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Harrison’s criterion, Witt equivalence and reciprocity equivalence
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Abstract. Harrison’s criterion characterizes the isomorphy of the Witt rings of two fields in
terms of properties of these fields. In this article, we discuss about the existence of such char-
acterizations for the isomorphism of Witt groups of hermitian forms over certain algebras with
involution. In the cases where we consider the Witt group of a quadratic extension with its
non-trivial automorphism or the Witt group of a quaternion division algebra with its canonical
involution, such criteria are proved. In the framework of global fields, the first of these criteria is
reformulated in terms of properties involving real places of the considered fields.
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1 Introduction

One of the basic questions in the algebraic theory of quadratic forms is to give necessary and
sufficient conditions for two fields K1 and K2 to have isomorphic Witt rings: in this case, K1 and
K2 are said to be Witt equivalent. In [7], Harrison expresses Witt equivalence in the following
terms:

Theorem 1.1 (Harrison). Let K1 and K2 be two fields of characteristic different from 2. Then
the following are equivalent:
(1) K1 and K2 are Witt equivalent.
(2) There is a group isomorphism t : K1

∗/K1
∗2 → K2

∗/K2
∗2 sending −1 to −1 such that the

quadratic form 〈x, y〉 represents 1 over K1 if and only if the quadratic form 〈t(x), t(y)〉 represents
1 over K2 for all x, y ∈ K1

∗.

In the literature, the previous theorem is known as “Harrison’s criterion”. In [4, Theorem 2.3],
Cordes shows that the two conditions of Theorem 1.1 are equivalent to the following one, known
as “Harrison-Cordes condition”:
(3) There is a group isomorphism t : K1

∗/K1
∗2 → K2

∗/K2
∗2 sending −1 to −1 such that

∗The author was supported by the European research network HPRN-CT-2002-00287 “K-theory, Linear Alge-
braic Groups and Related Structures”
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t(DK1(〈1, a〉)) = DK2(〈1, t(a)〉) (if K is a field of characteristic different from 2 and q is a nonde-
generate quadratic form, recall that DK(q) denotes the set of nonzero square classes represented
by q). With this criterion, Cordes classifies Witt rings of order at most 32 up to Witt equivalence
by their group structure: see [4, Theorem 7.1].

In [1], Baeza and Moresi study the possibilities to extend Harrison’s criterion to fields K1

and K2 of characteristic 2. On the one hand, they show that the bilinear Witt rings W (K1)
and W (K2) of K1 and K2 are isomorphic if and only if K1 and K2 are isomorphic in the case
where dimK1

2 K1 = dimK2
2 K2 > 2, and they give a complete treatment of the cases where

dimK1
2 K1 = dimK2

2 K2 = 1, 2: see [1, Theorem 2.9, Proposition 2.10]. On the other hand,
in [1, Theorem 3.1], they characterize the isomorphy of the quadratic Witt modules Wq(K1) et
Wq(K2) in the following way:

Theorem 1.2 (Baeza-Moresi). Let K1 and K2 be two fields of characteristic 2. Then the
following are equivalent:
(1) There exist a ring isomorphism Φ : W (K1) → W (K2) and a group isomorphism Ψ :
Wq(K1)→Wq(K2) such that

Ψ(b.q) = Φ(b).Ψ(q)

for all b ∈W (K1) and for all q ∈Wq(K1).
(2) There exist groups isomorphisms

t1 : K1
∗/K1

∗2 → K2
∗/K2

∗2, t2 : K1/℘(K1)→ K2/℘(K2)

such that
t1(DK1(〈1, a〉)) = DK2(〈1, t1(a)〉), t2(DK1 [1, b]) = DK2 [1, t2(b)]

for all a ∈ K1
∗ and for all b ∈ K1 (where ℘(Ki) = {a+ a2 | a ∈ Ki}, i = 1, 2).

Note that the first condition in (2) is similar to “Harrison-Cordes condition”.
Such criteria are very useful. For example, Harrison’s criterion is used by Mináč and Spira

to connect the Witt equivalence of two fields K1 and K2 to the isomorphy of some groups GK1

and GK2 (called W-groups), GKi being the Galois group of a certain field extension Ki
(3) of Ki

for i = 1, 2: see [14].
In this context, a natural question arises: is it possible to obtain such criteria for the Witt

group of a central simple algebra with involution ? After recalling some notations and basic facts
in Section 2, we explain how to obtain such criteria in two particular cases in Section 3. First,
we obtain a criterion similar to Theorem 1.1 for the Witt group of a quadratic field extension
equipped with its nontrivial automorphism:

Theorem 1.3. Let K1 and K2 be two fields of characteristic different from 2. Let L1 = K1(
√
a)

(resp. L2 = K2(
√
b)) be a quadratic field extension of K1 (resp. K2) equipped with its non trivial

automorphism σ1 (resp. σ2). Then, the following are equivalent:
(1) W (L1, σ1) 'W (L2, σ2) as rings.
(2) There is a group isomorphism t : K1

∗/NL1/K1
(L1
∗) → K∗2/NL2/K2

(L2
∗) sending −1 to −1

such that the quadratic form 〈〈a, x, y〉〉 is hyperbolic over K1 if and only if the quadratic form
〈〈b, t(x), t(y)〉〉 is hyperbolic over K2 for all x, y ∈ K1

∗, where NLi/Ki(Li
∗) denotes the norm

group of the extension Li/Ki for i = 1, 2.
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Moreover, in Assertion (2), we show that the condition “t(−1) = −1” is not a consequence of
the two other conditions: see Example 3.5. Next, in the case of the Witt group of a quaternion
division algebra endowed with its canonical involution, two examples point out that its structure of
module seems to be the right choice to obtain such a criterion: see Examples 3.6. In this direction,
we obtain Theorem 3.9 which is at the same time similar to Theorem 1.1 and to Theorem 1.2
(in some sense). At first sight, Theorem 3.9 seems to be more analogous to Baeza and Moresi’s
results, but the similarity with Harrison’s criterion shows up by taking K1 = K2 = K:

Corollary 1.4. Let Q1 (resp. Q2) be quaternion division algebras over K endowed with its
canonical involution γ1 (resp. γ2). Then, the following are equivalent:
(1) W (Q1, γ1) 'W (Q2, γ2) as W (K)-modules.
(2) There is a group isomorphism t̃ : K∗/NrdQ1/K(Q1

∗) ' K∗/NrdQ2/K(Q2
∗) with t̃(−1) = −1

such that the quadratic form 〈〈a, b, u, v〉〉 is hyperbolic over K if and only if the quadratic form
〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K for all u, v ∈ K∗.

