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SOME ISSUES ABOUT THE INTRODUCTION OF FIRST

CONCEPTS IN LINEAR ALGEBRA DURING TUTORIAL

SESSIONS AT THE BEGINNING OF UNIVERSITY

NICOLAS GRENIER-BOLEY

Abstract. Certain mathematical concepts were not introduced to solve
a specific open problem but rather to solve different problems with the
same tools in an economic formal way or to unify several approaches:
such concepts, as some of those of linear algebra, are presumably dif-
ficult to introduce to students as they are potentially interwoven with
many types of difficulties as formal ones and far away from the actual
knowledge of the students. The purpose of this paper is to propose a
methodology for studying the introduction of such concepts in linear al-
gebra during tutorial sessions at the beginning of university, the wording
of the concepts being yet presented during lectures. For this purpose,
we amend a general methodology of Pariès, Robert and Rogalski inside
the general framework of Activity Theory. This methodology lets us
take into account several specificities of these concepts and studies the
mathematical activity the teacher organises for students and the way he
manages the relationship between students’ actual activities and math-
ematical tasks. We also present an implementation of this methodology
based on a French university course to illustrate our approach and dis-
cuss its possibilities.

linear algebra and FUG concept and methodology and students’ ac-
tivity and teacher’s activity

1. Introduction

At the beginning of their university studies, students meet several new
mathematical concepts for which the distance between what they know and
what they have to do with them is great. Among these, FUG concepts
are considered to be the most arduous ones, insofar as they concentrate
difficulties of different nature: a FUG concept is a mathematical concept
that introduces generality by unifying earlier objects through a new formal-
ism (Robert, 1998); basic examples of such concepts include vector spaces
(Dorier, 2000) and the (ε,N)-formalization of the convergence of a real se-
quence (Robert, 1998). To illustrate the type of difficulties that can occur
during the introduction of a FUG concept, let us consider the following ex-
ercise; it has been proposed to first year university students during the first
tutorial session corresponding to a linear algebra course, having just seen
the definition of the notion of vector space:
“In R2, define the operations (x, y)+(x′, y′) = (x+x′, y+y′) and α.(x, y) =
(αx, 0). Is R2 endowed with these operations a vector space?”.
Although it is a classical exercise, there is a real gap between the mathe-
matical acti-vities employed at the end of secondary school and the ones
potentially involved in this exercise. First of all, the question is open and
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the statement of the exercise does not suggest any method. The students
thus have to consider the axiomatic nature of the definition of vector space,
consequently split their reasoning into several steps in accordance with this
definition and decide whether or not each axiom is satisfied: in fact, it is nec-
essary and sufficient to show that the axiom “for any v in R2, 1.v = v” does
not hold. Proving that each axiom does or does not hold for the respective
operations necessitates a combination of complex tasks such as conversion
between (representation) registers (Duval, 2006), appropriate use of logic
and formalism, and the production of a proof or a counterexample, all of
which require expertise and flexibility.

We share the hypothesis according to which there is no problem to give full
meaning to a FUG concept (Dorier, 2000). In such a case, students’ learning
cannot result from the mathematical tasks proposed to them independently
from the teacher’s interventions, hence the way he organises his teaching
interventions during the corresponding tutorial sessions is crucial in many
ways:
-How does the teacher manage the introduction of a FUG concept? How
does he take into account students’ heterogeneity?
-What kind of assistance does he offer to students? Which mathematical
activities are their responsibility?
-Does he refer to the lectures? If so, how and when?

The main purpose of this paper is to propose a methodology in order to
study the introduction of FUG concepts during the tutorial sessions corre-
sponding to an introductory linear algebra course: more precisely, our goal
is to define systematic indicators (as objective as possible) to characterize
the teacher’s choices during tutorial sessions related to such concepts. Ad-
mittedly, the beginning of the teaching of linear algebra is often considered
to be a particular case of what is proposed at the beginning of university:
from our viewpoint, the choice of this very teaching moment might be char-
acteristic among the teaching phases in which there is no proximity between
students’ knowledge and the course. In this sense, one may hope that such
a methodology could be generalised to a certain extent to other teaching
moments dedicated to the introduction of FUG concepts.

The paper is organised as follows. In Section 2, we present the theoretical
framework and the associated hypotheses that will be used, recall some
specificities of the linear algebra field at the beginning of university and give
the precise definition of a FUG concept; the interests of our framework to
validly study the introduction of a FUG concept in linear algebra inside
the classroom are also highlighted. In Section 3 we design the methodology
of our research, its implementation being illustrated on a particular video
corpus based on a French university course in Section 4. We also describe
some results associated to this corpus that are then discussed in Section 5.

2. Theoretical background

2.1. Some facts about secondary education and university in France.
In France, secondary education is divided into seven grades inside two schools:
the collège for the first four years following primary school and the lycée for
the next three years. The baccalauréat is the end-of-lycée diploma students



sit in order to enter university. University is divided into three grades: Li-
cence (Bachelor), Master (Master) and Doctorat (Doctorate). In addition
Licence and Master are organised in semesters (6 for the Licence and 4 for
the Master) which are divided into several courses, each devoted to a specific
field.

For our purpose, the main difference between secondary school and uni-
versity concerning the teaching of Mathematics is the way it is organised.
For a given grade in secondary school, each course is usually taught by a
single teacher who is free to organise the courses and the exercises according
to the current programmes, and thus has opportunities to create links be-
tween the course and the exercises. This is not the case at university where
lectures and tutorial sessions are temporally separated and often supervised
by two different teachers: for a given university course, students attend the
lectures and then split into smaller groups for the corresponding tutorial
sessions. Lectures are delivered by the teacher responsible for the course
with minimal interaction. During tutorial sessions, students have to apply
the knowledge introduced in the lectures to particular situations (be it ex-
ercises, problems...) in the presence of a teacher (the tutor) who organises
interactions, possible helps and corrections. For most students, the knowl-
edge of the course is practised and acquired during these sessions: in this
regard, their study is a natural focus of interest, as well as their possible
links with the lectures as already pointed out.

2.2. General framework. We base our approach on Activity Theory (Leon-
tiev, 1975; Leplat, 1997) and its adaptation to the teaching of mathematics
(Rogalski, 2013; Robert and Hache, 2013). The main purpose of this frame-
work is to better understand the teaching and learning of mathematics by
analysing students and teachers’ activities as individual subjects. Within
this framework, the main concept is the concept of activity which implicitly
refers for us to a goal-oriented activity, that is “the activity of an individual
subject, with individual motivations, within a specific situation”(Rogalski,
2013): other senses of this concept are used in the literature - for example,
the activity of a collective system (Engeström, 1999) - but are not taken
into account in our study. An essential element is the distinction between
task and activity: whereas the task is understood as “the goal to be attained
under certain circumstances”, the activity is “what the subject engages dur-
ing the completion of a task”, including internal and external actions; in
other words, “the activity relates to the subject, while the task relates to the
objects of the action”(Rogalski, 2013).

Our framework incorporates general hypotheses about student learning
by connecting Activity Theory to some other constructivist theories about
mathematical learning. In particular, from a Piagetian point of view, it is
considered that an individual subject constructs knowledge about a specific
object through actions on this object. From a Vygotskian point of view, it is
considered that a student “is an individual and social subject, who will con-
struct tools for thought within social interactions”. In the literature, these
viewpoints either appear to be in opposition or to be complementary, de-
pending on the theoretical backgrounds of the considered studies. Following



Rogalski (2013), we will consider that they can be articulated by suppos-
ing that student’ learning with respect to a given mathematical content at
a given teaching moment can either be an internal individual process (the
student works on his own) or part of a social process (the student has the
possibility to take part in a collective work, possibly after didactic inter-
ventions of the teacher); in general, these two types of processes are not
associated with similar contents.

