
HAL Id: hal-01720656
https://hal.science/hal-01720656

Submitted on 1 Mar 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Improving Spectral Efficiency While Reducing PAPR
Using Faster-Than-Nyquist Multicarrier Signaling

Cyrille Siclet, Damien Roque, Alexandre Marquet, Laurent Ros

To cite this version:
Cyrille Siclet, Damien Roque, Alexandre Marquet, Laurent Ros. Improving Spectral Efficiency While
Reducing PAPR Using Faster-Than-Nyquist Multicarrier Signaling. International Workshop on Com-
munication Technologies for Vehicles, May 2017, Toulouse, France. �hal-01720656�

https://hal.science/hal-01720656
https://hal.archives-ouvertes.fr


Improving Spectral Efficiency While Reducing
PAPR Using Faster-Than-Nyquist Multicarrier

Signaling

Cyrille Siclet1, Damien Roque2, Alexandre Marquet1, and Laurent Ros1

1 Univ. Grenoble Alpes, GIPSA-Lab, F-38000 Grenoble, France
CNRS, GIPSA-Lab, F-38000 Grenoble, France,

{alexandre.marquet,cyrille.siclet,laurent.ros}@gipsa-lab.fr
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Abstract. Multicarrier modulations are widely used in mobile radio
applications due to their adaptability to the time-frequency characteris-
tics of the channel, thus enabling low-complexity equalization. However,
their intrinsically high peak-to-average power ratio (PAPR) is a major
drawback with regard to implementation issues (e.g., power amplification
efficiency, regulatory constraints...).
In this paper, we confirm that the PAPR can be decreased as the signal-
ing density (i.e., spectral efficiency at fixed constellation size) increases,
even in the case where symbols cannot be perfectly reconstructed using
a linear system. In such a two-dimensional generalization of faster-than-
Nyquist (FTN) systems, PAPR distribution models from the literature
are confirmed by simulation results. Furthermore, for a fixed number
of subcarriers, we show that a sufficient condition to yield the optimal
PAPR distribution at the output of a critically sampled transmitter is to
specify pulse shapes as tight frames. Finally, simulation are performed
in the more realistic case of an oversampled transmitted signal.

Keywords: Multicarrier modulations, faster-than-Nyquist signaling, peak-
to-average power ratio, power amplification.

1 Introduction: PAPR of faster-than-Nyquist multicarrier
modulations

Vehicular communications often imply radio propagation in a mobile multipath
environment (e.g., car-to-car communications, miniature unmanned aerial vehi-
cles, etc.). Input-output relation of such a propagation channel usually accounts
for time and frequency selectivity [1–3]. In this context, multicarrier modulations
can be specified as an approximate eigenstructure of the channel by allocating
information symbols to coordinate in the time-frequency plane as illustrated in
Fig. 1 [4, 5]. A careful design of the multicarrier system (i.e., time-frequency
lattice, pulse shapes, etc.) can significantly lower equalization’s computational
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complexity compared to more specific waveforms (e.g., single carrier modula-
tions, cyclic-prefixed orthogonal frequency-division multiplexing) [6].
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Fig. 1. Representation of a multicarrier signal with a rectangular lattice in the time-
frequency plane using Gaussian pulse shapes.

With an increasing need of spectral efficiency, the “faster-than-Nyquist”
(FTN) signaling technique has been extended to multicarrier modulations [7].
Denoting F0 the inter-carrier spacing and T0 the multicarrier symbol duration,
the system is referred to as FTN when its density ρ = 1/(F0T0) is strictly
greater than one. Such a constraint implies that transmitted information sym-
bols cannot be perfectly reconstructed using a linear receiver. In other words, for
a finite bandwidth and a fixed information symbol constellation of size Nc, any
increase of spectral efficiency η = ρ log2(Nc) beyond log2(Nc) comes at the cost
of interpulse interference that should be mitigated with the help of non-linear
receivers [8, 9].