In this framework, another interesting problem is to give necessary and sufficient conditions
for two global fields to be Witt equivalent. This problem is now entirely solved. The first
step is due to Baeza and Moresi who show that two global fields of characteristic 2 are always
Witt equivalent: see [1] or [16, §2]. Besides, if two global fields are Witt equivalent then either
char(K1), char(K2) 6= 2 or char(K1) = char(K2) = 2: see [16, §2]. Lastly, in [16, §3, §4], Perlis,
Szymiczek, Conner and Litherland prove that two global fields K1 and K2 of characteristic
different from 2 are Witt equivalent if and only if they are reciprocity equivalent (i.e. if there
exist a group isomorphism t between their square class groups and a bijection T between their
non trivial places such that the Hilbert symbols (x, y)P and (t(x), t(y))T (P ) are equal for any

x, y ∈ K1
∗/K1

2 and for any non trivial place P over K1).
In Section 4, we explain how to obtain such a classification for the Witt group of a quadratic

field extension endowed with its nontrivial automorphism. For this purpose, we define the notion
of (a, b)-quadratic reciprocity equivalence between two global fields of characteristic different from
2. This notion is a natural adaptation of the reciprocity equivalence when considering norm class
groups of quadratic extensions instead of square class groups (see Definition 4.7).

Theorem 1.5. Let K1 and K2 be two global fields of characteristic different from 2. Let L1 =
K1(
√
a) (resp. L2 = K2(

√
b)) be a quadratic field extension of K1 (resp. K2) equipped with its

nontrivial automorphism σ1 (resp. σ2). Then, the following are equivalent:
(1) W (L1, σ1) 'W (L2, σ2) as rings.
(2) There is an (a, b)-quadratic reciprocity equivalence between K1 and K2.

2 Basic results and notations

In this Section, we fix some notations and recall some basic definitions and results.

2.1 Central simple algebras wth involution

The general reference for the theory of central simple algebras with involution is [10]: see also
[17, Chapter 8]
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In this Section, K will denote a field of characteristic different from 2, D will denote a finite-
dimensional division algebra over K. Then dimK D = n2 for some n ∈ N, and n = degD is called
the degree of D. Suppose that D is endowed with an involution σ. The map σ restricts to an
involution of the center K and we can distinguish two cases: if σ|K is the identity, we say that σ
is of the first kind, otherwise σ|K is an automorphism of order two of K and we say that σ is of
the second kind.

A central simple algebra D of degree 2 is called a quaternion algebra. As char(K) 6= 2, every
quaternion algebra has a quaternion basis {1, i, j, k}, that is a basis of the K-algebra Q subject
to the relations

i2 = a ∈ K∗, j2 = b ∈ K∗, ij = k = −ji.
This algebra Q is then denoted by Q = (a, b)K . Note also that every quaternion algebra has a
canonical involution (usually denoted by γ) which is of the first kind and defined as follows:

γ(i) = −i, γ(j) = −j.

2.2 Hermitian forms

The standard reference for the theory of hermitian forms is [17]. All the vector spaces considered
are supposed to be finite dimensional right vector spaces.

A hermitian form over (D,σ) is a pair (V, h) where V is a finite dimensional D-vector space
and h is a map h : V × V → D which is σ-sesquilinear in the first argument, K-linear in the
second argument and which satisfies

σ(h(x, y)) = h(y, x) for any x, y ∈ V.

If D = K and σ = idK then a hermitian form is a symmetric bilinear form which can be identified
with a quadratic form as char(K) 6= 2. The integer dimK V is called the dimension (or the rank)
of the hermitian form. Since char(K) 6= 2 and D is division, a hermitian form over (D,σ) may
be given by a diagonalization 〈a1, · · · , an〉.

Note that the dual vector space V ∗ := HomD(V,D) can be considered as a right D-vector
space by twisting the action of D by σ. We define the adjoint map of (V, h) by the following
morphism of right D-vector spaces

ĥ :

{
V → V ∗

x 7→ hx

where hx(y) = h(x, y) for all y ∈ M . If this map is an isomorphism of right D-vector spaces, h
is said to be nondegenerate. We say that h is isotropic if there exists an x ∈ V \ {0} such that
h(x, x) = 0, anisotropic otherwise. If y is an element of D such that h(x, x) = y for a certain
x ∈ V \ {0}, then we say that h represents y.

Let (V, h) and (V ′, h′) be two hermitian forms over (D,σ). If these forms are isometric then
we write h ' h′ for short. Their orthogonal sum is denoted by h⊥h′.

If (V, h) is a hermitian form over (D,σ), one can attach to it a nondegenerate hermitian form
over (D,σ) denoted by (V ⊕ V ∗, IhV ) with

IhV (v ⊕ f, v′ ⊕ g) = f(v′) + σ(g(v))
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for all f, g ∈ V ∗, v, v′ ∈ V . A hermitian form over (D,σ) which is isometric to such a form is
called a hyperbolic form.

Witt’s cancelation theorem says that if (V, h), (V ′, h′), (V ′′, h′′) are three hermitian forms
over (D,σ) and if h⊥h′ ' h⊥h′′ then h′ ' h′′: see [9, Chapter 5.11].

2.3 The Witt group of a division algebra with involution

We refer to [17] for more details about the Witt group.
Let (V, h) be a nondegenerate hermitian form over (D,σ). The isometry class of this form is

denoted by [V, h] or [h] for short and [0] denotes the zero-dimensional hermitian form which is
supposed to be nondegenerate by convention. Let S(D,σ) denote the set of isometry classes of
nondegenerate hermitian forms over (D,σ). This set is endowed with a structure of commutative
monöıd by the law

[h] + [h′] = [h⊥h′].
The Witt group of (D,σ) is the quotient group of the Grothendieck group of S(D,σ) by the
subgroup generated by hyperbolic forms and is denoted by W (D,σ). In the case where D = K,
Kronecker’s product can be used to define a structure of ring on W (K,σ). If moreover σ = idK ,
this ring is called the Witt ring of K and is denoted by W (K).

If [V, h] ∈ W (K,σ|K) and [V ′, h′] ∈ W (D,σ), we define [V ⊗K V ′, h · h′] ∈ W (D,σ) as the
Witt class of the following nondegenerate hermitian form

h · h′ :
{

(V ⊗K V ′)× (V ⊗K V ′) → D
(v1 ⊗ v′1, v2 ⊗ v′2) 7→ h(v1, v2)h′(v′1, v

′
2)
.

It is easy to see that this action endows W (D,σ) with a structure of W (K,σ|K)-module. The
submodule generated by nondegenerate hermitian forms of even rank is denoted by I1(D,σ) or
by I(K) if D = K and σ = idK . We write In(K) for (I(K))n. It is easy to see that In(K) is
additively generated by the so-called Pfister forms

〈1,−a1〉 ⊗ · · · ⊗ 〈1,−an〉 := 〈〈a1, · · · , an〉〉,

for a1, · · · , an ∈ K∗.

2.4 The (refined) discriminant of a hermitian form

We refer to [2, §2] and [3, §3] for more general statements about this invariant.
Let (V, h) be a hermitian form over (D,σ) and suppose first that σ is an involution of the

first kind. Let {e1, · · · , en} be a D-basis of the right D-vector space V . Let M be the matrix of
h with respect to this basis, E = Mn(D) and m = ndeg(D). We define the signed discriminant
of (V, h) by

d±(h) = (−1)
m(m−1)

2 NrdE/K(M) ∈ K∗,
where NrdE/K denotes the usual reduced norm map: see [5, §22]. One can show that d± induces
a well-defined group homomorphism, again denoted by d±

d± : I1(D,σ)→ K∗/K∗2.
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If σ is an involution of the second kind and if F is the fixed field of σ inK, one can define the signed
discriminant of (V, h) by the formula above and show that it induces a group homomorphism

d± : I1(D,σ)→ F ∗/NK/F (K∗),

where NK/F (K∗) is the group of norms of K/F . The kernel of the signed discriminant is denoted
by I2(D,σ).

