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Introduction

Skew Reed-Solomon codes are a generalization of Reed-Solomon codes and Gabidulin codes. These codes are MDS codes for the Hamming metric and a decoding algorithm inspired from Welch-Berlekamp algorithm was designed in [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF] over finite fields. In [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF], the author defines a new metric, called skewmetric, which is optimal for skew Reed-Solomon codes defined over any division ring (Maximum Skew Distance codes, Theorem 1 of [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF]).

The aim of this note is to give a new interpretation of the skew metric defined in [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF] and prove that the decoding Algorithm 1 page 22 of [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF] can be adapted from the Hamming metric to the skew metric.

In Section 2, we recall the material for defining skew Reed-Solomon codes and the skew metric. In Section 3 we give a new interpretation of the skew metric using a least common left multiple of linear skew polynomials. In Section 4, we prove that Algorithm 1 page 22 of [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF] can be adapted from the Hamming metric to the skew metric. Examples are given over finite fields. The ring R = A[X; θ, δ] is defined on the set { n i=0 a i X i |n ∈ N, a i ∈ A} where the addition is the usual addition of polynomials and the multiplication is defined by the rule : for a in A X • a = θ(a) X + δ(a).

Generalities on skew Reed-Solomon codes

(

) 1 
The ring R is called a skew polynomial ring or Ore ring (cf. [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF]) and its elements are skew polynomials. When θ is not the identity, the ring R is not commutative, it is a left and right Euclidean ring whose left and right ideals are principal. Left and right gcd and lcm exist in R and can be computed using the left and right Euclidean algorithms. In what follows we will assume that least common left multiples of skew polynomials and greatest common right multiples of skew polynomials are necessarily monic skew polynomials.

Definition 1. ([3] p. 310) Let A be a division ring, θ ∈ Aut(A) and δ a θderivation. For f ∈ R and a ∈ A, the (right) remainder evaluation of f at a is denoted f (a) and is defined as the remainder of the right division of f by

X -a. If f (a) = 0, then a is a right root of f .
The following definition ([3] p. 310) generalizes the classical notion of the norm of a field element : for a in A, for i ∈ N, N θ,δ i (a) is recursively defined as

N θ,δ 0 (a) = 1 N θ,δ i+1 (a) = θ(N θ,δ i (a)) a + δ(N θ,δ i (a)). If f = i f i X i ∈ R and a ∈ A then f (a) = i f i N θ,δ i (a).
Definition 2. ([3], page 321) Let A be a division ring, θ ∈ Aut(A), δ be a θderivation and n ∈ N * . Let α 1 , . . . , α n in A. The (θ, δ)-Vandermonde matrix of α = (α 1 , . . . , α n ) is defined by

V θ,δ n (α) =      1 1 • • • 1 N θ,δ 1 (α 1 ) N θ,δ 1 (α 2 ) • • • N θ,δ 1 (α n ) . . . . . . • • • . . . N θ,δ n-1 (α 1 ) N θ,δ n-1 (α 2 ) • • • N θ,δ n-1 (α n )     
.

Later, we will define the skew Reed-Solomon codes by evaluating some skew polynomials at points α 1 , . . . , α n of A such that rank(V θ,δ n (α)) = n. We will say that these points are P -independent. The following theorem establishes a link between the rank of the Vandermonde matrix mentioned above and the degree of the least common left multiple of linear skew polynomials.