Any transmitted multicarrier signal results from a sum of many independent
information symbols shaped and modulated onto subchannels of equal band-
width. It is thus characterized by an intrinsically high peak-to-average power
ratio (PAPR) [10]. Since the peak power is usually limited either by regulatory
or integration constraints (e.g., linear power amplification), the average power
should be adjusted consequently, thus penalizing the link budget.

In this paper, we show that PAPR decreases as the density increases, even in
the FTN context (ρ > 1), provided that appropriate pulse shapes are used. To
this extent, we refer to statistical PAPR models initially assessed for ρ ≤ 1 [11,
12]. We show that a sufficient condition to yield an optimal PAPR distribution
with a critically sampled FTN multicarrier transmitted signal is to specify pulse
shapes as tight frames. Simulations also reveal the need of more accurate PAPR
models in the context of oversampled systems.

The paper is organized as follows. Section 2 presents the multicarrier trans-
mitted signal model considering any density and pulse shape. Section 3 defines
PAPR and recalls statistical models from the literature while generating empir-
ical distributions through simulations. The FTN case is extensively investigated
in order to emphasize the influence of ρ > 1 combined with several practical pulse
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shapes sampled at the Nyquist rate or above. Finally, conclusion and insights
are given in Section 4.

2 System model: (non)-rectangularly shaped multicarrier
(FTN) modulations

Let K > 0 be the number of multicarrier symbols to be transmitted, and
M > 0 be the number of subcarriers. We define {cm,n}(m,n)∈I ∈ CK×M , I =
{0, . . . ,M − 1} × {0, . . . ,K − 1} the sequence of zero-mean, independent and
identically distributed (i.i.d) information symbols, usually taken in a finite set
(or constellation). In the continuous-time domain, the transmitted multicarrier
signal is obtained by shaping each symbol by a time-frequency shifted version of
a prototype (or pulse shape) g(t) ∈ R [13]:

s(t) =
∑

(m,n)∈I

cm,ngm,n(t), t ∈ R (1)

with

gm,n(t) = g(t− nT0)ej2πmF0t. (2)

In practical applications,M andK are bounded, {cm,n}(m,n)∈I is square summable
and g(t) is also square integrable such that the sum in (1) converges. One re-
calls that F0 > 0 and T0 > 0 represent elementary symbol spacing, in frequency
and time, respectively. By defining the transmission density as ρ = 1/(F0T0), it
can be shown that a necessary condition to perfectly recover the symbols cm,n
without interpulse interference (IPI) using a linear receiver is ρ ≤ 1 [14, Chapter
9]. Consequently, such a density parameter can be used to generalize the single
carrier Nyquist criterion3 to the two-dimensional case (i.e., time-frequency) such
that three cases arise [16]:

– ρ < 1 (or equivalently, T0 > 1/F0) corresponds to a slower-than-Nyquist
(STN) or undercritical system;

– ρ = 1 (or equivalently, T0 = 1/F0) corresponds to a Nyquist rate or critical
system;

– ρ > 1 (or equivalently, T0 < 1/F0) corresponds to a faster-than-Nyquist
(FTN) or overcritical system.

Over an additive white Gaussian noise (AWGN) channel, when ρ ≤ 1, symbols
are linearly recovered without IPI and with maximization of the signal-to-noise
ratio (SNR) when {gm,n(t)}(m,n)∈I constitutes an orthonormal family, i.e.:

〈gm,n, gp,q〉 =

∫ +∞

−∞
g∗m,n(t)gp,q(t) dt = δm,pδn,q (3)

3 The Nyquist criterion mentionned herein refers to the interference free condition, as
initially stated in [15] in the case of single carrier transmission.
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with δ the Kronecker delta and (m,n, p, q) ∈ I2. On the contrary, when ρ > 1
,{gm,n(t)}(m,n)∈I cannot be an orthogonal family and IPI cannot be removed by
a linear receiver, but the signal-to-interference-plus-noise ratio (SINR) is maxi-
mized when {gm,n(t)}(m,n)∈I forms a tight frame [16]. What is more, according to
the Wexler–Raz theorem [14, p. 214], this is equivalent to say that g̃m,n(t) forms
an orthonormal family sharing the same prototype in the dual time-frequency
lattice:

g̃m,n(t) =
√
F0T0g(t− n/F0)ej2πmt/T0 . (4)