To sum up, it is considered that student learning results from his activities
in response to (mathematical) tasks. Moreover, “students’ activities are pro-
voked by the teacher, and depend on some of the teacher’s choices, on their
work itself and on the way the teacher intervenes on their work”(Robert,
2012). We also hypothesize that the identification of students’ proximal de-
velopment zone (PDZ) by the teacher is fundamental: it is “situated between
the current level of development, defined by what the [student] is capable of
doing or solving autonomously, and what the [student] can do or solve with
the help of others”(Rogalski, 2013); this concept is particularly relevant in
the case of a new knowledge.

2.3. Analyses of mathematical tasks and students’ activities. The
general framework of Activity Theory allows us to analyse students and
teachers’ activities inside the classroom. Following Robert and Hache (2013),
we now explain in which way this general framework can be adapted to
take into account the specificity of mathematics teaching: in particular, we
present further theoretical hypotheses and methodological tools.

Suppose that a mathematical statement is given to students during a
certain teaching intervention inside the classroom: by hypothesis, studying
students’ activities during this intervention suppose to study their actions -
including what they do, say, think, do not do, do not say, etc. - during the
completion of each mathematical task that is attached to the statement with
anything added by the teacher. We distinguish two stages in the process of
analysis of such a situation: an a priori analysis of the mathematical tasks
involved in the statement and an a posteriori analysis of the class period
corresponding to the teaching intervention. Each analysis is based upon
additional general hypotheses on students’ learning.

2.3.1. A priori analyses of mathematical tasks. An a priori analysis of the
tasks that are potentially involved in a mathematical statement consists of
determining what activities students will be able to take part in for this
statement, with their supposed knowledge: by hypothesis, these tasks are
supposed to have an influence on students’ activities, and therefore on stu-
dents’ learning. Moreover, it is hypothesized that “the possible ways to mo-
bilize, combine, and recognize the knowledge to be used in exercises are the
main factor in constructing student knowledge”(Robert and Hache, 2013).
During this analysis, we are thus interested in determining the various and
specific knowledge adaptations potentially involved in the statement, taking
into account students’ level of schooling and acquired knowledge. We note
that there exist other mathematical tasks analyses that are less specific in
terms of mathematical knowledge to apply, but rather insist on the nature of



students’ work (making and testing conjectures, looking for patterns, mem-
orization, use of formulas or algorithms...) (Stein, Grover and Henningsen,
1996).

When a mathematical task is a direct application of an explicit knowledge,
we refer to it as a simple and isolated task (SIT). When a task is not a simple
and isolated task, we determine the combinations of knowledge adaptations
that students must do, using the following list of knowledge adaptations clas-
sified into (non independent) categories (Horoks and Robert, 2007; Robert
and Hache, 2013):

(A1) Acknowledgement of the terms that allow the theorem, for-
mula, definition, method to be used.
(A2) Introduction of intermediate terms, letters, notations,...
(A3) Change of frames (Douady, 1986), representation registers
(Duval, 2006), points of view (Vandebrouck, 2013).
(A4) Introduction of steps in the solution (usual or not).
(A5) Use of previous questions in solving a problem.
(A6) Existence of different choices in the solution, forced or not.
(A7) Lack of new knowledge.

The result of this analysis is the determination of students’ expected ac-
tivities in relation with the considered statement, that is the activities that
we can predict consi-dering their supposed knowledge. By hypothesis, the
expected activities are characterised by the different knowledge adaptations
that students must do: explicitly, it is supposed that the more students
work on diversified tasks in terms of knowledge adaptations, the more the
activities are varied and favourable for learning.

2.3.2. A posteriori analyses. The a priori analysis of a statement is com-
pleted by an a posteriori analysis of the corresponding teaching intervention:
for this, we incorporate any element that is added by the teacher, be it collec-
tive didactic interventions that could or could not be within students’ PDZ
(such as questions, recalls, hints, helps (direct, indirect), explanations, par-
tial corrections and any type of assistance) or anything that is related to the
organisation of students’ work. The hypothesis here is that student knowl-
edge “depends not only on proposed tasks and the actions they may provoke,
but also on the way in which these tasks are worked on by students”(Robert
and Hache, 2013).

The purpose of this analysis is to reconstitute students’ activities from
the analysis of the class period (that shall be detailed in the next section).
For this, we make a further theoretical hypothesis: as students’ activities
are partly internal hence inaccessible, we will only have access to students’
possible activities which are presumably closed to their real activities and
for which we hypothesize that they give a pertinent access to students’ learn-
ing. By definition, students’ possible activities are those that have been (at
least) partly done by a majority of students, considering the analysis of the
teaching intervention.

2.4. FUG concepts. Some mathematical concepts were not invented to
solve a specific problem but rather to solve different problems with the
same tools - such as those arising in the modern theories of vector spaces,



of groups, of topological spaces - or to unify several definitions (for exam-
ple, the definition of a category which is an axiomatic capture of what is
commonly found in many algebraic structures such as sets, rings, fields, al-
gebras, modules (Mac Lane, 1998)). When a new mathematical concept
(object, method or tool) is taught to students, a way to measure the dis-
tance between this concept and previous elements of knowledge is to try to
detect three functions attached to it: the formalizing characteristic, the uni-
fying characteristic and the generalizing characteristic (Robert, 1987; Dorier,
1995; Robert, 1998; Vandebrouck, 2013).

The formalizing characteristic of a concept consists in a new formalism
- including new vocabulary, new symbols and unification of previous co-
existing formalisms - which has not been fully introduced yet. For example,
at the beginning of university, the formalism of the (ε,N)-definition of the
convergence of a real sequence is new, especially in the formal translation of
the definition, although the symbols involved in it are already known.

The unifying characteristic of a concept means that the concept unifies
previously known concepts of which it has been abstracted. For example,
the notion of vector space introduced at the beginning of university has
a unifying characteristic as it can be used to work with real polynomials,
real sequences or the set of solutions of a homogeneous linear differential
equation in a similar way.

The generalizing characteristic of a concept refers to the fact that the
concept generalizes or extends one or several pre-existing elements of knowl-
edge. For example, the notion of topological space which is usually intro-
duced during the Master has a generalizing characteristic because it extends
the notion of metric space introduced during the Licence.

When a concept has all three characteristics at the same time, it is called
a FUG concept : it means that this concept introduces greater generality
by unifying earlier objects through a new formalism than other notions,
extension of old ones or directly tied to a given question (Robert, 1998;
Vandebrouck, 2013). As already said, two families of FUG concepts have
been particularly studied: those of linear algebra, for example vector spaces,
vector subspaces (spanned by a family of vectors) (Dorier, 2000), those of
real analysis, for example the (ε,N)-definition of the convergence of a real
sequence or the (ε, η)-definition of the limit of a real function at a point
(Robert, 1998). Recently, it has been shown that the interpretation of sev-
eral elements of knowledge as FUG concepts at the beginning of a topology
course during the third year of Licence could lead to a better understanding
of students’ difficulties in relation to these concepts (Bridoux, 2011).

2.5. Linear algebra. From an epistemological point of view - a compre-
hensive epistemological analysis of the genesis of linear algebra can be found
in Dorier (1998) or Dorier (2000), part 1, from which our few observations
are borrowed - the first unification of several key notions of linear algebra
(such as the notions of basis and dimension) from a global geometric per-
spective dates from Grassmann’s misunderstood work (1844, 1862). The
general axiomatic definition of a vector space was first given by Peano in
1888 after his reading of Grassmann’s work; the axiomatic presentation of
the theory became predominant in the 1930’s then in the 1940’s in France



after the publication of fundamental books, among which those by van der
Waerden, Banach and Bourbaki.

