . By Morita theory, W (B, τ) ' W ε(B0, τ0), where
ε = 1 if τ and τ0 are both of the second kind or of the first kind and of the same type, otherwise
ε = −1. So we conclude that W ε(B0, τ0) = 0. If B is not split then the same holds for B0.
But in this case, 3.3 implies that the set of the nondegenerate ε-hermitian forms of dimension
1 is nonempty, in particular W ε(B0, τ0) 6= 0 which is a contradiction. So B is split. Now we
prove that τ is of the first kind. In fact if τ is of the second kind then by Morita theory we
have W (B, τ) ' W (K, τ |K). So we conclude that W (K, τ |K) = 0 which is impossible. Thus
τ is of the first kind. Finally τ is of symplectic type, otherwise by Morita theory we obtain
0 = W (B, τ) ' W (K) which is impossible. The proof of (ii) is similar. ¤
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Corollary 5.3. The map πε
1 is injective if and only if L is a splitting field of A, σ is of the

first kind and either ε = 1 and σ is symplectic, or ε = −1 and σ is orthogonal.

Proof. First, one can easily see that σ and σ2 are of the same kind and of different type when
they are of the first kind. If L is a splitting field of A, then by [13, Ch. 8, 5.4], Ã is split. If
ε = 1 and σ is of the first kind and of symplectic type or ε = −1 and σ is of the first kind and
of orthogonal type then, by Morita theory, we conclude that W−ε(Ã, σ2) = 0. By the exactness
of the octagon at W ε(A, σ), πε

1 becomes injective.
Conversely if πε

1 is injective then again by the exactness of the octagon at W ε(A, σ), im ρ−ε
2 =

0. We show that W−ε(Ã, σ2) = 0. If W−ε(Ã, σ2) 6= 0, and as δ-Morita equivalence preserves

the rank by 4.7, we can find a nondegenerate −ε-hermitian form of rank one over (Ã, σ2) by

considering the division algebra Brauer-equivalent to Ã. As ρ−ε
2 preserves the rank we conclude

that there exists a nondegenerate ε-hermitian form of rank one in the image of ρ−ε
2 , which is a

contradiction, since the image of ρ−ε
2 in W ε(A, σ) is zero. So W−ε(Ã, σ2) = 0. Now the result

follows from 5.2. ¤

Remark 5.4. If A is a split quaternion algebra and σ is symplectic, then the exact octagon of
1.2 becomes:

0 → W (L,−) → W (K) → W (L) → W (K) → W (L,−) → 0

where L/K is a quadratic extension with a nontrivial automorphism − = σ|L. If A is a
quaternion division algebra and σ is symplectic then 1.2 becomes:

0 → W (A, σ) → W (L, σ|L) → W−1(A, σ) → W (L) → W−1(A, σ) →

→ W (L, σ|L) → W (A, σ) → 0

where L is a maximal subfield of A which is stable by the involution. These sequences can be
found in [9].

6 Exact octagon of Witt groups of equivariant forms

Let K be a field of characteristic different from 2 and G be a finite group. Let A be a central
simple algebra over K with an involution σ. We denote by A[G] the group algebra of G over
A. Let ε = ±1.

Definition 6.1. We say that an ε-hermitian space (M,h) over (A, σ) is a G-space if:
• G acts on M on the right and for all g ∈ G, the map M → M : m 7→ m.g is A-linear on the
right,
• we have h(m.g, n.g) = h(m,n) for all m, n ∈ M and for all g ∈ G.
In this case, we will say that h is a G-form. It is obvious that M is a right A[G]-module.
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We say that two ε-hermitian G-spaces (M,h) and (M ′, h′) are isometric if there exists an
isomorphism Φ : M → M ′ of right A[G]-modules such that

h′(Φ(m), Φ(n)) = h(m,n),

for all m, n ∈ M . If M is a right A[G]-module, M∗ = HomA(M,A) has a natural structure of
right A[G]-module: (f.g)(m) = f(m.g−1) if f ∈ M∗, g ∈ G and m ∈ M . A G-space (M,h) over
(A, σ) is said to be nondegenerate if M → M∗ : x 7→ h(x,−) is an isomorphism of A-modules.
One can define the hyperbolic ε-hermitian G-space associated to such an M by (M ⊕M∗, IhM),
where

IhM(m ⊕ f,m′ ⊕ f ′) = f(m′) + εσ(f ′(m)),

for all m, m′ ∈ M and f, f ′ ∈ M∗.

