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ABSTRACT

Modelling finely heterogeneous physical sys-
tems turns out to be a difficult task. Nonethe-
less, an heterogeneous system may be modelled
by an equivalent macroscopic continuous system
if the condition of separation of scales is verified,
(2, 5)

e-%(l, (1)

where | and L are the characteristic lengths of
the heterogeneities and of the macroscopic sam-
ple or excitation, respectively. The macroscopic
equivalent model is obtained from the descrip-
tion at the heterogeneity scale by [1]: i) assum-
ing the medium to be periodic, without loss of
generality; ii) writing the local description in a
dimensionless form; iii) evaluating the dimen-
sionless numbers with respect to the scale ra-
tio &; iv) looking for the unknown fields in the
form of asymptotic expansions in powers of ¢; v)
solving the successive boundary value problems
that are obtained after introducing these expan-
sions in the local dimensionless description. The
macroscopic equivalent model is obtained from
compatibility conditions which are the necessary
conditions for the existence of solutions to the
boundary value problems. The main advantages
of the method rely upon the possibility of: a)
avoiding prerequisites at the macroscopic scale;
b) modelling finite size macroscopic samples;
¢) modelling macroscopically non-homogeneous
media or phenomena; d) modelling problems
with several separations of scales; e) modelling
several simultaneous phenomena; f) determin-
ing whether the system "medium+phenomena”
is homogenisable or not; g) providing the do-
mains of validity of the macroscopic models. Be-
low, we review three applications of the method.

1 Viscoelastic flow in porous
media

In this section we address the problem of the
transient linear viscoelastic fluid flow in porous
media (see (4] for details). The fluid is assumed
to be incompressible. The local description un-
der consideration is the following
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which supposes that the relaxation times A, and
the retardation times 6 are small compared to
the transit time [ /v; therefore, the local Deborah
number is small, De; = Max(A,v/l,0kv/l) < 1.
The filtration law is investigated for a transient
excitation of characteristic time 7' which is of
same order as both the relaxation and the re-
tardation times, T'/\, = O(1),T/6; = O(1). On
the other hand, viscous local term is balanced by
the macroeeopic pressure gradient, which yields

of = o
the homogenisation process yields macroscopic
flow behaviour which is described by a Darcy-
like law in Fourier space

= O(c™"'). Under these conditions
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where the generalized permeability tensor K is
complex valued and frequency dependent. The
macroscopic behaviour appears to be strongly
dependent on the relative values of the A,’s and
the 6 's.



2 Semi-solid alloys

Semi-solid alloys can be modelled at the het-
erogeneity scale by a porous matrix saturated
by an incompressible newtonian fluid [3]. The
porous matrix material itself is an incompress-
ible Odqvist medium, whose deviatoric parts of
the rate of deformation and stress are related by
the following power-law

n-1
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The pressures in the matrix and in the fluid and
the deviatoric stress in the matrix are assumed to
be of similar order of magnitude. In this study,
the ke; dimensionless number is the ratio Qf =
o( ﬁv!—;p) of the pressure term to the viscous
term in the fluid. Three different behaviours are
obtained with respect to the value of Qf

- QF = O(e™!): The macroscopic model is
a two-phase model, of Biot-type, but with
an Odqvist power-law of exponent n for the
porous matrix. Then, segregation exists.
The fluid flow follows a classical Darcy’s
law.

- QF = O(e): The macroscopic model is
a single-phase model and the equivalent
medium is incompressible, with an Odqvist
viscous power-law of exponent n. There is
no segregation. The fluid interacts by its
pressure, only.

- QF = O(¢'): The macroscopic model is
a single-phase model and the equivalent
medium is viscous non-linear and incom-
pressible. There is a strong influence of the
liquid viscosity. However, unlike the previ-
ous case, the behaviour is not given by a
power-law. There is no segregation.

3 Klinkenberg flow in porous
media

At low pressure, the molecular mean free path A
of a gas increases. The local Knudsen number
of gas flow in a porous medium, K'n; = \/l, be-
comes larger and the adherence condition on the
pore surface is no longer valid. A wall-slip veloc-
ity exists, which is proportional to the shear rate
of deformation on the pore surface. This effect

is measured by the ratio of the wall-slip velocity
to the gas pore velocity, which ratio is also given
by the Knudsen number.

The study (6] is conducted for a very small
Reynolds number Re and a quite small Knud-
sen number

Re€e € Kn«1, (6)

where £ is the small scale ratio. We assume
that Navier-Stokes equations remain valid in the
pores. Therefore, as in the first part, the flow
is caused by a macroscopic pressure gradient
which is balanced by the local viscous forces,
Qf = P/l = O(e™"). Under these conditions,

wpu/l?
a tensorial Klinkenberg law is obtained by ho-

mogenisation
K B op
<v>i=——L(Liy+ “Hp)m, (7
where K is the classical positive and symmetric
permeability tensor, 3 > 0 and H is a positive
tensor. The symmetry of H is not demonstrated.
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