In France, it is a tradition to present the formal axiomatic theory of vec-
tor spaces to first-year university students by trying to keep a link with
their acquired knowledge from secondary school: yet, it appears that stu-
dents have difficulties with prerequisites in logic, set theory and geometry,
in using the first notions of linear algebra, in seeing the link with famil-
iar situations and in flexibly converting between registers (Dorier, 2000).
Moreover, epistemological causes for students’ difficulties in linear algebra
can also be highlighted. Indeed, the formalism of the underlying concepts is
a great obstacle for students: it appears that this formalism is intrinsically
difficult, as this difficulty is inherent in the unification and generalization;
more, the simplification offered by mastering these concepts is postponed as
it is correlated to a good understanding of the theory (Dorier, 2000).

2.6. Teaching FUG concepts: the case of linear algebra. To intro-
duce a new concept to be taught to students, it is always interesting to find
a fundamental situation, that is a problem where this new concept is the ad-
equate and unique tool to be used to solve the problem (Brousseau, 1997):
after such a situation, the teacher can institutionalise this concept in the
sense that he consecrates it as a formal piece of knowledge that can be used
as a tool afterwards (Brousseau, 1997)). For FUG concepts at the beginning
of a linear algebra course, it seems that the existence of such a situation is
unlikely as it would require a great effort of formalization and abstraction
and to take into account different types of difficulties and epistemological
specificities (see previous Subsections). We thus share the hypothesis that
it is not possible to introduce them meaningfully by means of a fundamental
situation (Dorier, 2000; Vandebrouck, 2013).

This strong hypothesis raises the question of the possibilities offered to
a teacher who wants to introduce such concepts. As this introduction can
only be partial, an optimal strategy would be to institutionalise part of
the concept first and then to give students a problem to give it meaning
(Dorier, 2000). For many reasons, this strategy is not always possible and the
teacher can also choose to institutionalise the whole concept first and then
concentrate on problems and exercises in order to “bring students closer”to
this concept.

In any case, the role of the teacher during teaching interventions dedicated
to the introduction of FUG concepts in linear algebra is essential given that
students’ learning cannot only result from their activities in response to
mathematical tasks. From our point of view, the choice of our theoretical
framework is particularly adapted to conduct a valid study of such teaching
interventions. First, several methodological tools that allow us to analyse
students ’activities are still pertinent for FUG concepts (see Subsection 2.2).
Next, the specificities of linear algebra’s FUG concepts lead us to choose
analyses that take into account teachers’ activities: the way he organises the
corresponding teaching interventions, the type of assistance he offers within
or above students’ PDZ. We shall now precisely describe the methodology
designed for our purpose.



3. Methodology

The methodology used to design this research is based upon a general
methodology due to Pariès, Robert and Rogalski (2009) (see also Robert
and Hache, 2013) whose purpose is to study the teaching of a given math-
ematical topic inside the framework described in the previous Section. It
consists of several degrees of analysis of a classroom session, which are called
acts, ranging from the more general to the finest depending on the type of
research. Our methodology will be composed of four acts: the first three acts
are taken out from the general methodology while the fourth one is new and
adapted in accordance with our purpose. It has been designed to analyse
the teaching intervention devoted to a given statement: this session should
be video-recorded and transcribed and several preliminary informations are
required (for example, informations about the syllabus, the specificity of the
underlying concept(s), the teaching project of the teacher and his represen-
tations of the class).

3.1. First act. The first act, which has already been precisely described in
2.3.1, consists of an a priori analysis of the mathematical tasks potentially
involved in the studied statement: by hypothesis, these tasks are supposed to
have an influence on students’ activities, and therefore on students’ learning.
As a result, we determine students’ expected activities, that is the activities
that are characterised by the different knowledge adaptations that we can
predict considering their supposed knowledge.

3.2. Second and third act. The second and third act complete the a priori
analysis of the first act by a posteriori analyses of the teaching intervention
corresponding to the studied statement (see 2.3.2).

The second act is an analysis of the real teaching intervention based on a
video-recording. Its purpose is to produce a chronological table that com-
pares mathematical tasks as expected by the a priori analysis with the
teacher’s collective interventions (that are supposed to have a crucial influ-
ence on students’ activities). We first produce a chronological list of mathe-
matical tasks as they are encountered throughout the teaching intervention,
each mathematical task determining a phase: for this, we are helped by the
mathematical tasks that have been determined during our a priori analysis.
For each phase, we note the nature of students’ work, including the length
of the phase, the format (individual, collective, etc.), the output of the task
(individual research, correction, etc.) and refer to the mathematical task
of the a priori analysis. For each phase, we also compare the nature of
students’ work to the teacher’s collective didactic interventions (in the sense
that has been specified in 2.3.2) and to the type of tasks proposed to them
(researching, writing, recopying, listening, etc.). In order to give a compre-
hensive and readable report of this analysis, we organise it chronologically in
a three column table: the left column contains he nature of the work organ-
ised by the teacher, the center column contains the collective interventions
of the teacher and the right column contains the type of tasks.

The third act consists in the determination of students’ possible activities
(see 2.3.2) using the table produced in the second act. More precisely, this
chronological table contains traces of activities be they encouraged by the



teacher or not: possible activities are those that we can estimate were done
by a majority of students during the teaching intervention. Afterwards,
students’ possible activities are compared to students’ expected activities
determined during the first act: this is a way to compare what has been
predicted by the a priori analysis with what has been effective (and per-
haps facilitated by the interventions of the teacher) during the teaching
intervention.

3.3. Fourth act. The purpose of this new act is to define an indicator
to measure (or even characterize) the global organisation of the teaching
intervention by the teacher based on the table constructed in the second
act. This act has been constructed in order to try to characterize some of
the teacher’s choices during tutorial sessions related to FUG concepts in a
linear algebra course.

The first step is to label the different phases determined during the second
act, considering notably the relative presence or absence of interactions be-
tween the teacher and students. For this, we use four types of label (which
will be defined and explained below): prologue, individual research, cor-
rection or postlogue. To each statement, we then associate the (ordered)
4-tuple (x, y, z, t) where x (respectively y, z, t) represents the integer part
of the time proportion devoted to the prologue (respectively the individual
research, the correction, the postlogue) during the teaching intervention.
For us, this 4-tuple will be a global management indicator of the considered
statement. The second step is to try to group the statements for which the
global management indicator is similar in a single statement type, and try
to interpret these types with respect to the mathematical tasks involved.

Needless to say, the global management indicator is defined through a rad-
ical loss of information in comparison with the second act of this method-
ology: indeed, we might have to group together some consecutive phases
in order to label them and the chronology is not fully taken into account.
Moreover, the second step is based on a double conscious bet: to be able
to classify in a single type the statements that have a similar global man-
agement indicator and to be able to give an interpretation of these types
according to the mathematical tasks that are involved. For this, we will use
the informations obtained in the first three acts.

For us, this loss of information is deliberate and based on the very speci-
ficity of the teaching moment that has been chosen. As the teaching of FUG
concepts at the beginning of a linear algebra course is problematic for dif-
ferent reasons (see Subsections 2.4 and 2.5), the teacher do not have many
possibilities (see Subsection 2.6): we thus hypothesize that the global man-
agement indicator attached to a statement, however simplistic it appears,
gives a simple and still pertinent access to the way the teacher globally or-
ganises his teaching intervention. More, the global management indicator of
a given statement is a report of the time spent on each type of phase during
the teaching intervention: it is supposed to be an index of the importance
given by the teacher to this type of phase in relation with the statement.

We now define and explain the four types of labels used in the global
management indicator in relation with our main purpose.