Remark 6.2. If char K - |G| then, by Maschke’s theorem, the group algebra A[G] is semisimple.
Thanks to that, we can show that an ε-hermitian G-space (M,h) is hyperbolic if and only if it
is metabolic (i.e. if there exists a right A[G]-submodule N of M such that N = N⊥ for h): the
proof can be adapted from [1, Corollary 1.4]. This fact will not be used here.

Now, one can construct a group (as for ε-hermitian forms) called the Witt group of ε-hermitian
G-forms (also called the Witt group of equivariant forms) which will be denoted by W ε(G,A, σ)
(i.e., the quotient of the Grothendieck group corresponding to isometry classes of nondegenerate
ε-hermitian G-forms by the subgroup generated by metabolic forms). An element of this group
is denoted by [(M,h)] where (M,h) is an ε-hermitian G-space over (A, σ).

We can easily see that the maps involved in the octagon 1.2 induce group homomorphisms
between the corresponding Witt groups of hermitian G-forms: if W is an Ã[G]-module then
W ⊗Ã A is an A[G]-module, where G acts on W ⊗Ã A by (w ⊗ a).g = w.g ⊗ a for w ∈ W, a ∈
A, g ∈ G.

The notion of anisotropy for G-forms that we will use is the following (as in [3, p. 29]):

Definition 6.3. An ε-hermitian G-space (M,h) over (A, σ) is said to be anisotropic if for all
A[G]-submodules N of M , we have N ∩ N⊥ = 0 (for h).

Remark 6.4. Note that this notion of anisotropy coincides with the usual notion of anisotropy
(see section 4) when (M,h) is an ε-hermitian space over a simple algebra with involution. But
in the case of ε-hermitian G-forms, this notion of anisotropy is weaker than the usual one. For
example, let q : C × C → C be the quadratic form defined by q(x, y) = x2 + y2 and G = {1, θ}
where θ is the reflection in the hyperplane orthogonal to (1, 0). Then, q is a quadratic G-form
which is isotropic as a quadratic form but anisotropic as a G-form in the sense of 6.3.

Now, one can prove a proposition analogous to [3, proposition 2]:

Proposition 6.5. If [(M,h)] ∈ W ε(G,A, σ), [(M,h)] 6= 0 then we can find an anisotropic
ε-hermitian G-space (M ′, h′) over (A, σ) such that [(M,h)] = [(M ′, h′)].
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Proof. The proof goes as in [3, proposition 2]. ¤

Now, we prove theorem 1.5:
Theorem We suppose that A satisfies the same hypotheses as at the beginning of section 2.
If we replace W±ε(A, σ) by W±ε(G,A, σ) and W±ε(Ã, σi) by W±ε(G, Ã, σi) (for i = 1, 2) in
theorem 1.2, we obtain an exact octagon of W (K,σ|K)-modules.

Proof. We only have to adapt the proof of 1.2. Let us keep the same notations. The fact
that the considered octagon is a complex readily follows from the proof of 1.2 as we can easily
verify that there exist right G-modules structures over W and W ′ (see (10) and (11) for the
definition of these spaces).

To show that this sequence is exact, we use proposition 6.5 to exhibit an anisotropic repre-
sentative (in the sense of definition 6.3) of each form in the considered kernel.

Let us show that ker(ρε
2) ⊂ im(π−ε

2 ). We only point at the changes to the original proof. So
let (W, f) be an anisotropic ε-hermitian G-space (in the sense of 6.3) lying in the kernel of ρε

2.
Thanks to 6.2, we know that there exists an A[G]-submodule W1 of W⊗ÃA such that W1 = W⊥

1 .
To show that W1∩(W ⊗µ) = 0, we consider the following subspace: V = {w ∈ W |w⊗µ ∈ W1}.
It is an Ã-submodule of W and if w ∈ W , g ∈ G we have: w.g ⊗ µ = (w ⊗ µ).g ∈ W1

as W1 is a right G-module. So, V is an Ã[G]-submodule of W . Now, if v, v′ ∈ V then
ρε