Theorem 1 (Theorem 8, [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF] page 326). Let A be a division ring, n ∈ N * , θ ∈ Aut(A) and δ be a θ-derivation. Let α 1 , . . . , α n ∈ A and g = lclm 1≤i≤n (X -

α i ) ∈ R be the least common left multiple of X -α i , i = 1, . . . , n, then deg(g) = rank V θ,δ n (α 1 , . . . , α n ) . If deg(g) = n then α 1 , . . . , α n are P -independent. Consider a subset Ω of A, the rank of Ω is Rank(Ω) := deg lclm u∈Ω (X -u). Assume that α 1 , . . . , α n are P -independent. If Ω is a subset of A such that lclm 1≤i≤n (X -α i ) = lclm u∈Ω (X -u), then (α 1 , . . . , α n ) is a P -basis of Ω.
Definition 3 (Definition 7 of [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF], Definition 19 of [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF]). Let A be a division ring, θ ∈ Aut(A) and δ be a θ-derivation. Let n ∈ N * , k ∈ {1 . . . , n}. Consider α 1 , . . . , α n on A P -independent in A. The skew Reed-Solomon code of length n, dimension k and support α = (α 1 , . . . , α n ) is defined as

R θ,δ k,n (α) = {(f (α 1 ), . . . , f (α n )) | f ∈ R <k }.
Skew Reed-Solomon codes are MDS codes for the Hamming metric ( [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF]) and MSD (Maximum Skew Distance) for the skew metric (see Definition 9 and Theorem 1 of [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF]). In what follows we recall the definition of the skew metric and give a new interpretation of this metric by using the least common left multiple of linear skew polynomials.

Skew metric

Recall that for y = (y 1 , . . . , y n ) in A n , the Hamming weight of y is the number of non-zero coordinates of y :

w H (y) := #{i ∈ {1, . . . , n} | y i = 0}.
Consider a division subring K of A, the rank weight of y is the dimension of the space generated by its coordinates over K:

w R (y) := dim(< y 1 , . . . , y n > K ).
Reed-Solomon codes are optimal for the Hamming metric (Maximum Separable Distance codes), while Gabidulin codes are optimal for the rank metric (Maximum Rank Distance codes).

Definition 4 (Definition 9 of [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF]).

Consider α = (α 1 , . . . , α n ) in A n such that α 1 , . . . , α n are P -independent. Consider P = lclm 1≤i≤n (X -α i ) in R. The skew weight of y = (y 1 , . . . , y n ) ∈ A n is w α (y) = n -Rank(Z α (F ))
where F ∈ R <n is the skew interpolation polynomial at the n points (α i , y i ) and

Z α (F ) = {u ∈ A | F (u) = P (u) = 0}. Example 1. Consider F 2 6 = F 2 (a)
where a 6 +a 4 +a 3 +a+1 = 0. Consider α = (a, a 2 , a 3 , a 4 , a 5 , a 6 ). Using Magma, one computes lclm 1≤i≤6 (X -a i ) = X 6 -1, therefore a, a 2 , a 3 , a 4 , a 5 , a 6 are P -independent (and α is a P-basis of F * 2 6 ). Consider e = (0, 0, 0, 0, a 56 , a 55 ), its skew weight is w α (e) = 6 -Rank(Z α (F )) where F = aX 5 + a 31 X 4 + a 46 X 3 + a 22 X 2 + a 10 X + a 4 is the skew interpolation polynomial at the points (a i , e i ) 1≤i≤6 . The set of roots of F in F * 2 6 is Z α (F ) = {a, a 2 , a 3 , a 4 , a 8 , a 9 , a 10 , a 11 , a 12 , a 14 , a 21 , a 22 , a 24 , a 26 , a 28 , a 29 , a 30 , a 33 , a 34 , a 39 , a 43 , a 45 , a 48 , a 50 , a 51 , a 54 , a 57 , a 58 , a 59 , a 61 , a 62 } and its rank is

Rank(Z α (F )) = deg lclm u∈Zα(F ) (X -u) = deg(X 5 + a 30 X 4 + a 45 X 3 + a 21 X 2 + a 9 X + a 3 ) = 5.
Therefore the skew weight of e is 6 -5 = 1. Notice here that the Hamming weight of e is 2 and the rank weight of e is dim(< a 56 , a 55

> F2 ) = 2.
In what follows, a new interpretation of the skew metric is given (Proposition 1). First two intermediate Lemmas (Lemma 1 and Lemma 2) will be useful. Proof. According to Definition 4, w α (y) = deg(P ) -deg(lclm u∈U (X -u)) where U = {u ∈ A | F (u) = P (u) = 0}. Let us prove that lclm u∈U (X -u) is equal to gcrd(F, P ). For all u in U , X -u divides F and P on the right, therefore lclm u∈U (X -u) divides gcrd(F, P ) on the right.