The prologue is the phase which occurs before any individual research (or
possibly after a brief phase of individual research) during which the teacher
recalls facts (definitions, results, methods, etc.) and/or asks questions to
the students. It can also be an opportunity for him to give direct or indirect
help, to suggest a resolution strategy, or to take charge a priori of some
elements of the correction. As already mentioned, the question of the link
between lectures and tutorial sessions is crucial: for us, the prologue phase
is also a way of taking this dimension into account.

The individual research is the phase in which the teacher allows the stu-
dents to search for a solution to the whole exercise (or part of it) on their
own. Considering our theoretical hypotheses, this phase is a way to measure
the proportion of the exercise in which the students can potentially acquire
knowledge during tutorial sessions, and to see which mathematical tasks are
their responsibility.

The correction is the phase in the course of which the teacher gives a
correction of the whole exercise (or part of it) or asks a student to do it on
the blackboard. It can occur after a phase of individual research, in which
case the teacher has the opportunity to take into account students’ activities
that he has possibly detected.

The postlogue is a phase in which the teacher contextualizes the correc-
tion of the exercise: providing complementary remarks, comparing different
methods or giving examples that illustrate what has just been seen. For us,
this phase is a way to see how the teacher manages students’ heterogeneity
after the correction and how he possibly remains within their PDZ. We also
consider the postlogue phase as a mean for the teacher to take charge of
several students’ difficulties a posteriori.

4. Implementation of the methodology: an example

4.1. Presentation of the data. The data that we are going to analyse
are part of a half-year course given in a French university consisting of
three lectures and ten tutorial sessions at the very beginning of a linear
algebra course given to first-year students during the second semester. The
supervisor of the tutorial sessions (whom we will call Gilles) is different
from the supervisor of the lectures, the question of references to the course
by Gilles thus being relevant. The sessions have been video-recorded and
subtitled. The corresponding syllabus goes from the notion of vector space
to the notion of basis: for the sake of completeness, the reader will find a
chronological list of the statements given in these sessions in Appendix A.
During the first semester, the students have studied the solving of systems
of linear equations and matrix operations with the same teacher.

4.2. Two examples of analysis. We give an illustration of our method-
ology by analysing two statements among those treated during the tutorial
sessions by Gilles: we refer to Appendix A for their wording.

4.2.1. Exercise 1, sheet 2. The a priori analysis of mathematical tasks for
this exercise having already been done in the introduction, we now focus on
the adaptations of knowledge (see Subsection 2.3.1). During the previous
lecture, the notions of vector space over K (K = R or C) and of vector



subspace have been defined and studied: the supervisor has particularly
emphasized the classical vector space structure of Rn over R for a positive
integer n.

As already said in the introduction, it suffices to show that the axiom
“∀x ∈ R2, 1.x = x” does not hold: this requires an adaptation of type (A3)
for some students because they have to pass from the formal vectorial register
“∀x ∈ R2, 1.x = x” to the vectorial coordinates register “∀(x, y) ∈ R2,
1.(x, y) = (x, y)”. In this case, they have to produce a counterexample (e.g.
1.(1, 1) 6= (1, 1)), which requires adaptations of type (A1) and (A4) at this
stage of the year (respectively for the appropriate use of logic and quantifiers
and for the introduction of steps in the reasoning). Note that the operations
+ and . satisfy the other axioms, so there is only one choice.

Note that this exercise represents students’ first encounter with the no-
tion of vector space during tutorial sessions: we can expect them to verify
whether each axiom is satisfied or not, all the more so the only axiom that
does not hold is the last one in the definition given in the lecture. In this
case, they have to split their reasoning into two steps (A4):

• show that (E,+) is an abelian group, either by remarking that the
operation + defined in the exercise is the operation that confers
to R2 its usual structure of abelian group (A1) or by verifying the
four axioms (A1)×4, the formalism of their definitions potentially
necessitating a change of register (A3).
• show that three of the axioms for the operation . are satisfied (A1)×3

and that the last axiom does not hold (see above).

We consider that the verification of each axiom requires an adaptation of
type (A1) at this stage of the year and is not a simple and isolated task
(SIT). We can expect difficulties due to the fact that the notion of vector
space is a FUG concept (particularly with the formalism): in this regard,
the teacher will probably take charge of some tasks.

The report of the second act of analysis can be found in Figure 1. For this
exercise, we describe precisely the third act of analysis. The teacher gives
direct help from the start and decomposes the task into subtasks. He takes
charge of some of them: identification of the classical addition of R2, proof
of an axiom of the external binary operation after a little time for individ-
ual research. The students copy down the de-finitions of a closed/external
binary operation and the classical vector space structure of R2 and they are
led to see that the closed binary operation of the exercise is the classical one.
However, the structure of abelian group has not been recalled precisely: yet,
two axioms are mentioned by the teacher (existence of a zero element and
of an inverse for each element). The only task to which the students have
access is the verification of the axioms of the external binary operation. Af-
ter a short period of individual research, the teacher shows that the external
operation satisfies one of these axioms. After another period of individual
research, the teacher proves that the last axiom does not hold. At the very
end, the teacher mentions that the other axioms are satisfied, without pro-
viding any proof. By his collective interventions, the teacher has reduced
the original mathematical tasks and we see that students’ possible activities



Nature of the work Collective interventions of the teacher Types of tasks

Prologue (5’20”) The teacher introduces the notion of vector Listening.
space to the students and emphasizes its

-Introduction and recalls (4’25”) unifying and generalizing characteristics.
He recalls what a closed/external binary

-Writing of the wording (55”) operation is and writes the wording. Recopying.

Collective recap on the notion

of a vector space (4’26”) The teacher mentions these properties Some participating.

-Enumeration of the axioms of and solicits answers from the students.
the closed binary operation (1’10”)

-Enumeration of the axioms of The teacher writes down these properties Some participating.

the external binary operation (3’16”) and solicits answers from the students.

Setting up of the
strategy (4’19”) The teacher explains to the students that Listening.

-the laws of the exercise are the two operations of the exercise are

closed/external (32”) respectively closed and external.
-R2 endowed with the He recalls the classical vector space Recopying, some

closed operation is an abelian of R2 and mentions that the closed participating.

group (2’59”) binary operation of the exercise is
the classical one.

-Collective strategy for the The teacher indicates a strategy for the Listening.
rest of the exercise (55”) case of the external binary operation.

Individual research (3’09”) Silence. Researching.

Beginning of the correction
and recap on the strategy (4’51”) The teacher proves that ∀α, β ∈ K, Recopying, some
-one axiom of the external ∀x ∈ R2, (α+ β).x = α.x+ β.x participating.

binary operation holds (3’51”) He recalls the research strategy for the other
-recap on the strategy (1’) axioms of the external binary operation. Listening.

Individual research (3’34”) Silence. Researching.

Correction (3’47”) The teacher shows that the operation Recopying, some
-the last axiom does not hold does not satisfy the last axiom. participating.

-epilogue (38”) The teacher mentions that the other axioms Listening.

are satisfied by the external binary operation.

Figure 1. Sequence of events of exercise 1, sheet 2

are activities linked to simple and isolated tasks and correspond to (some
of) the expected activities determined during the first act.

We now come to the fourth act. The teaching intervention has been sep-
arated into seven phases. The first two phases are clearly prologue phases,
and we consider the third one as part of the prologue as the teacher modi-
fies students’ tasks before the period of individual research by presenting a
strategy for the statement and giving a correction of part of it. The fourth
and sixth phases are individual research phases, whereas the fifth and sev-
enth ones are correction phases. The global management indicator of this
exercise is (47, 22, 30, 0).