In both cases, the signed discriminant can be refined as follows. We will describe it only for
σ of the first kind. Denote by NrdD/K(D∗) the group of reduced norms from D. With the same
formula as above, on can define a group homomorphism

Disc : I1(D,σ)→ NrdD/K(D∗)/NrdD/K(D∗)2,

which is called the refined discriminant.

2.5 Chain equivalence

Throughout this Subsection we will use the notations of [11, Chapter I, §5] and will refer to it
for more general statements.

Let D be a division algebra over K endowed with an involution σ (of arbitrary kind). Let
h = 〈a1, · · · , an〉 and h′ = 〈a′1, · · · , a′n〉 be two hermitian forms over (D,σ). They are said to be
simply equivalent if there exists indices i, j ∈ {1, · · · , n} such that 〈ai, aj〉 ' 〈bi, bj〉 and ak = bk
for every k different from i and j (note that, if i = j, the expression 〈ai, aj〉 is understood to be
〈ai〉). Two (diagonalized) hermitian forms h and h′ over (D,σ) are chain equivalent if there is a
sequence of diagonalized hermitian forms f0, · · · , fm over (D,σ) such that h = f0, h′ = fm and
such that fi is simply equivalent to fi+1 for 0 ≤ i ≤ m− 1. We immediately see that two chain
equivalent forms are isometric. In fact, the converse is also true by “Witt’s Chain equivalence
Theorem”:

Theorem 2.1 (Witt). If h and h′ are two (diagonalized) hermitian forms over (D,σ) and if h
is isometric to h′ then h and h′ are chain equivalent.

Proof. The proof can be easily adapted from [11, Chapter I, Theorem 5.2] by replacing usual
squares by hermitian squares (that is, elements of the form σ(x)x).

Remark 2.2. The above proposition is very useful for showing general properties for quadratic
(resp. hermitian) forms by reducing it to properties for two-dimensional quadratic (resp. hermi-
tian) forms. See the proofs of Theorems 1.1, 1.3 and 3.9.

2.6 Further results

Here we want to state two important results that are used several times in this paper.
The following result known as “Arason-Pfister Hauptsatz” gives a sufficient condition for a

quadratic form to belong to In(K).

Theorem 2.3 (Arason-Pfister). Let q be a positive-dimensional anisotropic quadratic form
over K. If q ∈ In(K), then dim q ≥ 2n.
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Proof. See [11, Chapter X, Hauptsatz 5.1] or [17, Chapter 4, Theorem 5.6].

Let L/K, L = K(
√
a), be a quadratic field extension endowed with its non trivial automor-

phism − and D = (a, b)K be a quaternion algebra endowed with its canonical involution γ. We
define the following usual transfer maps

πL :

{
W (L,−) → W (K)

[h] 7→ [x 7→ h(x, x)]
, πD :

{
W (D, γ) → W (K)

[h] 7→ [x 7→ h(x, x)]
.

Theorem 2.4 (Jacobson). With the above notations, the maps πL and πD are injective.

Proof. See [17, Chapter 10, 1.1, 1.2, 1.7] or [8].

Moreover, im(πL) = 〈〈a〉〉W (K) and for any positive integer n, πL(I1(L,−)n) = 〈〈a〉〉In(K).

3 Analogues of Harrison’s criterion

In this Section, we state and prove results for quadratic field extension with their nontrivial
automorphism and for quaternion division algebras with their canonical involutions in analogy
with Harrison’s criterion 1.1.

3.1 The case of quadratic field extensions

First, we rephrase Theorem 1.1 by introducing another equivalent condition and it is this condition
we will then generalize to the setting of hermitian forms.

Lemma 3.1. Let K1 and K2 be two fields of characterisic different from 2. Then the following
are equivalent:
(1) K1 and K2 are Witt equivalent.
(2) There is a group isomorphism t : K1

∗/K1
∗2 → K2

∗/K2
∗2 sending −1 to −1 and such that

the quadratic form 〈〈x, y〉〉 is hyperbolic over K1 if and only if the quadratic form 〈〈t(x), t(y)〉〉 is
hyperbolic over K2 for all x, y ∈ K1

∗.

Proof. The quadratic form 〈x, y〉 represents 1 over K1 if and only if the quadratic form 〈1,−x,−y〉
is isotropic over K1 if and only if the Pfister form 〈〈x, y〉〉 is hyperbolic over K1. The equivalence
then follows from the second statement of Harrison’s criterion 1.1.

We now come to the proof of Theorem 1.3:

Theorem Let K1 and K2 be two fields of characteristic different from 2. Let L1 = K1(
√
a)

(resp. L2 = K2(
√
b)) be a quadratic field extension of K1 (resp. K2) equipped with its non trivial

automorphism σ1 (resp. σ2). Then, the following are equivalent:
(1) W (L1, σ1) 'W (L2, σ2) as rings.
(2) There is a group isomorphism t : K1

∗/NL1/K1
(L1
∗) → K∗2/NL2/K2

(L2
∗) sending −1 to −1

such that the quadratic form 〈〈a, x, y〉〉 is hyperbolic over K1 if and only if the quadratic form
〈〈b, t(x), t(y)〉〉 is hyperbolic over K2 for all x, y ∈ K1

∗.

In the proof, we will need the following two lemmas.
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Lemma 3.2. For i = 1, 2, the signed discriminant induces a group isomorphism

d± : I1(Li, σi)/I2(Li, σi) ' Ki
∗/NLi/Ki(Li

∗).

Proof. We know that
d± : I1(Li, σi)→ Ki

∗/NLi/Ki(Li
∗)

is a group homomorphism whose kernel is I2(Li, σi). If b ∈ Ki
∗ then

d±(〈1,−b〉) = (−1)1NrdM2(Li)/Li(〈1,−b〉) = −NrdLi/Ki(−b) = b mod NLi/Ki(Li
∗),

hence d± is onto.

We consider W (Li, σi) as a ring, I1(Li, σi) and I2(Li, σi) as ideals for i = 1, 2. As in the case
of quadratic forms, these two ideals are related in the following way:

Lemma 3.3. For i = 1, 2, (I1(Li, σi))
2

= I2(Li, σi).

Proof. By using the signed discriminant, it is easy to show that (I1(Li, σi))
2 ⊆ I2(Li, σi).

Conversely, if φ ∈ I2(Li, σi) with φ = 〈a1, · · · , a2s〉, aj ∈ Ki
∗, j = 1, · · · , 2s, then

1 = d±(φ) = (−1)
2s(2s−1)

2 (
2s∏

j=1

aj) ∈ Ki
∗/NLi/Ki(Li

∗).

We proceed by induction on s.
If s = 1 and φ ' 〈a, b〉 then −a = b ∈ Ki

∗/NLi/Ki(Li
∗). Now φ ' 〈a,−a〉 and φ ∈

(I1(Li, σi))
2
.

If s = 2 and φ ' 〈a, b, c, d〉 then d = abc ∈ Ki
∗/NLi/Ki(Li

∗) and

φ ' 〈a〉 ⊗ 〈1, ab, ac, bc〉 ' 〈a〉 ⊗ 〈1, ab〉 ⊗ 〈1, ac〉.