Consider a common right factor H of F and P . According to Theorem 4 of [START_REF] Ore | Theory of Non-Commutative Polynomials[END_REF], as P is a least common left multiple of irreducible skew polynomials, H is also the least common left multiple of irreducible skew polynomials. Furthermore, all the degrees of these factors are necessarily equal to 1. Consider the set V of A such that H = lclm v∈V (X -v). Consider v in V ; as H divides P and F on the right, X -v divides P and F on the right, therefore v ∈ U and H divides lclm u∈U (X -u). One can conclude that lclm u∈U (X -u) is equal to gcrd(F, P) and w α (y) = deg(P ) -deg(gcrd(P, F )) = deg(lclm(P, F )) -deg(F ).

Definition 5. ([3]

) Let A be a division ring, θ ∈ Aut(A) and δ a θ-derivation. The (θ, δ)-conjugacy class of an element a ∈ A is the set of all its conjugates

a c := θ(c)ac -1 + δ(c)c -1
where c is taken over A * .

The following property will be useful next (product formulae) :

Theorem 2 (Product theorem 2.7 of [3]). Let f, g in R and a ∈ A. If g(a) = 0, then (f • g)(a) = 0. If g(a) = 0, then (f • g)(a) = f (a g(a) )g(a). Lemma 2. Consider α 1 , . . . , α n in A, P -independent, consider F ∈ R \ {0} and P = lclm 1≤i≤N (X -α i ) ∈ R. Consider the monic skew polynomial E = lclm F (αi) =0 (X -α F (αi) i
), then E • F = λ • lclm(P, F ) where λ is a non zero constant.

Proof. Consider Ẽ such that Ẽ • F = lclm(P, F ). Let us first prove that Ẽ divides E on the right. This amounts to show that Ẽ • F divides E • F on the right. As F divides E • F on the right and Ẽ • F = lclm(P, F ), it remains to prove that P divides E • F on the right. Consider i in {1, . . . , N }. If F (α i ) = 0, then according to the definition of E, E(α

F (αi) i ) = 0. According to product formulae (Theorem 2), (E • F )(α i ) = E(α F (αi) i ) × F (α i ), therefore one has (E • F )(α i ) = 0. ( 2 
)
If F (α i ) = 0 then the previous equality (2) still holds (according to Theorem 2).

One concludes that P divides E • F on the right. Therefore lclm(P, F ) = Ẽ • F divides E • F on the right and Ẽ divides E on the right. To prove that E divides Ẽ on the right, it suffices to prove that Ẽ cancels at α

F (αi) i for all i in {1, . . . , N } such that F (α i ) = 0. Consider i in {1, . . . , N } such that F (α i ) = 0.
As P divides Ẽ • F on the right, its right roots are also right roots of Ẽ • F , therefore Ẽ • F cancels at α i . Furthermore F (α i ) = 0, therefore, according to the product formulae, Ẽ(α

F (αi) i ) = 0. To conclude, there exists λ in A \ {0} such that E = λ Ẽ.
From Lemma 1 and Lemma 2, one deduces a new interpretation of the skew weight. : Proposition 1. Consider α = (α 1 , . . . , α n ) in A n such that α 1 , . . . , α n are Pindependent. Consider y = (y 1 , . . . , y n ) in A n . The skew weight of y satisfies :

w α (y) = deg lclm yi =0 (X -α yi i ). (3) 
Proof. Consider P = lclm 1≤i≤n (X -α i ) and F the interpolation skew polynomial with degree < n such that F (α i ) = y i for all i in {1, . . . , n}. According to Lemma 1, w α (y) = deg(lclm(P, F )) -deg(F ). According to Lemma 2, lclm(P,