4.2.2. Exercise 5 (1)(2), sheet 2. We first describe the a priori analysis for
this statement. For point (1), the students can see that the set is included
in R2 (SIT) and use the fact that R2 endowed with its usual operations is a
vector space ((A1) or (SIT)) in order to show that the given set is a vector
subspace of R2 (A1) (by showing that the set is non empty and stable with
respect to the two operations, (A4) and (A1)×3). Note that there is another
choice (A6): they can show that the considered set is the vector subspace of



R2 spanned by the vector (5, 1), as this notion was introduced and studied
during the first lecture.

For point (2), the students can show that the set is not a vector subspace
of R2 endowed with its usual operations in several ways (A6):

• show directly that the zero element of R2 is not in the given set
(SIT).
• show that the set is not stable with respect to the addition by giving

a counterexample (e.g. (3, 4), (8,−1) are in the set, but their sum
is not (A1)); note that there is no real choice here, as any pair of
elements gives a counterexample: this allows for a formal proof which
would be unlikely at this stage of the year.
• show that the set is not closed under the external binary operation by

giving a counterexample (e.g. (3, 4) is in the set but 2.(3, 4) = (6, 8)
is not (A1)). Again, for any element x in the set and any scalar
λ 6= 1, we have that λ.x is not in the set.

The report of the second act of analysis can be found in Figure 2. As in
the previous exercise, students’ possible activities coincide with the expected
activities. The global management indicator associated to this exercise is
(2, 49, 18, 28).

Nature of the work Collective interventions of the teacher Types of tasks

Devolution and reduction The teacher writes the wording and Recopying. One
of the task identifies the sets as subsets of R2. student recalls that
(1’03’)’ R2 is a vector space.

Individual research (20’30”) Silence. Researching.

Correction of (1): He decomposes the tasks into subtasks Recopying.
E1 is not empty (44”) and proves that E1 is not empty.

Correction of (1): The teacher gives the corresponding Recopying.

E1 is closed under addition (2’53”) correction.

Correction of (1), conclusion: The teacher gives the corresponding Recopying.

E1 is closed under . (1’57”) correction.

A posteriori reflection regarding The teacher plots the affine line which Some giving vectors

the use of the graphical corresponds to E1, highlights its of E1 that are represented
frame (6’20”) direction and asks questions. by the teacher.

Questioning the The teacher asks the students if E2 Some saying that 0 /∈ E2

students about E2 (23”) is a vector subspace of R2. or is not stable wrt + or .

Collective discussion about the The teachers discusses the meaning Some participating.

fact that E2 is not empty and of the word “empty”. He highlights
about the way of proving it (2’25”) the economy of showing that 0 ∈ E2.

Setting up of the framework The teacher encourages the students to Listening. Some
to prove the non-stability represent the affine line corresponding reacting and answering.

of E2 with respect to + (4’06”) to E2.

Correction of the non-stability The teacher gives a geometric Listening.

of E2 with respect to + (2’10”) interpretation of this proposition.

Figure 2. Sequence of events of exercice 5(1) and (2), sheet 2

4.3. Survey of some results. Within the limits of this paper, we present
only the most significant results of this study. First of all, our analyses show
that for most statements, students’ possible activities correspond to their
expected activities, as in the examples above. In the sequel, we use the
notation EnSm(p) to refer to Exercise n of Sheet m, question (p).



4.3.1. Global results. Before coming to the global results, we give a few
complements about Gilles’ teaching. We first note that Gilles always allows
time for a phase of individual research, whatever the exercise. Usually, each
type of phase appeared at most once per exercise; in some cases though, there
were two phases of individual research or of correction (e.g. see E1S2 above):
in this situation, we have added the respective durations to determine the
global management indicator. Note also that:

• E10S2 was not taken into account as the video does not show if there
was a phase of individual research or not.
• some teaching interventions do not entirely appear on the videos

which are cut before the end (mainly because the video-recording
was made by Gilles himself): this is the case for E5S2(3)(4), E5S2(5),
E6S2 and E1S3(1). Nevertheless, we have made the choice to include
them in our results, either because we could see that the cut was
near the end of the exercise (in which case we think that the global
management indicator is a good approximation of what happened)
or because the cut was taken into account in our indicator.
• E8S2 and E8S3 were treated during two consecutive tutorial sessions.
• for the exercises composed of several questions (e.g. E5S2), the

cutting-out of Gilles into several different sessions has been taken
into account to delimit the different statements and the correspond-
ing teaching interventions.

We refer to Appendix B, Figure 4 for the table giving the proportion of each
type of phase in each statement. The next step in our methodology is to
classify the statements according to the similarities in their respective global
management indicators, if possible. By observing the table, one can make
the following objective remarks1:

• some statements do not have any postlogue phase: among those,
some have a prologue whose proportion is approximately 50 per cent
of the total time (e. g. E1S2) or between 15 and 30 per cent of the
total time (e. g. E4S2) and some do not have any prologue either
(e. g. E9S2);
• some statements have a postlogue phase: among those, some have an

individual research whose proportion is approximately 50 per cent
of the total time (e. g. E5S2(1)(2)) or 25 per cent of the total time
(e. g. E5S2(5)).

These first observations can be completed to classify the statements into
five types, considering the distribution of the global management indicator:
for type 1 the global management indicator is approximately (50, 20, 30, 0),
for type 2 it is (30, 40, 20, 10), for type 3 it is (0, 45, 30, 20), for type 4
(0, 80, 15, 0) and for type 5 it is (0, 25, 50, 20). Figure 3 allows the reader to
form an objective idea about this classification: of course, there are some
approximations but we think that the global management indicators of the
statements belonging to a given type are sufficiently similar to justify it.

1When we say that a statement does not have a particular type of phase, it could mean
that this phase is, in proportion, very short or insignificant with respect to the other
proportions. This will be justified and explained in the next Subsection.



Types and exercises Indicator
Type 1
E1S2 (47, 22, 30, 0)
E2S2 (50, 30, 18, 0)
New exercise (44, 19, 30, 6)
Type 2
E4S2 (30, 42, 23, 0)
E6S2 (31, 31, 26, 10)
E11S2 (13, 51, 35, 0)
E1S3(1) (23, 33, 32, 10)
E8S3 (18, 43, 22, 16)
Type 3
E5S2(1)(2) (2, 49, 18, 28)
E7S2 (2, 42, 36, 18)
E8S2 (4, 47, 33, 13)
E1S3(2) (0, 54, 25, 20)
E5S3 (0, 54, 17, 28)
Type 4
E5S2(3)(4) (9, 76, 14, 0)
E9S2 (0, 77, 6, 16)
E12S2 (0, 87, 12, 0)
Type 5
E5S2(5) (0, 24, 55, 20)
E1S3(3)(4) (0, 29, 49, 22)

Figure 3. Global management indicators of the exercises

4.3.2. Back to the mathematical tasks. The classification of the statements
into five types according to the distribution of the global management in-
dicators is quantitative: we now try to give a qualitative interpretation of
these types in terms of the mathematical tasks that are involved. For this,
we use the analyses of the first three acts.
Type 1. The three statements of this type deal with FUG concepts that are
seen for the first time during tutorial sessions (the notion of vector space in
E1S2, of vector subspace in E2S2, of vector subspace spanned by a subset
in the new exercise). Consequently, Gilles chooses to begin with a long
prologue (about 50 per cent of the total duration), the individual research
is rather short and there is no postlogue (or it is very short and not about
mathematical considerations). In the prologues, Gilles recalls material about
the considered FUG concepts, proposes strategies and offers direct help to
the students: in particular, as for E1S2 (see Subsection 4.2), he takes charge
of adaptations of type (A1) and/or (A4) during these prologues:

• for E2S2, Gilles recalls the notion of vector subspace (A1), indicates
the way it can be used to show that a subset of a vector space is a
vector space and introduces steps in the reasoning process (A4);
• for the new exercise, Gilles recalls the notion of vector subspace

spanned by a subset (A1) and the notion of sum of two vector sub-
spaces (A1) then proves that Vect(F ∪ Fa) = F + Fa.