We thus have φ ∈ (I1(Li, σi))
2
.

Suppose now s ≥ 3. One can write φ = 〈a, b, c〉⊥φ′ and

φ = 〈a, b, c, abc〉︸ ︷︷ ︸
α

⊥ (φ′⊥〈−abc〉)︸ ︷︷ ︸
β

∈W (K,σa).

By assumption, d±(φ) = 1 and d±(α) = 1 and this implies that d±(β) = 1. By induction,

β ∈ (I1(Li, σi))
2

and φ ∈ (I1(Li, σi))
2
, thus finishing the proof.

Proof of Theorem 1.3: (1)⇒ (2) : Let Φ : W (L1, σ1) 'W (L2, σ2) be a ring isomorphism. The
rank induces a group homomorphism, rank : W (L1, σ1) → Z/2Z and this shows that I1(L1, σ1)
is a maximal ideal of index 2 in W (L1, σ1). In fact, it can be seen that I1(L1, σ1) is the unique
ideal of index 2 in W (L1, σ1). As a consequence, Φ induces the following group isomorphism

Φ|I1(L1,σ1) : I1(L1, σ1)→ I1(L2, σ2).
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Hence, by Lemma 3.3, Φ(I2(L1, σ1)) = I2(L2, σ2) and we can define the following group isomor-
phism by means of Lemma 3.2:

t :

{
K1
∗/NL1/K1

(L1
∗) → K2

∗/NL2/K2
(L2
∗)

c 7→ d± (Φ(〈1,−c〉)) .

Now, it is easy to see that t(−1) = −1.
Φ induces also the following group isomorphism

u : I1(L1, σ1)2/I1(L1, σ1)3 ' I1(L2, σ2)2/I1(L2, σ2)3,

which can be used to obtain the following commutative diagram:

(K1
∗/NL1/K1

(L1
∗))× (K1

∗/NL1/K1
(L1
∗))

(t, t)
²²

θL1 // (I1(L1, σ1))2
/(I1(L1, σ1))3

u
²²

(K2
∗/NL2/K2

(L2
∗))× (K2

∗/NL2/K2
(L2
∗))

θL2 // (I1(L2, σ2))2
/(I1(L2, σ2))3

where
θLi(x, y) = 〈1,−x〉 ⊗ 〈1,−y〉 mod I1(Li, σi)

3

for all x, y ∈ Ki
∗ and for i = 1, 2. If the hermitian form 〈1,−x,−y, xy〉 is hyperbolic over

(L1, σ1), then 〈1,−x,−y, xy〉 ∈ I1(L1, σ1)3. Conversely, let 〈1,−x,−y, xy〉 ∈ I1(L1, σ1)3. Using
the notations of Subsection 2.6, we know that the map πL1 : W (L1, σ1) → 〈〈a〉〉W (K1) is an
additive group isomorphism and that

Ψ(〈1,−x,−y, xy〉) ∈ I4(K1).

By Theorem 2.3, the quadratic form Ψ(〈1,−x,−y, xy〉) is hyperbolic over K1 and it follows that
the hermitian form 〈1,−x,−y, xy〉 is hyperbolic over (L1, σ1).

Lastly, if the quadratic form 〈〈a, x, y〉〉 = πL1(〈1,−x,−y, xy〉) is hyperbolic over K1 then, the
hermitian form 〈1,−x,−y, xy〉 is hyperbolic over (L1, σ1) and 〈1,−x,−y, xy〉 ∈ I1(L1, σ1)3. By
commutativity of the previous diagram,

0 = u(θL1(x, y)) = θL2(t(x), t(y)).

We conclude that the hermitian form 〈1,−t(x),−t(y), t(xy)〉 ∈ I1(L2, σ2)3 which implies that the
quadratic form 〈〈b, t(x), t(y)〉〉 = πL2(〈1,−t(x),−t(y), t(xy)〉) is hyperbolic over K2. The converse
is similar.
(2)⇒ (1) : We define a map Φ on diagonal forms by

Φ(〈a1, · · · , an〉) = 〈t(a1), · · · , t(an)〉.

We have to show that this definition does not depend on the chosen diagonalization. If n = 1,
this is clear. If n = 2, suppose that 〈u, v〉 ' 〈u′, v′〉 as hermitian forms over (L1, σ1). By
taking the signed discriminant on both sides, we obtain that uv = u′v′ ∈ K1

∗/NL1/K1
(L1
∗).
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If we let the one-dimensional hermitian form 〈u〉 act on both sides, it follows that the her-
mitian form 〈1,−uu′,−uv′, u′v′〉 is hyperbolic over (L1, σ1). As a consequence, the hermitian
form 〈1,−t(u)t(u′),−t(u)t(v′), t(u′)t(v′)〉 is hyperbolic over (L2, σ2) and, multiplying by the form
〈t(u)〉, it follows that the hermitian forms 〈t(u), t(v)〉 and 〈t(u′), t(v′)〉 are isometric over (L2, σ2).
If n > 2, the result comes from Theorem 2.1 and from the fact that the property holds for n = 2.
As t(−1) = −1, Φ preserves hyperbolicity and induces a well-defined map between W (L1, σ1)
and W (L2, σ2). Besides, Φ is additive and multiplicative (Φ being multiplicative over rank one
forms which generate additively W (L1, σ1)) and t−1 provides an inverse for Φ which is thus a
ring isomorphism. ¤

Remarks 3.4. (1) The previous proof is similar to the proof of Harrison’s criterion: see [7] or
[16, §2].
(2) As Ki

∗2 = DKi(〈1〉) and NLi/Ki(Li
∗) = DKi(〈1,−a〉) for i = 1, 2, Theorem 1.3 is a quadratic

analogue of Theorem 1.1.

In Theorem 1.3 we can show that the condition t(−1) = −1 is not a consequence of the other
two conditions of Assertion (2):

Example 3.5. Let K1 = Q3 and K2 = Q5. Then

K1
∗/K1

∗2 = {1,−1, 3,−3}, K2
∗/K2

∗2 = {1, 2, 5, 10}, u(K1) = u(K2) = 4,

and the unique anisotropic quadratic form of dimension 4 over K1 (resp. over K2) is 〈1, 1,−3,−3〉
(resp. 〈1,−2,−5, 10〉) (see [11, Chapter 6, Theorem 2.2]). Let L1 = K1(

√
3) and L2 = K2(

√
2).

It is easy to show that |K1
∗/DK1(〈1,−3〉)| = 2 = |K2

∗/DK2(〈1,−2〉)| and that we have a group
isomorphism defined by

t : K1
∗/DK1(〈1,−3〉) → K2

∗/DK2(〈1,−2〉)
1 7→ 1

−1 7→ 5

As u(K1) = u(K2) = 4, the quadratic form 〈〈3, x, y〉〉 (resp. 〈〈2, t(x), t(y)〉〉) is hyperbolic over
K1 (resp. over K2) for all x, y ∈ K1

∗. Finally, 〈1,−2〉 clearly represents −1 over K2 and

t(−1) 6= −1 = 1 ∈ K2
∗/DK2(〈1,−2〉).