2(f)(v ⊗ µ, v′ ⊗ µ) = 0 and we have f(v, v′) = 0. So V ⊂ V ⊥ and as (W, f) is anisotropic, we

deduce that V = 0 and that W1∩(W ⊗µ) = 0. Now, W ⊗Ã A = W1⊕(W ⊗µ) as Ã[G]-modules
and this implies that for all w ∈ W , there exists w′ ∈ W such that w ⊗ 1 + w′ ⊗ µ ∈ W1. One
can define the map J : W → W as in the proof of 1.2 by J(w) = w′(the map J is well-defined
because f is anisotropic). Thanks to the previous uniqueness, we have J(w.g) = J(w).g for all
w ∈ W , g ∈ G. Thanks to that, we easily show that WJ is an A[G]-module. We define h as in
(13). If h is degenerate then there exists x 6= 0 in WJ such that h(x, y) = 0 for all y ∈ WJ . We
deduce that f(x, y) = 0 for all y ∈ W and this shows that x ∈ W ∩W⊥ which is a contradiction
to the anisotropy of (W, f). We can conclude as in 1.2.

Now let us show that ker(π−ε
3 ) ⊂ im(ρε

2). Let (V, h) be an anisotropic ε-hermitian G-space

lying in the kernel of π−ε
3 . Then there exists an Ã[G]-submodule W of VÃ such that W = W⊥.

As in the proof of 1.2, we define a map f as in (14) and all we have to do is to show that the ε-
hermitian form f is nondegenerate. If f is degenerate, let U be the right A[G]-module generated
by W . Then U is an A[G]-submodule of V . Now there exists x ∈ W such that h(x, y) = 0 for
all y ∈ W and this implies that h(x, y) = 0 for all y ∈ U and we have x ∈ U ∩ U⊥ which is a
contradiction to the anisotropy of (V, h) thus completing the proof. ¤

Remark 6.6. If the group G is trivial, then 1.2 is a special case of 1.5.
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7 Order of Witt group

Let L/K be a finite extension. One can ask for the relation between the orders of W (K) and
W (L). If L/K is an extension of odd order then by the weak version of Springer’s theorem there
is a canonical injection W (K) ↪→ W (L) so the finiteness of W (L) implies that of W (K). If
L/K is an extension of even degree, then this property fails. However, for a quadratic extension
L/K the finiteness of W (K) implies that of W (L); what is easy to see is that by the exact
triangle of Elman-Lam (2) one has: |W (L)| 6 |W (K)|2. In [9] the defect of this inequality is
calculated; in fact, in [9] the following relation has been proved:

|W (L)||W (L,−)|2 = |W (K)|2 (15)

where − is the nontrivial automorphism of L/K. We have the same situation for a quaternion
algebra Q with its symplectic involution −. In this case the finiteness of W (K) implies that of
W (Q,−) by the exact sequence of Jacobson. In fact by [9] we have

|W ε(Q,−)||W−ε(Q,−)| = |W (K)| (16)

More generally, as stated in 1.6, we have:
Corollary Let A be a K-central simple algebra with an involution σ of the first kind. Then we
have |W ε(A, σ)||W−ε(A, σ)| = |W (K)|. In particular W (K) is finite if and only if W ε(A, σ)
and W−ε(A, σ) are finite.

Proof. By Merkurjev’s theorem A is similar to a multi-quaternion algebra, say A ∼ Q1 ⊗
. . .⊗Qn. By Morita theory we have W ε(A, σ) ' W ε′(Q1 ⊗ . . .⊗Qn, σ1 ⊗ . . .⊗σn) where ε′ = ε
or ε′ = −ε and σi is the canonical involution of Qi for 1 6 i 6 n. So in order to prove the
statement, we can suppose that:

(A, σ) = (Q1 ⊗ . . . ⊗ Qn, σ1 ⊗ . . . ⊗ σn).

We proceed by induction on n. If n = 0, i.e., A is split, the statement becomes |W ε(K)||W−ε(K)| =
|W (K)| which is true because {W ε(K), W−ε(K)} = {W (K), 0}. If n = 1 the statement is a
consequence of (16). Suppose that n > 1. Suppose that Qn = (a, b)K where (a, b)K is the quater-
nion algebra generated by i and j with i2 = a, j2 = b and ij = −ji where a, b ∈ K. Take the
split quaternion algebra Q′

n = (a, 1)K generated by i′ and j′ with i′2 = a, j′2 = 1 and i′j′ = −j′i′.
If we compare the exact octagon of 1.2 for (A, σ) = (Q1⊗ . . .⊗Qn−1⊗Qn, σ1 ⊗ . . .⊗σn−1 ⊗σn)
with λ = 1 ⊗ . . . ⊗ 1 ⊗ i and µ = 1 ⊗ . . . ⊗ 1 ⊗ j and also for (A′, σ′) = (Q1 ⊗ . . . ⊗ Qn−1 ⊗
Q′

n, σ1 ⊗ . . .⊗ σn−1 ⊗ σ′
n) (σ′

n is the canonical involution of Q′
n) with λ′ = 1⊗ . . .⊗ 1⊗ i′ and

µ′ = 1 ⊗ . . . ⊗ 1 ⊗ j′ we deduce that |W ε(A, σ)||W−ε(A, σ)| = |W ε(A′, σ′)||W−ε(A′, σ′)|. By
Morita theory we have W ε(A′, σ′) ' W−ε(A′′, σ′′) and W−ε(A′, σ′) ' W ε(A′′, σ′′) where