Type 2. For these statements, the teacher begins with a prologue of lesser
proportion than in the first type, because the novelty factor is less significant
for the students even if these exercises still deal with FUG concepts:

• in E4S2 the underlying vector space is new but the result used has
already been seen in E2S2;
• in E6S2 the underlying vector space and the notion of sum of vector

spaces have already been seen before but the notion of direct sum is
new;
• in E11S2 the notion of Cartesian equation of a vector space is new;
• in E1S3(1) the notion of linearly independent vectors is new but the

notion of vector subspace spanned by a subset is not;
• in E8S3, the notion of basis is new but the notions of linearly de-

pendent vectors or of Cartesian equation are not.

For this reason, the adaptations of type (A1) are easier than in the first
type but are still taken in charge by Gilles; he also takes responsibility of
adaptations of type (A2) or (A3). The proportion of individual research
increases in comparison with type 1 and there is sometimes a postlogue in
which the teacher gives an illustration, introduces new notions or additional
questions:

• in E6S2 he comes back to the example of the exponential function
which was mentioned in the prologue to give a possible intuition to
the students;
• in E3S3(1) he introduces the dimension of a vector space and dis-

cusses about the cardinality of different families of vectors;
• in E8S3 the question of the verification of the exactness of the Carte-

sian equation is evoked and a new question is given to the students:
determine the coordinates of a vector in the given basis of F .

Type 3. In this type, there is no prologue (or it is very short and not sig-
nificant), the phase of individual research is long and the proportion of the
correction is more or less similar to that in type 2. In these exercises, it
turns out that if there is still a degree of novelty it is minor:

• in E5S2(1)(2), the result to use has already been seen but point (2)
is more difficult as the students have to prove that the considered
set is not a vector subspace;
• in E7S2, the notion of direct sum is not new but has only been seen

for the case of two vector spaces;
• in E1S3(2), the notion of linearly independent vectors is not new

but the task is more delicate as the considered family is composed
of three vectors (the students thus cannot use an argument of non-
collinearity);
• in E5S3, the notions of basis and of dimension are not new.

The postlogue is usually more essential than in type 2 and deals with ques-
tions which will be of greater significance in the sequel of the course:

• in E5S2(1)(2), Gilles gives a graphical representation of the sets in
order to give a “visual intuition”to the students;



• in E7S2 and E8S2, an explicit decomposition of a given vector of R2

along the direct sum is searched by means of a graphical represen-
tation;
• in E1S3(2), Gilles mentions that the considered family of vectors is

a basis of R3 as it is a maximal family composed of linearly inde-
pendent vectors;
• in E5S3, the notion of rank is introduced and used to give an alter-

native solution to the exercise.

In terms of adaptations, students have choices to solve the statements (A6):
these choices are highlighted by Gilles during the postlogue.
Type 4. In this type, there is no prologue, the individual research is very
long (more than 75 per cent of the total time) and the correction is quick.
The exercises bring into play simple and isolated tasks (SIT) on which the
students work independently from the beginning:

• in E5S2(3)(4), the vector space structure of P has already been used
in E4S2 and besides Gilles recalls it at the very beginning;
• in E9S2, the notion of linear combination has already been used

(E6S2 and E8S2);
• in E12S2, the notion of subspace generated by a subset has been used

many times before (E7S2, E8S2 and E11S2).

Type 5. In this type, individual research occurs from the beginning (but
not for a very long time) and the teacher gives a long correction (more
than 50 per cent of the total time) with a postlogue which emphasizes its
consequences. The students have to apply their knowledge in situations
where a parameter is new:

• in E5S2(5), the result to use is not new but the presence of the
connector “or” complicates the tasks. In the postlogue, a discussion
about the meaning of the locutions “or”and “and ” is organised
and the question whether an union/intersection of vector spaces is a
vector space is solved.
• in E1S3(4), the family of vectors under study depends from a pa-

rameter about which the students have to discuss in order to answer
to the question. In the postlogue, the teacher insists on the fact
that the considered family of vectors is linearly dependent and has
cardinal 3 which implies that it cannot span R3.

The exercise E5S2(6). The global management indicator is (3,57,35,0) hence
its distribution is not close to those of the five types determined above. More,
the mathematical tasks involved in this statement are simple and isolated
tasks (showing that a subset of a vector space is not a subspace has already
been seen in E5S2(3)(4)), thus it does not seem relevant to create a new
type. For these reasons, this exercise does not appear in the above table.

4.4. Prologues and postlogues. In view of some of the questions ad-
dressed in the introduction - in particular, the question of the link between
lectures and practice sessions - we now give some complementary results
about the institutionalisations (in the sense of Section 2.6) addressed by the
teacher during the phases of prologue and postlogue.



First of all, a quick analysis shows that the knowledge which is institu-
tionalised during the prologue is usually clarified or illustrated during the
subsequent postlogue. This is not always the case however, as some post-
logues anticipate the subsequent prologue: in the new exercise, the notion
of direct sum is introduced in view of E6S2.

Secondly, it seems that the purpose of the institutionalisation varies, de-
pending on the type of the statement and when it occurs (prologue or post-
logue): in relation to Douady’s “dialectique outil-objet”(Douady, 1986), we
will refer to an object institutio-nalisation if the purpose is to recall a theo-
retic notion and to a tool institutionalisation if the purpose is instead focused
on the use of a notion in order to solve a problem. In the prologues of type
1, the institutionalisation is of object type, as it is a part of a theoreti-
cal course which is very similar to the one that has been given during the
corresponding lecture. In the statements of type 2, the institutionalisation
is rather a tool institutionalisation: general methods adapted to the given
statement are presented in order to facilitate the individual research (during
the prologues), notions are recalled in the framework of the exercise (during
the postlogues). In the postlogues of type 3, this is also a tool institution-
alisation: the teacher gives explicit proofs, recalls a notion in order to show
its simplifying aspect or enables the students to use their intuition.

Finally, it seems interesting to link these results to the evolution of stu-
dents’ autonomy with respect to the different types of exercises. In type
1, the novelty is maximal, and the teacher begins with a prologue in which
the institutionalisation is object: this does not give any autonomy to the
students. In type 2, there is still a great deal of novelty, and the teacher
emphasizes crucial technical aspects, and hence the degree of student auton-
omy is poor. In type 3, the degree of novelty is lesser, students’ autonomy is
greater and the institutionalisation is a tool institutionalisation. When the
autonomy is great (types 4 and 5), there are no institutionalisations. We
can thus hypothesize that types 2 and 3 are crucial from the point of view
of the transfer of autonomy to the students, and that there is a potential
link between the purpose and scheduling of the institutionalisation on the
one hand and students’ autonomy on the other hand.

5. Discussion and perspectives

5.1. Back to the results of our particular study. By means of our
methodology, we have been able to produce a first classification of the state-
ments proposed by the teacher in five types by means of an indicator that
gives a global view of his organisation of the teaching interventions. After a
deeper analysis of these types, it turns out that this first classification corre-
sponds to a second classification of the exercises in terms of the mathematical
tasks involved and of the order in which they are proposed2. For us, the
correspondence of these two different classifications shows that the way the
teacher globally organises his teaching interventions is strongly connected

2For example, a same mathematical task can belong to an exercise of type 1 or of type
2, depending on the moment it is seen by students: we have seen that E2S2 belongs to
type 1 and E4S2 to type 2 but an a priori inversion between these two exercises would
have certainly produced the corresponding inversion between the types.



to his perception of the mathematical tasks being solicited in the state-
ments and to their chronological order during the tutorial sessions. When
the statements deal with new FUG concepts (types 1 and 2), the teacher
organises a prologue in which he recalls the principal notions, results and
methods from the lecture. When the students are allowed to research from
the beginning, the degree of novelty in the exercise is less (type 3), absent
(type 4) or a parameter in the exercise is new (type 5). When students are
autonomous (types 3 and 5), the teacher organises a postlogue in which he
sets the underlying knowledge in the context of the exercise.