3.2 The case of quaternion division algebras

In this Subsection, Q1 = (a, b)K1 (resp. Q2 = (c, d)K2) will denote a quaternion division algebra
over K1 (resp. over K2) with its canonical involution γ1 (resp. γ2).

First, we motivate our choice of the module structure in Theorem 3.9 and Corollary 1.4 by
giving two examples showing that, for quadratic forms, the group structure of the Witt ring is
not sufficient to classify fields up to Witt equivalence as in Theorem 1.1. In the first example,
the cardinality of the Witt ring is infinite and in the second, it is finite.
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Examples 3.6. (1) One can find this example in [16, §7]. If K1 = Q( 3
√

2) and K2 = Q, one can
show that W (K1) 'W (K2) as groups. But, by [16, §4, Corollary 2], W (K1) and W (K2) are not
isomorphic as rings.
(2) One can find this example in [4, Example 7.2]. The construction is based on [6, §II.1] which
was obtained in 1965 by Gross and Fischer. We choose K1 = Q2(

√
d) where d ∈ Q∗2\ ± Q∗22.

Then K1 is a local field and we have

|K1
∗/K1

∗2| = 16, s(K1) = 2, u(K1) = 4

(see [11, Chapter VI, Corollary 2.24], [11, Chapter XI, Examples 2.4(7), 6.2(4)]). Let F be a field
satisfying

|F ∗/F ∗2| = 4, s(F ) = 2, u(F ) = 2

(there is such a field by Cordes’ results in [4]). Then K2 := F ((X)) is such that

|K2
∗/K2

∗2| = 8, s(K2) = 2, u(K2) = 4.

By [4, Theorem 4.5],
W (K1) 'W (K2) ' C4 × C4 × C2 × C2

as groups. But W (K1) and W (K2) are not isomorphic as rings by Harrison’s criterion 1.1 as we
have |K1

∗/K1
∗2| = 16 6= 8 = |K2

∗/K2
∗2|.

In order to simplify the statement of Theorem 3.9, we define:

Definition 3.7. Two fields K1 and K2 whose characteristic is different from 2 are said to be
(Q1, Q2)-equivalent if there is a group morphism t : K1

∗/K1
∗2 → K2

∗/K2
∗2 sending −1 to

−1 such that, if the quadratic form 〈〈x, y〉〉 is hyperbolic over K1, then the quadratic form
〈〈t(x), t(y)〉〉 is hyperbolic over K2 for all x, y ∈ K1

∗ and which induces a group isomorphism
t̃ : K1

∗/DK1(〈〈a, b〉〉) ' K2
∗/DK2(〈〈c, d〉〉). The pair (t, t̃) is called a (Q1, Q2)-equivalence.

Remark 3.8. If A is a central simple algebra over a field K, let

SH0(A) = K∗/NrdA/K(A∗).

In the literature, the group SH0(A) is called the reduced norm residue group of the algebra A.
In particular, if Q is a quaternion division algebra with norm form NQ, SH0(Q) = K∗/DK(NQ)
which allows us to translate Definition 3.7 in terms of these groups.

Theorem 3.9. The following are equivalent:
(1) There exist a ring homomorphism Φ : W (K1) → W (K2) sending one-dimensional forms to
one-dimensional forms and a group isomorphism Ψ : W (Q1, γ1)→W (Q2, γ2) such that Ψ(〈1〉) =
〈1〉 and

Ψ(q.h) = Φ(q).Ψ(h),

for all q ∈W (K1), h ∈W (Q1, γ1).
(2) There is a (Q1, Q2)-equivalence (t, t̃) between K1 and K2 such that the hermitian forms
〈u, v〉 and 〈u′, v′〉 are isometric over (Q1, γ1) if and only if the hermitian forms 〈t̃(u), t̃(v)〉 and
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〈t̃(u′), t̃(v′)〉 are isometric over (Q2, γ2) for all u, v, u′, v′ ∈ K1
∗.

(3) There is a (Q1, Q2)-equivalence (t, t̃) between K1 and K2 such that the quadratic form 〈〈a, b, u, v〉〉
is hyperbolic over K1 if and only if the quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K2 for
all u, v ∈ K1

∗.

First, we need to prove the following lemma:

Lemma 3.10. Let Q be a quaternion division algebra over a field K with norm form NQ. Let
u, v, u′, v′ ∈ K∗. Suppose that the quadratic form NQ ⊗ 〈u, v,−u′,−v′〉 is hyperbolic over K.
Then uvu′v′ ∈ DK(NQ).

Proof. As the quadratic forms q = 〈u, v,−u′,−v′〉 and q′ = 〈1,−uu′vv′〉 have the same signed
discriminant, q⊥(−q′) belongs to I2(K). Thus,

NQ ⊗ 〈u, v,−u′,−v′〉 ≡ NQ ⊗ 〈1,−uu′vv′〉 mod I4(K).

By assumption and by Theorem 2.3, the quadratic form NQ ⊗ 〈1,−uu′vv′〉 is hyperbolic over K
and it follows that uvu′v′ ∈ DK(NQ).

Proof of Theorem 3.9: (3)⇒ (2) : Let u, v, u′, v′ ∈ K1
∗ be such that

〈u, v〉 ' 〈u′, v′〉 (1)

as hermitian forms over (Q1, γ1). We now use the notations of Subsection 2.6. By Theorem 2.4,
πQ1 : W (Q1, γ1)→ W (K1) is injective. The fact (1) is thus equivalent to the fact that

〈〈a, b〉〉 ⊗ 〈u, v〉 ' 〈〈a, b〉〉 ⊗ 〈u′, v′〉

as quadratic forms, which in turn is equivalent to the hyperbolicity of the quadratic form 〈〈a, b〉〉⊗
〈u, v,−u′,−v′〉 over K1. By Lemma 3.10, uvu′v′ ∈ DK1(〈〈a, b〉〉) and t(uvu′v′) ∈ DK2(〈〈c, d〉〉)).
Now we let the quadratic form 〈u〉 act on (1) so we have 〈1, uv〉 ' 〈uu′, uv′〉 as hermitian forms
over (Q1, γ1) and, since uvu′v′ ∈ DK1(〈〈a, b〉〉), it follows that 〈1, u′v′〉 ' 〈vv′, vu′〉 as hermitian
forms over (Q1, γ1). This is equivalent to the hyperbolicity of the quadratic form 〈〈a, b, vv ′, vu′〉〉
over K1 and by Assertion (3), the quadratic form 〈〈c, d, t̃(vv′), t̃(vu′)〉〉 is hyperbolic over K2.
Using the fact that t(uvu′v′) ∈ DK2(〈〈c, d〉〉)), we deduce that the hermitian forms 〈t̃(u), t̃(v)〉
and 〈t̃(u′), t̃(v′)〉 are isometric over (Q2, γ2). The converse is similar.
(2) ⇒ (1) : let (t, t̃) be a (Q1, Q2)-equivalence between K1 and K2 satisfying the conditions
of Assertion (2). Mimicking the first part of the proof of Theorem 1.3, one can define a group
homomorphism Φ : W (K1)→W (K2) sending a one-dimensional form to a one-dimensional form.
We define Ψ in the following way

Ψ :

{
W (Q1, γ1) → W (Q2, γ2)
〈a1, · · · , an〉 7→ 〈t̃(a1), · · · , t̃(an)〉 .

