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ABSTRACT

1 Introduction

The objective of this work is to derive the mathe-
matical models that describe pollutant migration
through fractured porous media. For this pur-
pose, we use an homogenisation method, i.e. we
rigorously deduce the macroscopic models from
the physical description which is valid within a
Representative Elementary Volume (REV). The
fundamental assumption behind homogenisation
is the separation of scales, which we express as:
l ≪ L. In the present work, l denotes the char-
acteristic size of the REV, i.e. at the fracture’s
scale, whereas L represents the characteristic
macroscopic size. We apply the approach intro-
duced in [1], which is on the basis of definition
and estimation of dimensionless numbers that
arise from the description at the REV’s scale.
The validity domains of the derived macroscopic
descriptions are provided by means of orders of
magnitude of local dimensionless numbers

2 Dimensionless local descrip-
tion

The REV consists of a porous matrix domain,
Ωm, and of a fracture domain,Ωf , whose common
boundary is denoted by Γ. The medium is satu-
rated by water and a solute is diluted in water.
In the fracture’s domain, fluid flow is described
by Stokes equations and solute transport by the
diffusion-convection equation. In the porous ma-

trix, the filtration of the liquid is described by
Darcy’s law and solute transport is described by
a diffusion-advection law that accounts for diffu-
sion in the solid and diffusion and convection in
the pores. Note that the behaviour at the porous
matrix scale of the process of diffusion in both
the solid and the micropores may be different
from that considered here [2]. The methodology
consists in writing the local description in a di-
mensionless form and then in estimating the di-
mensionless numbers with respect to the lenght-
scale ratio ε. This leads to the following formu-
lation of the equations:

• In the fractures (Ωf )

ε2µ∆v⃗f − ∇⃗pf = 0⃗

∇⃗ · v⃗f = 0

N
∂cf
∂t − ∇⃗ · (D̃∇⃗cf − Pef cf v⃗f ) = 0

• In the porous matrix (Ωm)

v⃗m = −K̃m∇⃗pm

∇⃗ · v⃗m = 0

N ∂cm
∂t − ∇⃗ · (D̃m∇⃗cm − α2 Pef cmv⃗m) = 0

• On the boundary (Γ)

v⃗f = α2 v⃗m

Pf = Pm

(D̃f ∇⃗cf ) · n⃗ = (D̃f ∇⃗cm) · n⃗

cf = cm
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This dimensionless local description depends
upon the following parameters:

Pe =
LVfc

Dfc

; N =
L2

DfcTf
; α =

lp
l

Pef represents the Péclet number in the frac-
tures, lp denotes the characteristic pore-size, Vfc

and Dfc are characteristic values of the fluid ve-
locity and of the molecular diffusion in the frac-
tures, and Tf represents the characteristic time
of the transport process in fractures. It can be
shown that the cases of interest, i.e the cases that
lead to distinct macroscopic behaviours are the
following:
• Case 1:
Pef = O(ε) ; N = O(1) ; α = O(ε)
(predominant diffusion in the fractures)
• Case 2:
Pef = O(1) ; N = O(1) ; α = O(ε)
(equivalent diffusion and convection in
the fractures)
• Case 3: Pef = O(ε−1) ; N = O(ε−1)
(predominant convection in the fractures)
Case 3.a: α = O(ε

1/2) ; Case 3.b: α = O(ε)

3 Derived upscaled models

The derived macroscopic models are the follow-
ing:

• Fluid flow
V⃗f = −K̃f ∇⃗P

∇⃗ · V⃗f = 0

• Solute transport

Case 1: purely diffusive behaviour

∂C
∂t − ∇⃗ ·

(
D̃eff ∇⃗C

)
= 0

Case 2: convection-diffusion

∂C
∂t − ∇⃗ ·

(
D̃eff ∇⃗C − CV⃗f

)
Case 3.a: dispersion with influence of the
porous matrix

∂C
∂t − ε∇⃗ ·

[
D̃disp∇⃗C − 1

εC
(
V⃗f + εV⃗m

)]
= 0

Case 3.b: dispersion

∂C
∂t − ε∇⃗ ·

[
D̃disp∇⃗C − 1

εCV⃗f

]
= 0

In the above equations, K̃f represents the
effective permeability tensor, D̃eff and D̃disp are
the effective diffusion tensor and the apparent
dispersion tensor, respectively. These three
effective tensors are the solutions to boundary-
value problems defined over the REV. In can be
proved [3] that: i) K̃f is a symmetrical tensor
and depends upon the geometry of the REV
and fluid viscosity; ii) D̃eff is also symmetrical
and depends upon the cell-geometry and the
molecular diffusion; iii) D̃disp is not symmetrical
in the general case and depends upon the
pressure gradient.

4 Conclusion

The above results show that the macroscopic de-
scription strongly depends upon the local trans-
port regime (Pef ) and, in a less extent, upon
the order of magnitude of lp/l. We have de-
rived four distinct continuous models for solute
transport in fractured porous media. Since the
flow is steady-state, there is no dual-porosity
effect in the macroscopic fluid flow equations
(single-porosity model for fluid flow). On the
contrary, since the solute transport process is
time-dependent, dual-porosity effects are present
in all macroscopic transport equations, through
the expressions obtained for D̃eff (models 1 and
2) and D̃disp (models 3a and 3b). An important
feature of model 3a is that it shows an influ-
ence of the advection in the porous matrix at
the macroscopic scale.
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