In addition, an analysis of the institutionalisations has shown an evolution
of the purpose (according to whether it is an object or tool institutionali-
sation) and the timing of these. In the exercises where students’ autonomy
is absent or weak (types 1 and 2), the biggest part of the institutionali-
sation appears before the phase of individual research, and it is either an
object institutionalisation (type 1) or a tool institutionalisation (type 2).
In the exercises where the autonomy is greater (types 3,4 and 5), either
the institutionalisation occurs after the correction (type 3) or there are no
institutionalisations at all. As a consequence, one may assume that there
is a link between the timing, the purpose of the institutionalisations and
students’ autonomy according to the teacher.

Another result of our work is the establishment of a correspondence be-
tween students’ expected activities (determined during the first act) and pos-
sible activities (determined during the third act) for most of the statements.
For us, this shows a phenomenon of a priori management by the teacher:
the inscription of a statement inside a certain type is decided a priori by
the teacher and linked to the difficulty of the mathematical tasks, possibly
implicitly. Roughly speaking, the teacher decides what is new in terms of
knowledge and what is not. More, our analyses of the statements and of
the corresponding teaching interventions, show that the mathematical tasks
that are under the responsibility of students when they are autonomous are
reduced to the maximum, depending on the statement type: in particular,
the mathematical tasks that are involved in statements of type 1 are reduced
to simple and isolated tasks by the teacher before any individual research
while those that are involved in statements of type 4 are not reduced as they
are already simple and isolated tasks. By his a priori management on the
one hand and his reduction of the initial mathematical tasks on the other
hand, the teacher does not give the students the opportunity to question
the novelty of many statements with respect to their knowledge and to work
autonomously with several types of knowledge adaptations.

5.2. Teaching linear algebra: some possibilities. In our particular
study of linear algebra’s tutorial sessions, the statements for which the
teacher decides to begin with a prologue are those which deal with FUG
concepts that are studied for the first time (types 1 and 2), that is those
where the degree of novelty with respect to knowledge is maximal: in this
case, we have seen that he chooses to reduce the initial mathematical tasks
either by institutionalising concepts or methods or by taking in charge some
knowledge adaptations. By this global organisation, we may suppose that



the teacher prevents the students from being exposed to the main difficul-
ties of these concepts: more, the students for which this sort of management
for this type of concepts is above their ZPD could at best produce an im-
mediate imitation of the teacher, thus not capturing the essence of these
concepts. Our results show that the knowledge adaptations which are under
the responsibility of students are not very diverse, hence one may assume
that students’ learning with respect to the underlying FUG concepts is not
satisfactory.

Such results naturally raise the question of the possibilities or levers of-
fered to a teacher who wants to introduce FUG concepts at the beginning of
a linear algebra course (see also Subsection 2.6). Several alternative teach-
ing sequences or long-term courses adapted to the teaching of the beginning
of linear algebra have been developed (Harel, 1989; Dorier, 1990; Rogalski,
1994; Dorier, 1995; Dorier, 2000, part 2) in order to find a teaching that
would be more satisfying and adapted to the specificities of FUG concepts.
Among those, some of them share several hypotheses that come from the
observation and analysis of students’ difficulties involved in teaching linear
algebra and from an epistemological analysis (Dorier, 1998; Dorier, 2000,
part 1):

• to take into account the specificity of linear algebra’s FUG concepts
(see Subsections 2.4, 2.5 and 2.6);
• the teaching of linear algebra requires a certain number of prereq-

uisites, in particular in the domains of mathematical logic and set
theory;
• to use changes of frames or of points of view “as a unifying stimu-

lator, first, and as a problem-solving tool, after.”(Dorier, 2000, part
2, chapter 3);
• use of the meta lever (Robert and Robinet, 1996), that is the “the

use, in teaching, of information or knowledge about mathematics
(Dorier, 2000);

There is also a choice of ‘good’ problem in which students are exposed to
mathematical tasks and varied knowledge adaptations on their own (keeping
in mind that it follows from general hypotheses that such a problem is only
a partial introduction to the given FUG concept, see Subsection 2.6). In this
spirit, we can mention the following problem as a first approach to the FUG
concept of vector subspace generated by a subset (Robert, 2000): ‘find all
the three-row, three-column square tables, so that the sums of the elements
of each row, each column and each diagonal are equal to 0.”.

5.3. Perspectives. Within the theoretical framework used in this study,
we have been able to adapt and amend a methodology in order to study
teaching moments dedicated to the introduction of FUG concepts during
tutorial sessions at the beginning of a linear algebra course. Because of the
specificities of such concepts, we have stressed that the study of teaching
interventions as they are organised by the teacher is essential and unavoid-
able: in this regard, our methodology defines several systematic indicators
to study students’ learning together with the teacher’s activities in such mo-
ments. We thus believe that this methodology should be generalisable to



other teaching moments dedicated to the introduction of FUG concepts at
the beginning of university: in our opinion, this methodology offers an easy
way (as a first approach) to compare different ‘teaching styles’, in the case
where teacher’s interventions during classroom events are crucial.

To illustrate the possibilities offered by this methodology, we have also
implemented it in a particular case: another perspective of our work is thus
to continue our investigation of introductory linear algebra tutorial sessions
with other teachers, possibly in foreign universities, either to spot invariants
or variabilities in teachers’ practices or to highlight the spectrum of teachers’
possibilities.

Our study of the lectures and tutorial sessions of our corpus has allowed
us to observe several phenomena linked to issues concerning the secondary-
tertiary transition.

Firstly, a double institutionalisation phenomenon has already been em-
phasized: a classical institutionalisation during the lectures and an institu-
tionalisation which is linked with the mathematical tasks during the tutorial
sessions. It seems to us that this phenomenon should be questioned in sev-
eral regards. What is the purpose of the institutionalisation given during
the lectures in relation to students’ learning? What kind of links are made
by the students between both institutionalisation types? Is it possible to
explain the role of the institutionalisation which occurs during the tutorial
sessions in terms of the transfer of autonomy to the students? It would
also be interesting to build a method to compare systematically both types
of institutionalisations; a first step for this purpose would be to design a
methodology to study the lectures: to our best knowledge, this has not been
done yet.

Secondly, we have been able to spot an expertise concerning the manage-
ment of the conversion between different representation registers in Gilles’
practice. However, the conversion transformations are not explained or
taught (Dorier, 1998) whereas they are a main source of difficulties when
learning mathematics (Duval, 2006). It should be an interesting matter
to investigate whether conversions contribute to students’ difficulties in the
secondary-tertiary transition.

Last, we have also spotted discursive regularities in Gilles’ interactions
with the students or in its discourse during the correction phases. Some
research point out that logic is in a way absent from teacher’s discourse
and replaced by reasoning rules that are not taught and interwoven with
mathematical knowledge (Durand-Guerrier and Arsac, 2003). In relation to
this, one could ask in what extent reasoning rules appear in the teacher’s
discourse during the introduction of new mathematical knowledge in tertiary
level, more particularly in the case of FUG concepts.

Appendix A

Sheet 2 : Vector spaces and subspaces

Exercise 1
In R2, define the operations (x, y) + (x′, y′) = (x + x′, y + y′), α.(x, y) =



(αx, 0). Is R2 endowed with these operations a vector space?

Exercise 2

Show that the set of matrices M =

(
a c
b d

)
such that a+d = 0 is a vector

space.