F ) = E • F where E = lclm yi =0 (X -α yi i ), therefore w α (y) = deg(E).
Remark 1. Consider the notations of Proposition 1. If θ = id and δ = 0 then lclm yi =0 (X -

α yi i ) = ppcm yi =0 (X -α i ) = yi =0 (X -α i )
therefore the skew weight of y is equal to its Hamming weight : w α (y) = w H (y).

Remark 2. Consider the notations of Proposition 1. If all the α i are conjugate, consider ξ ∈ A, a i ∈ A * such that α i = ξ ai , then if y i = 0, α yi i = ξ aiyi and the skew weight of y is the rank of the Vandermonde matrix of (ξ aiyi ). According to Theorem 4.5 of [START_REF] Lam | Vandermonde and Wronskian Matrices over Division Rings[END_REF], this is the rank weight of (a i y i ) :

w α (e) = w R ((a i y i ) yi =0 ) = w R ((a i y i ) 1≤i≤n ). Example 2. (see Example 1) Consider F 2 6 = F 2 (a)
where a 6 +a 4 +a 3 +a+1 = 0. Consider α = (a, a 2 , a 3 , a 4 , a 5 , a 6 ) and e = (0, 0, 0, 0, a 56 , a 55 ). The skew weight of e is equal to the degree of the lclm of X -a 56 × a 5 = X -a 61 and X -a 55 × a 6 = X -a 61 , therefore it is equal to 1.

Here is a proof of Theorem 1 [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF] using formulation (3).

Theorem 3 (Theorem 1 of [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF]). The code is MDS for the skew metric (Maximum Skew Distance).

Proof. Consider a codeword c = (f (α 1 ), . . . , f (α n )) of skew weight w < n-k +1 where f ∈ R <k . Consider E(X) = lclm ci =0 (X -α ci i ), then according to Product Theorem 2, for all i in {1, . . . , n}, (E •f )(α i ) = 0. Furthermore, according to (3), the degree of the skew polynomial E is equal to the skew weight of c, therefore the degree of E • f is less than or equal to (n -k) + (k -1) = n -1. As E • f cancels at n P -independent points, it cancels. As E is nonzero, f = 0 and c = 0.

Decoding algorithm

We prove here that the decoding algorithm 1 page 22 of [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF] with respect to the Hamming distance still works with respect to the skew metric. We first need a small technical lemma.

Lemma 3. Consider α = (α 1 , . . . , α n ) in A n such that α 1 , . . . , α n are P - indépendent. Consider g and Q in R then w α ((Q • g)(α i )) ≤ w α (g(α i )).
Proof. Consider P = lclm 1≤i≤n (X -α i ). According to Lemma 1, w α (g(α i )) = deg(P ) -deg(gcrd(g, P )) and 

w α ((Q • g)(α i )) = deg(P ) -deg(gcrd(Q • g, P )), therefore, w α ((Q • g)(α i )) = w α (g(α i )) + deg(gcrd(g, P )) -deg(gcrd(Q • g, P )) ≤ w α (g(α i )).
(n -k)/2 , c = (f (α 1 ), . . . , f (α n )) and f ∈ R <k Ensure: f 1: Computation of Q 0 and Q 1 in R such that deg(Q 0 ) ≤ d 0 := n -1 -t, deg(Q 1 ) ≤ d 1 := d 0 -(k -1) and (Q 0 + Q 1 • r i )(α i ) = 0 
for all i in {1, . . . , n} Solve the linear system with unknowns q 0 , . . . , q n : 