For numerical purposes, the system may also be described at discrete-time.
The transmission generator g(t) is supposed to have a bandwidth Wg. It results
an overall system bandwidth W = (M−1)F0+Wg that can be approximated by
MF0 hereafter assuming |Wg − F0|/(MF0) � 1. In practice, it is generally the
case if we consider a large number of subcarriers. As a consequence, the signal
can be sampled at critical rate 1/Ts = MF0 and we denote N the number of
samples per multicarrier symbol such that T0 = NTs. Note that the density can
be rewritten as ρ = M/N and considering a unique multicarrier symbol, the
FTN case is illustrated in the discrete-time domain by a number of samples per
multicarrier symbol N less than the number of subcarriers M .

Assuming that g(t) has most of its energy in [−Ts/2;LgTs − Ts/2[, the
discrete-time transmission prototype can be expressed as

g[k] =

{√
Tsg(kTs) if k ∈ {0, . . . , Lg − 1}

0 otherwise.
(5)

where the factor
√
Ts is used for energy normalization. From (1), the discrete-

time transmitted signal can be expressed as

s[k] =
√
Tss (kTs) =

∑
(m,n)∈I

cm,ngm,n[k], (6)

with

gm,n[k] =
√
Tsgm,n (kTs) = g[k − nN ]ej2π

m
M k. (7)

A complete reception stage (including iterative decoding or decision feed-
back equalization techniques) may be found in [9] and shows that FTN systems
may allow an almost perfect recovery of the symbols at an extra computational
cost compared to orthogonal linear systems. Such receiving structures won’t be
detailed hereafter since we focus on the PAPR issue, which only involves the
transmitted signal model given in (1) and (6)

3 Benefits of FTN multicarrier signaling on PAPR

The PAPR of a signal is defined as the ratio of its peak power and its average
power. For a continuous-time multicarrier transmitted signal as defined in (1),
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assumed with a finite time support [0;T ] with T ≥ T0, we have:

PAPR =
maxt∈[0,T ] |s(t)|2

E{ 1
T

∫ T
0
|s(t)|2 dt}

(8)

where E{·} is the expectation operator. For a discrete-time (critically sampled)
signal as defined in (6), we denote Nt = T/Ts and we obtain the following
expression:

PAPRd =
maxk∈{0,...,Nt−1)} |s[k]|2

E{ 1
Nt

∑Nt−1
k=0 |s[k]|2}

(9)

Note that s[k] in the previous relation can be interpolated by a factor Ni. It is
consequently clear that PAPRd approaches PAPR as Ni becomes large (Ni = 4
is typically sufficient). As discussed in [11], the maximization in (8) or (9) is
often performed over a multicarrier symbol duration.

It may be derived from [11] that if

1. cm,n symbols are zero-mean and i.i.d.,
2. g(t) is time-limited,
3.
∑
n∈Z |g(t− nT0)|2 > 0 for all t ∈ R,

4. s[k] samples are independent from each other,

then, for M large enough (typically, M ≥ 8), the complementary cumulative
distribution function (CCDF) of the discrete-time PAPR may be approximated
thanks to the formula:

Pr{PAPRd > γ} ≈ 1−
N−1∏
k=0

(
1− e−γx[k]

)
(10)

with

x[k] =
‖g‖2

N
∑
n∈Z |g[k − nN ]|2

(11)

and, what is more, the best PAPR performance is achieved when x[k] = 1, so
that we then get

Pr{PAPRd > γ} ≈ 1−
(
1− e−γ

)N
. (12)

Note that the former expression matches traditional (rectangularly shaped)
OFDM waveform when N = M (i.e., in the absence of cyclic prefix). Never-
theless, if we manage to satisfy conditions 1 to 4 with an FTN multicarrier
system, this PAPR performance will be improved since ρ > 1 implies N < M .
Conditions 1 and 2 may obviously be imposed regardless of the system’s density.
We will now show that condition 3 and 4 are also satisfied if we use tight frames,
as recommended in [16] for the sake of SINR maximization.