As in the proof of Theorem 1.3, by using Proposition 2.1, we can show that Ψ is a well-defined
map which induces a group homomorphism, and that the inverse of t̃ induces an inverse for Ψ.
Finally, the compatibility relation between Φ and Ψ is easily proved.
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(1) ⇒ (3) : Let us suppose the existence of Φ and Ψ as in Assertion (1). As Φ(I(K1)) ⊂ I(K2),
Φ induces the following group homomorphism

t :

{
K1
∗/K1

∗2 → K2
∗/K2

∗2

a 7→ d± (Φ(〈1,−a〉))

and t satisfies the other properties stated in Definition 3.7 by the implication (1) ⇒ (2) in
Harrison’s criterion 1.1. We are going to show that

DK1(〈〈a, b〉〉)/K1
∗2 = t−1(DK2(〈〈c, d〉〉)/K2

∗2). (2)

Let u ∈ DK1(〈〈a, b〉〉)/K1
∗2. Then Ψ(〈u〉) = Ψ(〈1〉) = 〈1〉 on the one hand, and Ψ(〈u〉) =

Φ(〈u〉).〈1〉 on the other hand (note that Φ(〈u〉) is a quadratic form over K2 whereas Ψ(〈u〉) is
a hermitian form over (Q2, γ2)). Letting Φ(〈u〉) = 〈x〉, we easily see that t(u) = x and that
x ∈ DK2(〈〈c, d〉〉). This implies that t(u) ∈ DK2(〈〈c, d〉〉)/K2

∗2 and finally DK1(〈〈a, b〉〉)/K1
∗2 ⊂

t−1(DK2(〈〈c, d〉〉)/K2
∗2).

Let v ∈ DK2(〈〈c, d〉〉)/K2
∗2 be such that t(y) = v for a y ∈ K1

∗. As Φ(〈y〉) = 〈v〉,

Ψ(〈y〉) = Φ(〈y〉).〈1〉 = 〈v〉.〈1〉 = 〈1〉.

By injectivity of Ψ, it follows that 〈y〉 ' 〈1〉 and (2) holds.
Hence, t induces after factorization a unique injective group homomorphism

t̃ :

{
K1
∗/DK1(〈〈a, b〉〉) → K2

∗/DK2(〈〈c, d〉〉)
x 7→ t(x)

Denote by s1 : K1
∗/K1

∗2 → K1
∗/DK1(〈〈a, b〉〉) and s2 : K2

∗/K2
∗2 → K2

∗/DK2(〈〈c, d〉〉) the two
canonical surjections. Then, the following diagram is commutative

K1
∗/K1

∗2 t //

s1

²²

K2
∗/K2

∗2 s2 // K2
∗/DK2(〈〈c, d〉〉)

K1
∗/DK1(〈〈a, b〉〉)

t̃

55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Now, we show that s2 ◦ t is onto. Let w ∈ K2
∗/DK2(〈〈c, d〉〉). Ψ being surjective, there is

a hermitian form h over (Q1, γ1) such that Ψ(h) = 〈w〉 = Φ(q).〈1〉 where h = q.〈1〉 and q is a
quadratic form over K. Without loss of generality, one can suppose that h = 〈a1, · · · , an〉 et
Φ(q) = 〈b1, · · · , bn〉 with a1, · · · , an, b1, · · · , bn ∈ K1

∗ (note that n is odd). By taking the refined
signed discriminant on both sides of the previous equality, we obtain

n∏

i=1

bi
2 = w2 mod DK2(〈〈c, d〉〉)2

.
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Consequently, there is a δ ∈ Q2
∗ such that (

∏n
i=1 bi

2).NrdQ2/K2
(δ)2 = w2 and

w = ±(
n∏

i=1

bi).NrdQ2/K2
(δ).

The element ±(
∏n
i=1 ai) is an antecedent of w via s2 ◦ t. Indeed,

t(±
n∏

i=1

ai) = ±
n∏

i=1

t(ai)

= ±d± (n〈1〉⊥ − Φ(〈a1, · · · , an〉))
= ±d±(n〈1〉⊥〈−b1, · · · ,−bn〉)

= ±
n∏

i=1

bi ∈ K2
∗/K2

∗2.

So

(s2 ◦ t)(±
n∏

i=1

ai) = ±
n∏

i=1

bi mod DK2(〈〈c, d〉〉) = w.

It follows that s2 ◦ t is surjective and that t̃ is a group isomorphism.
Let u, v ∈ K1

∗ be such that the quadratic form 〈〈a, b, u, v〉〉 is hyperbolic over K1. The
hermitian form 〈1,−u,−v, uv〉 is also hyperbolic over (Q1, γ1) by Theorem 2.4. We obtain (in
W (Q1, γ1))

0 = Ψ(〈1,−u,−v, uv〉)
= Φ(〈1,−u,−v, uv〉).〈1〉
= (Φ(〈1,−u〉) ⊗ Φ(〈1,−v〉)).〈1〉.

By definition of t and t̃, we then have

Ψ(〈1,−u,−v, uv〉) = 〈1,−t(u)〉 ⊗ 〈1,−t(v)〉
= 〈1,−t(u),−t(v), t(u)t(v)〉
= 〈1,−t̃(u),−t̃(v), t̃(u)t̃(v)〉.

It follows that the quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K2. Conversely, if the
quadratic form 〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K2 then the quadratic form 〈〈a, b, u, v〉〉 is
hyperbolic over K1 by Theorem 2.4 and by injectivity of Ψ. ¤

In the particular case where K1 = K2 = K, Theorem 3.9 readily implies:

Corollary Then, the following are equivalent:
(1) W (Q1, γ1) 'W (Q2, γ2) as W (K)-modules.
(2) There is a group isomorphism t̃ : K∗/NrdQ1/K(Q1

∗) ' K∗/NrdQ2/K(Q2
∗) with t̃(−1) = −1

such that the quadratic form 〈〈a, b, u, v〉〉 is hyperbolic over K if and only if the quadratic form
〈〈c, d, t̃(u), t̃(v)〉〉 is hyperbolic over K for all u, v ∈ K∗.
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Remarks 3.11. (1) The condition on the hyperbolicity of quadratic forms in Theorem 3.9 can be
replaced by a condition similar to the “Harrison-Cordes condition” (see Introduction). Theorem
3.9 is thus analogous to Theorem 1.2 proved by Baeza and Moresi. There are also some differences:
− we do not suppose Φ to be bijective in Assertion (1) ;
− in addition, we suppose that Φ respects one-dimensional forms and that Ψ(〈1〉) = 〈1〉 in
Assertion (1) ;
(2) As K1

∗2 = DK1(〈1〉) and NrdQ1/K1
(Q∗1) = DK1(〈〈a, b〉〉), Corollary 1.4 is an analogue of

Theorem 1.1 for quaternion division algebras (in the case where K = L).
(3) In [12], Leep and Marshall construct a surjective map between Aut (W (K1)) and the set of the
so-called “Harrison maps” (i.e. satisfying Assertion (2) of Theorem 1.1) and describe the kernel
of this map. To prove their results, they used the fact that every ρ ∈ Homring (W (K1),W (K2))
induces an element ρ ∈ Homring (W (K1),W (K2)) respecting the dimension of quadratic forms
and characterized by

ρ(q) ≡ ρ(q) mod (I(K2))2

for all q ∈ W (K1). It might be interesting to check if such properties hold for hermitian forms
over a quaternion division algebra.
(4) In Assertion (1) of Theorem 3.9, the fact that Ψ(q.h) = Φ(q).Ψ(h), for all q ∈ W (K1),
h ∈W (Q1, γ1) is equivalent to the commutativity of the following diagram (with exact rows)

W (K1)

Φ
²²

ρ1 // W (Q1, γ1)

Ψ
²²

// 0

W (K2)
ρ2 // W (Q2, γ2) // 0

where ρi : W (Ki)→W (Qi, γi) is the scalar extension map, for i = 1, 2.