            if r i = 0 : d0 j=0 q j N θ j (α i ) = 0 if r i = 0 : d0 j=0 q j N θ j (α i ) + d1 j=0 q d0+j+1 N θ j (α ri i ) r i = 0 Q 0 (X) ← d0 j=0 q j X j Q 1 (X) ← d1 j=0 q j+1+d0 X j 2: Computation of the quotient f in the left division of Q 0 (X) by -Q 1 (X) in R 3: return f Proposition 2. Decoding algorithm 1 is correct. Proof. Consider Z(X) = Q 0 (X)+Q 1 (X)•f (X) ∈ R and E(X) = lclm Z(αi) =0 (X- α Z(αi) i
). According to Product Theorem 2, the skew polynomial E • Z cancels at α i for all i in {1, . . . , n}. Furthermore, as (Q

0 + Q 1 • r i )(α i ) = 0 for all i in {1, . . . , n}, Z(α i ) = (Q 1 •f )(α i )-(Q 1 •r i )(α i ) = (Q 1 •(f -r i ))(α i ).
According to Lemma 3, as w α ((f -r i )(α i )) ≤ t, one has w α ((Q 1 •(f -r i ))(α i )) ≤ t. According to (3), the degree of E is equal to w α (Z(α i )), therefore, it is less than or equal to t. As the degree of Z is less than or equal to n -t -1, the degree of E • Z is ≤ n -t -1 + t < n. The skew polynomial E • Z cancels at n P -independent points, therefore it is equal to 0. To conclude, the skew polynomial Z is equal to 0 and f is the left division of -Q 0 by Q 1 .

Example 3. Consider F 2 6 = F 2 (a) where a 6 + a 4 + a 3 + a + 1 = 0. Consider the skew Reed-Solomon code with support α = (a, a 2 , a 3 , a 4 , a 5 , a 6 ) and dimension 3. Consider f = a and e = (0, 0, 0, 0, a 56 , a 55 ). The skew weight of e is equal to 1 (see Example 1). Consider r = (a, a, a, a, a, a) + e = (a, a, a, a, 1, a 19 ). Then the unknown skew polynomials Q 0 and Q 1 have degrees at most 4 and 2 and a non zero solution to the linear system satisfied by their coefficients is (1, 0, a 9 , 0, 0, a 62 , 0, a 5 ). Therefore Q 0 = 1 + a 9 X 2 = (a 62 + a 5 X 2 ) • a, Q 1 = a 62 + a 5 X 2 and the quotient in the left division of Q 0 by -Q 1 is equal to a.

Conclusion

In this note, a new interpretation of the skew metric defined in [START_REF] Martinez-Penaz | Skew and linearized Reed-Solomon codes and maximum sum rank distance codes over any division ring[END_REF] is given and the decoding algorithm of [START_REF] Boucher | Linear codes using skew polynomials with automorphisms and derivations. Designs, Codes and Cryptography[END_REF] is adapted to the skew metric for skew Reed-

  Consider a division ring A, θ an automorphism over A, δ a θ-derivation which is a map δ : A → A such that for all a and b in A: δ(a + b) = δ(a) + δ(b) δ(ab) = δ(a)b + θ(a)δ(b),

Lemma 1 .

 1 Consider α = (α 1 , . . . , α n ) in A n such that α 1 , . . . , α n are Pindependent. Consider P = lclm 1≤i≤n (X -α i ) in R and F ∈ R <n such that F (α i ) = y i for all i in {1, . . . , n}. Then w α (y) = deg(P ) -deg(gcrd(P, F )) = deg(lclm(P, F )) -deg(F ).

Algorithm 1

 1 Skew weight Decoding algorithm of skew Reed-Solomon code Require: r ∈ A n such that r = c + e with w α (e) ≤ t :=

Solomon codes. It could be interested to see how to manage erasure errors for this family of codes and this metric and how to improve the decoding algorithm to get quadratic complexity as it was done recently in [1] for generalized Gabidulin codes.