Exercise 4
Let a and b be real numbers. Show that the set of solutions of the differential
equation y′′ + ay′ + by = 0 over [0; 1] is a vector space.

Exercise 5
Let P denote the set of functions of class C∞ from R to R. Which of the
following subspaces are vector spaces and which are not?
(1) {(x1, x2) ∈ R2 | x1 = 5x2}.
(2) {(x1, x2) ∈ R2 | x1 + x2 = 7}.
(3) {f ∈ P | f(0) = 1}.
(4) {f ∈ P | f(x) = f(−x) for all x ∈ R}.
(5) {(x1, x2, x3) ∈ R3 | x1 + x2 = 0 or x1 = x3}.
(6) {(x1, x2, x3) ∈ R3 | x1

2 + x2
2 = x3

2}.

New exercise
Let F (resp. Fa) be the vector subspace of R2 spanned by the vector (1, 1)
(resp. (2, a)), where a is a real parameter. Determine the vector subspace
of R2 spanned by F ∪ Fa according to a.

Exercise 6
Let E be the set of functions from R to R, F (resp. G) be the subset of E
that consists of even (resp. odd) functions. Show that F and G are vector
subspaces of E and that E = F ⊕G.

Exercise 7
Define the following vector subspaces of R2:

D1 = {(a, b) ∈ R2 | b = 0}; D2 = {(a, b) ∈ R2 | a = 0}; D3 = {(a, b) ∈ R2 | a = b}.

Show that R2 = D1 +D2 +D3. Is it a direct sum?

Exercise 8
Let D be the vector subspace of R3 spanned by the vector (−1, 1, 2) and
define the set P = {(x, y, z) ∈ R3 | x+ 2y− z = 0}. Show that P is a vector
subspace strictly included in R3. Show that any vector u = (x, y, z) ∈ R3 can
be uniquely decomposed as (x, y, z) = (x′, y′, z′)+(x′′, y′′, z′′), (x′, y′, z′) ∈ P
and (x′′, y′′, z′′) ∈ D.

Exercise 9
Consider the n-tuples (x1, · · · , xn), (x′1, · · · , x′n) and let λ be a real para-
mater. Express the following n-tuples as a liear combination of (x1, · · · , xn)
and (x′1, · · · , x′n) : (x1 +x′1, · · · , xn +x′n), (x1−x′1, · · · , xn−x′n), (0, · · · , 0),



(x1, · · · , xn), (λx1, · · · , λxn).

Exercice 10
Can we find two real numbers x and y such that the vector v = (−2, x, y, 3)
is a linear combination of the vectors u1 = (1,−1, 1, 2) and u2 = (−1, 2, 3, 1)?

Exercise 11
Give a cartesian equation of the following vector subspaces:
(1) F = Vect{(1, 3)} ⊂ R2.
(2) G = Vect{(1, 2, 3); (1, 0, 1)} ⊂ R3.
(3) H = Vect{(1, 0, 1, 0)} ⊂ R4.

Exercise 12
Define

E =


 a− b b− c 2c

2a a+ b −b
b c a

 , a, b, c ∈ R

 .

Show that E is a vector subspace of M3(R). Show that E is spanned by
the following matrices 1 0 0

2 1 0
0 0 1

 ,

 −1 1 0
0 1 −1
1 0 0

 ,

 0 −1 2
0 0 0
0 1 0

 .

Sheet 3 : Sets of vectors

Exercise 1 [the only part of question (4) that has been videorecorded concerns
the question of the linear dependence of the considered subset ]
In the vector space R3, decide whether or not the subsets consisting of the
following vectors are linearly dependent or span R3.
(1) u1 = (−1, 2, 1), u2 = (− 1√

2
,
√

2, 1√
2
).

(2) u1 = (−1, 1, 1), u2 = (1, 1,−2), u3 = (1, 2, 1).
(3) u1 = (1, 2, 3), u2 = (3, 2, 1), u3 = (1, 1, 1).
(4) u1 = (1, 1, 1), u2 = (m, 1,m), u3 = (m,m,m2), where m is a real pa-
rameter.

Exercise 8
Let u = (1, 2, 3), v = (2,−1, 1), w = (2,−3,−1) ∈ R3.
(1) Show that the subset consisting of u ,v and w is linearly dependent and
give a basis of F = Vect{u, v, w}.
(2) Give a cartesian equation of F .

Exercise 5
Define v1 = (2, 1, 3, 1), v2 = (1, 2, 0, 1), v3 = (−1, 1,−3, 0) ∈ R4 and let
E = Vect{v1, v2, v3}. Give the dimension and a basis of E.

Appendix B

In the following chronological table, we give the results concerning the
global indicators in each statement of the corpus; we also mention the exact



duration of each phase (for a given phase, this data appears italicized in
brackets) and the total duration of the exercise. The durations are given in
terms of minutes and seconds in order to minimize the rounding errors in
the proportions.

Exercise Prologue Research Correction Postlogue Total

E1S2 47 (14’08”) 22 (6’41”) 30 (9’06”) 0 (29’55”)
E2S2 50 (13’53”) 30 (8’24”) 18 (5’08”) 0 (27’25”)
E4S2 30 (12’51”) 42 (18’06”) 23 (9’59”) 0 (42’17”)
E5S2(1)(2) 2 (58”) 49 (20’34”) 18 (7’48”) 28 (11’50”) (41’33”)
E5S2(3)(4) 9 (2’26”) 76 (20’42”) 14 (3’59”) 0 (27’07”)
E5S2(5) 0 24 (8’04”) 55 (18’14”) 20 (6’42”) (33’ )
E5S2(6) 3 (40”) 57 (12’17”) 35 (7’36”) 0 (21’33”)
New exercise 44 (32’11”) 19 (13’50”) 30 (21’40”) 6 (4’35”) (1h12’16”)
E6S2 31 (7’24”) 31 (7’33”) 26 (6’16”) 10 (2’33”) (23’56”)
E7S2 2 (1’ ) 42 (14’40”) 36 (12’47”) 18 (6’15”) (34’42”)
E8S2 4 (4’15”) 47 (42’55”) 33 (30’16”) 13(11’39”) (1h29’59”)
E9S2 0 77 (25’03”) 6 (2’01”) 16(5’16”) (32’20”)
E11S2 13 (6’35”) 51 (24’58”) 35 (17’07”) 0 (48’40”)
E12S2 0 87 (21’17”) 12 (2’58”) 0 (24’15”)
E1S3(1) 23 (10’17”) 33 (14’39”) 32 (14’26”) 10 (4’40”) (44’02”)
E1S3(2) 0 54 (13’48”) 25 (6’22”) 20(5’05”) (25’25”)
E1S3(3)(4) 0 29 (12’30”) 49 (21’09”) 22(9’28”) (43’07”)
E8S3 18 (12’27”) 43 (30’06”) 22 (15’17”) 16(11’20”) (1h08’35”)
E5S3 0 54 (25’50”) 17 (8’18”) 28(13’31”) (47’39”)

Figure 4. Proportion of the global indicators in the exercises
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premiers concepts d’algèbre linéaire. Approche historique et didactique [A
contribution to the study of the teaching of linear algebra’s first concepts at
the university. A historical and didactical approach]. Thèse de Doctorat de
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22), Université Paris Diderot, France Sense Publisher.

Rogalski, M. (1994). L’enseignement de l’algèbre linéaire en première année de
DEUG A [The teaching of linear algebra during the first year of university].
La Gazette des Mathématiciens, 60, 39–62.

Stein, M. K., Grover, B. & Henningsen M. (1996). Building student capacity for



mathematical thinking and reasoning: An analysis of mathematical tasks used
in reform classrooms. American Educational Research Journal, 33(2), 455–488.

Vandebrouck, F. (Ed.). (2013). Mathematics Classrooms: Students’ Activities and
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