4 Reciprocity equivalence

In this Section we recall some basic results about global fields and reciprocity equivalence: we
refer to [15] for more details about quadratic forms over global fields and to [16] for a com-
plete treatment of reciprocity equivalence. Finally, we define the notion of quadratic reciprocity
equivalence and prove Theorem 1.5.

4.1 Preliminaries

A global field is either an algebraic number field (i.e. a finite field extension of Q) or an algebraic
function field (i.e. a finite field extension of a field of the form Fq(X) where Fq is the finite field
with q elements for some prime power q and X is an indeterminate).

Let K be a global field, P be a nontrivial place of K and KP be a completion of K at P . If P
is non archimedian then P is discrete and KP is a local field whose residue field is finite: we say
that P is a finite place. If P is archimedian then there is a topological isomorphism between KP

and R or C: the place is called real in the first case, complex in the second case. An archimedian
place is also called an infinite place. If K is an algebraic function field, every place over K is
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finite and if K is an algebraic number field, there is a finite number of archimedian places (more
precisely [K : Q] = 2r + s where r is the number of complex places and s is the number of real
places). We introduce the following notations:

ΩK = {nontrivial places of K},
Ωf
K = {finite places of K},

Ω∞K = {infinite places of K},
Ωr
K = {real places of K} = {P ∈ Ω∞K | KP ' R},

Ωc
K = {complex places of K} = {P ∈ Ω∞K | KP ' C}.

So we have the following disjoint unions: ΩK = Ωf
K ∪ Ω∞K and Ω∞K = Ωr

K ∪ Ωc
K .

Let K be a global field and suppose P ∈ Ωr
K . Then, there is a topological isomorphism

φ : KP ' R. Via φ, KP is an ordered field, real closed and euclidian, with unique ordering KP
2

(see [17, Chapter 3, Theorem 1.1.4]). We thus say that an element a ∈ K ∗ is positive (resp.
negative) at P if a ∈ K∗P 2 (resp. a ∈ −K∗P 2), and we write a>

P
0 (resp. a<

P
0). If a ∈ K∗, we

introduce the notation
Ωa
K = {P ∈ Ωr

K | a<
P

0}

to denote the set of real places at which a is negative.
The following is immediate:

Lemma 4.1. Let P ∈ Ωr
K and q be a quadratic form over K. Then q is hyperbolic over KP if

and only if sgnP (q) = 0 where sgnP denotes the usual signature at P (see [17, Chapter 2, §4]).

It is easy to calculate the signature of a 2-fold Pfister form 〈〈x, y〉〉 at a real place P :

Table 4.2.

x y xy sgnP (〈〈x, y〉〉)
+ + + 0
− + − 0
+ − − 0
− − + 4

Finally, we get the following result which will be useful in Subsection 4.3:

Lemma 4.3. Let K be a global field and P ∈ Ωr
K. A n-fold Pfister form q = 〈〈a1, · · · , an〉〉 is

anisotropic over KP if and only if ai<
P

0 for i = 1, · · · , n.

Proof. The fact that ai<
P

0 for all i = 1, · · · , n is equivalent to sgnP (q) = 2n by mean of Table

4.2 and an induction on n. This property is also equivalent to the fact that q is anisotropic over
KP by Lemma 4.1, a Pfister form being either anisotropic or hyperbolic.

4.2 Reciprocity equivalence

Throughout this Subsection, K1 and K2 will denote global fields of characteristic different from
2. The notion of reciprocity equivalence between such fields has been defined in [16, §1]:
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Definition 4.4. A reciprocity equivalence between K1 and K2 is a pair of maps (t, T ), where t
is a group isomorphism t : K1

∗/K1
∗2 → K2

∗/K2
∗2 and T is a bijection T : ΩK1 → ΩK2 such that

(t, T ) respects Hilbert symbols, i.e.

(x, y)P = (tx, ty)TP

for all x, y ∈ K1
∗/K1

∗2 and for all P ∈ ΩK1 .

Remark 4.5. As (x, y)P = 1 if and only if the 2-fold Pfister form 〈〈x, y〉〉 is hyperbolic over
(K1)P , one can replace the condition concerning Hilbert symbols in Definition 4.4 by 〈〈x, y〉〉
being hyperbolic over (K1)P if and only if the quadratic form 〈〈t(x), t(y)〉〉 is hyperbolic over
(K2)T (P ).

The main Theorem of [16] says that

Theorem 4.6. K1 and K2 are Witt equivalent if and only if they are reciprocity equivalent.

The proof of the “if”-part of this Theorem very much relies on Harrison’s criterion 1.1. The proof
of the converse is much more difficult and is based on a description of the 2-torsion of the Brauer
group by the set of subsets of ΩK1\Ωc

K1
of even order endowed with symmetric difference. We

refer to[16, §3, 4] for more details.

4.3 Quadratic Reciprocity equivalence

The purpose of this Subsection is to give a proof of Theorem 1.5. Throughout, K1 (resp. K2) will
denote a global field of characteristic different from 2, L1 = K1(

√
a) (resp. L2 = K2(

√
b)) will

denote a quadratic field extension of K1 (resp. K2) and σ1 (resp. σ2) will denote the nontrivial
automorphism of L1 (resp. L2).

Definition 4.7. An (a, b)-quadratic reciprocity equivalence between K1 and K2 is a pair of maps
(t, T ) where t is a group isomorphism t : K1

∗/NL1/K1
(L1
∗)→ K2

∗/NL2/K2
(L2
∗) with t(−1) = −1

and where T is a bijection T : Ωa
K1
→ Ωb

K2
such that the quadratic form 〈〈a, x, y〉〉 is hyperbolic

over (K1)P if and only if the quadratic form 〈〈b, t(x), t(y)〉〉 is hyperbolic over (K2)T (P ) for all
x, y ∈ K1

∗/NL1/K1
(L1
∗) and for all P ∈ Ωa

K1
.

We now prove Theorem 1.5:

Theorem The following are equivalent:
(1) W (L1, σ1) 'W (L2, σ2) as rings.
(2) There is an (a, b)-quadratic reciprocity equivalence between K1 and K2.