(A′′, σ′′) = (Q1 ⊗ . . . ⊗ Qn−1, σ1 ⊗ . . . ⊗ σn−1)

So by induction hypothesis we obtain |W ε(A, σ)||W−ε(A, σ)| = |W (K)|. ¤
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Remark 7.1. If A is a quaternion algebra over K, and σ is the canonical involution of A, then
for K = Qp, both groups W±1(A, σ) are finite. For K = R, the group W−1(A, σ) is finite and
W 1(A, σ) is infinite.

Corollary 7.2. Let A be a quaternion algebra over K with an involution involution σ of the
second kind. Then |W (A, σ)| = |W (K,σ|K)|.

Proof. By a theorem of Albert [13, Ch. 8, 11.2] (A, σ) = (A0 ⊗k K,σ0 ⊗ σ|K) where k is
the fixed field of σ in K, A0 is quaternion algebra over k and σ0 is its canonical involution.
Suppose that A0 = (a, b)k where (a, b)k is the quaternion algebra generated by i and j with
i2 = a, j2 = b and ij = −ji where a, b ∈ k. Take the split quaternion algebra A′

0 = (a, 1)k

generated by i′ and j′ with i′2 = a, j′2 = 1 and i′j′ = −j′i′. Let σ′
0 be the canonical involution

of A′
0. If we compare the exact octagon of 1.2 for (A0 ⊗k K,σ0 ⊗ σ|K) with λ = i ⊗ 1 and

µ = j ⊗ 1 and for (A′, σ′) := (A′
0 ⊗k K,σ′

0 ⊗ σ|K) with λ′ = i′ ⊗ 1 and µ′ = j′ ⊗ 1, we deduce
that |W ε(A, σ)||W−ε(A, σ)| = |W ε(A′, σ′)||W−ε(A′, σ′)|. As W ε(A, σ) ' W−ε(A, σ) ' W (A, σ)
and W ε(A′, σ′) ' W−ε(A′, σ′) ' W (A′, σ′) we deduce that |W (A, σ)| = |W (A′, σ′)|. By Morita
theory W (A′, σ′) ' W (K,σ|K) because A′ is split. This implies the result. ¤

Corollary 7.3. Let A = Q1 ⊗K . . . ⊗K Qn be a a multi-quaternion algebra over K with the
involution σ = σ1 ⊗ . . .⊗ σn where σi is an involution of Qi of the second kind for i = 1, . . . , n.
Then |W (A, σ)| = |W (K,σ|K)|.

Proof. The argument is similar to 1.6: we use an induction on n and the case n = 1 has
already been proved in 7.2. ¤

The previous corollary gives the motivation to ask the following question for which we do
not know the answer.

Question 7.4. Let A be a K-central simple algebra with an involution σ of the second kind. Is
it true that |W (A, σ)| = |W (K,σ|K)|?

Remark 7.5. Using 1.5 and applying the same type of arguments, we can show that, if A is a
central simple algebra with an involution σ of the first kind, then |W ε(G,A, σ)||W−ε(G,A, σ)| =
|W (G,K)||W−1(G,K)|. In 7.3 one can replace the Witt groups by equivariant Witt groups.
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8 APPENDIX

Table 8.1.
Map Definition

Sε(A, σ)
πε

1→ Sε(Ã, σ1) (VA, h) 7→ (V
Ã
, πε

1
(h)) πε

1
(h)(x, y) = π1(h(x, y))

Sε(A, σ)
πε

2→ S−ε(Ã, σ2) (VA, h) 7→ (V
Ã
, πε

2
(h)) πε

2
(h)(x, y) = π2(h(x, y))

Sε(A, σ)
πε

3→ S−ε(Ã, σ1) (VA, h) 7→ (V
Ã
, πε

3
(h)) πε

3
(h)(x, y) = λπε

1
(h(x, y))