Indeed, if gm,n(t) (or gm,n[k] for the discrete-time equivalent system), is a
tight frame, then the dual family g̃m,n(t) =

√
F0T0g(t − n/F0) exp(j2πmt/T0)
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forms an orthonormal family. This also means that g(t) satisfies the Nyquist
criterion at rate F0: ∑

m∈Z

|ĝ(f −mF0)|2 = cst, (13)

with ĝ(f) the Fourier transform of g(t).
According to [17], (13) implies that the power spectral density of s[k] is white

if cm,n are i.i.d and assuming a critical sampling frequency, namely 1/Ts = MF0.
What is more, using the central limit theorem as in [11,12], we get that samples
s[k] follow a Gaussian distribution and should be considered as independent
within our transmitted signal model (6). What is more, the fact that gm,n(t)
forms a tight frame also implies that [14, page 210]∑

n∈Z

|g(t− nT0)|2 = T0 ‖g‖2 (14)

so that
∑
n∈Z |g[k− nN ]|2 = N ‖g‖2, and x[k] defined in (11) is therefore equal

to 1.
These results are confirmed by simulations in which we use several prototypes

of tight frames: the first one maximizes the time-frequency localization (denoted
as TFL) [18], the second one is a square root raised cosine with roll-off equal
to ρ − 1 (denoted as SRRC) and the third one is a rectangular pulse-shape
of length M (denoted as RECT-M) or N (denoted as RECT-N). Even if the
M -samples rectangular window (RECT-M) does not generate a tight frame, it
may be shown that the samples of the subsequent multicarrier samples signal
are also independent. Nevertheless, in this case, the corresponding x[k] is not a
constant, leading to a degraded PAPR performance.

As for the CCDF of the PAPR, we first compare it in the discrete-time case
with the theoretical formula given by (12). Figures 2–5 show a very good match
with the theoretical formula whereas the use of a non-tight frame (RECT-M)
gives a discrete-time PAPR distribution very different. These simulations also
confirm that increasing the number of subcarriers improves accuracy (i.e., the
relevance of the central limit theorem).

We then compare the continuous-time PAPR distribution (Ni = 4) obtained
for the same systems. In this case, the theoretical formula does not hold since sig-
nal samples may not be considered independent anymore. Nevertheless, Figures
6–9 show that the relative positions of the different curves are unchanged. Thus,
this also confirms that increasing ρ not only increases the spectral efficiency,
but also improves the PAPR. In fact, for a given number M of subcarriers, the
distribution of the PAPR is the same as the one of an orthogonal system using
M/ρ ≤M subcarriers.
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Fig. 2. Discrete-time PAPR comparison for M = 64, a quadrature phase shift keying
(QPSK) constellation, ρ = 1.6, and various prototypes.
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Fig. 3. Discrete-time PAPR comparison for M = 64, a quadrature phase shift keying
(QPSK) constellation, ρ ≈ 1.14, and various prototypes.
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Fig. 4. Discrete-time PAPR comparison for M = 1024, a quadrature phase shift keying
(QPSK) constellation, ρ = 1.6, and various prototypes.
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4 Conclusion

In this article, we have firstly shown that PAPR distribution as derived in [11]
remains accurate in the case of practical critically sampled FTN multicarrier sys-
tems. Furthermore, optimum PAPR performance can be obtained in the FTN
case provided that (i) pulse shapes are chosen as tight frames and (ii) a suffi-
ciently large number of subcarriers is considered. Interestingly, at a given number
of subcarriers, FTN multicarrier systems based on tight frames achieve better
PAPR performance than traditional OFDM.

An open issue concerns the case where the multicarrier signal samples are
not independent. Hypothesis of independence is clearly not relevant when dealing
with an oversampled transmitted multicarrier signal. Consequently, the PAPR
distribution model derived in [11, 12] does not hold anymore. As future work,
one could investigate the conditions under which the transmitted samples are
independent. A second step could involve the derivation of more general PAPR
models (or instantaneous transmitted power [19]) allowing to confirm (or revoke)
the constraints to be fulfilled by optimum pulse shapes.
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