Proof. (2) ⇒ (1) : by Theorem 1.3, it suffices to show that the quadratic form 〈〈a, x, y〉〉 is
hyperbolic over K1 if and only if the quadratic form 〈〈b, t(x), t(y)〉〉 is hyperbolic over K2. Note
that, for all P ∈ ΩK1\Ωa

K1
(resp. for all Q ∈ ΩK2\Ωb

K2
) and for all x, y ∈ K1

∗, the quadratic
form 〈〈a, x, y〉〉 (resp. 〈〈b, t(x), t(y)〉〉) is hyperbolic over (K1)P (resp. over (K2)Q). This fact
is obvious if the place is complex or if a>

P
0 (resp. if b >

Q
0). If P (resp. Q) is finite, it comes

from the fact that (K1)P (resp. (K2)Q) is a local field with u((K1)P ) = 4 = u((K2)Q) (see [11,
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Chapter XI, Example 6.2(4)]). Suppose now that the quadratic form 〈〈a, x, y〉〉 is hyperbolic over
K1. Then φ = 〈〈b, t(x), t(y)〉〉 is hyperbolic over (K2)Q for all Q ∈ Ωb

K2
hence φ is hyperbolic

over K2 by the Hasse-Minkowski-Principle (see [11, Chapter VI, Hasse-Minkowski-Principle 3.1]).
The converse is similar.
(1)⇒ (2) : by Theorem 1.3, we only have to find the map T of Definition 4.7.

We first show that K1 and K2 have the same number of distinct real places for which a and
b are negative. First of all, K1 has no real place where a is negative if and only if K2 has no
real place where b is negative (this is a consequence of Theorem 1.3, Lemma 4.3 and the Hasse-
Minkowski Principle applied to 〈〈a,−1,−1〉〉 and to 〈〈b, t(−1), t(−1)〉〉 = 〈〈b,−1,−1〉〉). In this
case, (for example, if K1 and K2 are algebraic function fields), there is nothing to prove. Suppose
now that Ωa

K1
= {P1, · · · , Pn}, n ≥ 1. As K1 is a global field which has at least one real place,

K1 is an SAP field (see [13, §2]). As a consequence, there exist x1, · · · , xn ∈ K1
∗ such that

xi >
Pi

0, xi <
Pj

0 for all j 6= i,

for i = 1, · · · , n. On the one hand, it is easy to see that for each i,

(−1)nx1 · · · xi−1xi+1 · · · xn <
Pi

0.

This implies, by Lemma 4.3, that the quadratic form 〈〈a,−1, (−1)nx1 · · · xi−1xi+1 · · · xn〉〉 is
anisotropic over K1. Consequently, the quadratic form

〈〈b,−1, (−1)nt(x1) · · · t(xi−1)t(xi+1) · · · t(xn)〉〉

is anisotropic over K2 and there is a place Qi (which has to be real) such that the quadratic
form 〈〈b,−1, (−1)nt(x1) · · · t(xi−1)t(xi+1) · · · t(xn)〉〉 is anisotropic over (K2)Qi by the Hasse-
Minkowski-Principle. Applying Lemma 4.3, we see that b <

Qi
0 and

(−1)nt(x1) · · · t(xi−1)t(xi+1) · · · t(xn) <
Qi

0, (3)

for all i = 1, · · · , n. On the other hand, one also has

(−1)nx1 · · · xn <
Pi

0

for all i = 1, · · · , n. This implies that the quadratic form 〈〈a,−1, (−1)nx1 · · · xn〉〉 is anisotropic
over K1 and that 〈〈b,−1, (−1)nt(x1) · · · t(xn)〉〉 is anisotropic over K2. By the Hasse-Minkowski-
Principle,

(−1)nt(x1) · · · t(xn) <
Qi

0, (4)

for all i = 1, · · · , n. By combining (3) and (4), we get that t(xi) >
Qi

0 for all i = 1, · · · , n. We now

show that the n places Qi are distinct. If conversely, there are i 6= j such that Q = Qi = Qj then

t(xi) >
Q

0, t(xj) >
Q

0
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and the quadratic form 〈〈b, t(−xi), t(−xj)〉〉 is anisotropic overK2. This implies that the quadratic
form 〈〈a,−xi,−xj〉〉 is anisotropic over K1. By the Hasse-Minkowski-Principle and Lemma 4.3,
there is a place P ∈ Ωa

K1
for which

xi >
P

0, xj >
P

0.

That is impossible, by construction of the xi’s. We have thus shown that there is an injection
T : Ωa

K1
→ Ωb

K2
. By Symmetry, this is a bijection.

Finally, suppose that 〈〈b, t(x), t(y)〉〉 is anisotropic over (K2)Qi . By Lemma 4.3, t(x) <
Qi

0 and

t(y) <
Qi

0. As t(xi) >
Qi

0 by definition, the quadratic forms 〈〈b, t(−xi), t(x)〉〉 and 〈〈b, t(−xi), t(y)〉〉
are anisotropic over (K2)Qi , hence over K2. As a consequence, the quadratic forms 〈〈a,−xi, x〉〉
and 〈〈a,−xi, y〉〉 are anisotropic over K1. By the Hasse-Minkowski-Principle, there are P, R ∈
Ωa
K1

such that
xi >

P
0, x <

P
0 et xi >

R
0, y <

R
0.

Thus P = R = Pi and the quadratic form 〈〈a, x, y〉〉 is anisotropic over (K1)Pi . The converse is
similar.

Remarks 4.8. (1) By means of Remark 4.5, one can say that Theorem 4.6 and Theorem 1.5
are analogous. There are also some major differences between the two results. In the proof of
Theorem 4.6, the most important places are the finite places whereas in Theorem 1.5, they do
not play a part, the completion of a field at such places being local with u-invariant 4. Besides, in
Theorem 1.5, it seems that we have to suppose that t(−1) = −1 which is not the case in Theorem
4.6. In fact, in this last case, this condition comes from the “Global Square Theorem” (see [11,
Chapter VI, Theorem 3.7]) which has no analogue (as far as we know) in our situation.
(2) While proving (1) ⇒ (2) in Theorem 1.5, instead of saying that a certain field is SAP,
we could have used the Strong Approximation Theorem for global fields: see [15, Chapter II,
Theorem 2.1.2].
(3) In the case of algebraic function fields, the ring isomorphism W (L1, σ1) ' W (L2, σ2) is
equivalent to having an isomorphism K1

∗/NL1/K1
(L1
∗) ' K∗2/NL2/K2

(L2
∗) sending −1 to −1.

Similarly, we can prove:

Theorem 4.9. Let K be a global field of characteristic different from 2. Let Q1 = (a, b)K (resp.
Q2 = (c, d)K) be a quaternion algebra over K endowed with its canonical involution γ1 (resp.

γ2). For α, β ∈ K∗, denote by Ω
(α,β)
K the set of real places at which α and β are negative. Then,

the following are equivalent:
(1) W (Q1, γ1) 'W (Q2, γ2) as W (K)-modules.
(2) There exists a pair of maps (t, T ) where t is a group isomorphism t : K ∗/NrdQ1/K(Q1

∗) '
K∗/NrdQ2/K(Q2

∗) with t(−1) = −1 and where T is a bijection T : Ω
(a,b)
K → Ω

(c,d)
K such that the

quadratic form 〈〈a, b, x, y〉〉 is hyperbolic over KP if and only if the quadratic form 〈〈c, d, t(x), t(y)〉〉
is hyperbolic over KT (P ) for all x, y ∈ K∗/NrdQ1/K(Q1

∗) and for all P ∈ Ω
(a,b)
K .
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