Sε(Ã, σ1)
ρε

1→ S−ε(A, σ) (W, f) 7→ (W ⊗
Ã

A, ρε
1
(f)) ρε

1
(f)(x ⊗ α, y ⊗ β) = σ(α)λf(x, y)β

Sε(Ã, σ2)
ρε

2→ S−ε(A, σ) (W, f) 7→ (W ⊗
Ã

A, ρε
2
(f)) ρε

2
(f)(x ⊗ α, y ⊗ β) = σ(α)λµf(x, y)β

Sε(Ã, σ1)
ρε

3→ Sε(A, σ) (W, f) 7→ (W ⊗
Ã

A, ρε
3
(f)) ρε

3
(f)(x ⊗ α, y ⊗ β) = σ(α)f(x, y)β

Table 8.2.
Map Form Conditions Image

Sε(D, τ)
πε

1
→ Sε(D̃, τ1)

< δ1, . . . , δn >; δi = d2i−1 + µd2i,

d2i−1, d2i ∈ D̃

τ1(d2i−1) = εd2i−1

τ2(d2i) = −εd2i

⊕n
i=1

(
d2i−1 µd2iµ
−µ2d2i −µd2i−1µ

)

Sε(D̃, τ1)
ρε

1
→ S−ε(D, τ)

< γ1, . . . , γn >;

γi ∈ D̃
τ1(γi) = εγi < λγ1, . . . , λγn >

S−ε(D, τ)
π−ε

2
→ Sε(D̃, τ2)

< δ1, . . . , δn >; δi = d2i−1 + µd2i,

d2i−1, d2i ∈ D̃

τ1(d2i−1) = −εd2i−1

τ2(d2i) = εd2i

⊕n
i=1

(
d2i µ−1d2i−1µ

−d2i−1 −µd2iµ

)

Sε(D̃, τ2)
ρε

2
→ S−ε(D, τ)

< γ1, . . . , γn >;

γi ∈ D̃
τ2(γi) = εγi < λµγ1, . . . , λµγn >

S−ε(D, τ)
π−ε

3
→ Sε(D̃, τ1)

< δ1, . . . , δn >; δi = d2i−1 + µd2i,

d2i−1, d2i ∈ D̃

τ1(d2i−1) = −εd2i−1

τ2(d2i) = εd2i

⊕n
i=1

(
λd2i−1 λµd2iµ
−λµ2d2i −λµd2i−1µ

)

Sε(D̃, τ1)
ρε

3
→ Sε(D, τ)

< γ1, . . . , γn >;

γi ∈ D̃
τ1(γi) = εγi < γ1, . . . , γn >

Table 8.3. 1

πε
1
(h) is hyperbolic ⇒ h '< µγ1, . . . , µγn > τ2(γi) = −εγi Sε(D, τ)

πε

1→ Sε(D̃, τ1)

ρε
1
(f) is hyperbolic ⇒ f ' ⊕n

i=1

(
d2i−1 µd2iµ

−µ2d2i −µd2i−1µ

)
τ1(d2i−1) = εd2i−1

τ2(d2i) = −εd2i
Sε(D̃, τ1)

ρε

1→ S−ε(D, τ)

π−ε
2

(h) is hyperbolic ⇒ h '< γ1, . . . , γn > τ1(γi) = −εγi S−ε(D, τ)
π−ε

2→ Sε(D̃, τ2)

ρε
2
(f) is hyperbolic ⇒ f '

⊕n
i=1

(
d2i µ−1d2i−1µ

−d2i−1 −µd2iµ

)
τ1(d2i−1) = −εd2i−1

τ2(d2i) = εd2i
Sε(D̃, τ2)

ρε

2→ S−ε(D, τ)

π−ε
3

(h) is hyperbolic ⇒ h '< µγ1, . . . , µγn > τ2(γi) = εγi S−ε(D, τ)
π−ε

3→ Sε(D̃, τ1)

ρε
3
(f) is hyperbolic ⇒ f '

⊕n
i=1

(
λd2i−1 λµd2iµ

−λµ2d2i −λµd2i−1µ

)
τ1(d2i−1) = −εd2i−1

τ2(d2i) = εd2i
Sε(D̃, τ1)

ρε

3→ Sε(D, τ)

1provided that f and h are anisotropic.
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FRANCE
grenier@math.univ-fcomte.fr

mahmoudi@math.univ-fcomte.fr

22

View publication statsView publication stats

https://www.researchgate.net/publication/268891246

