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Light Field inpainting propagation via Low Rank
Matrix completion

Mikael Le Pendu, Xiaoran Jiang, and Christine Guillemot

Abstract—Building up on the advances in low rank matrix
completion, this article presents a novel method for propagating
the inpainting of the central view of a light field to all the other
views. After generating a set of warped versions of the inpainted
central view with random homographies, both the original light
field views and the warped ones are vectorized and concatenated
into a matrix. Because of the redundancy between the views,
the matrix satisfies a low rank assumption enabling us to fill the
region to inpaint with low rank matrix completion. To this end, a
new matrix completion algorithm, better suited to the inpainting
application than existing methods, is also developed in this paper.
In its simple form, our method does not require any depth prior,
unlike most existing light field inpainting algorithms. The method
has then been extended to better handle the case where the
area to inpaint contains depth discontinuities. In this case, a
segmentation map of the different depth layers of the inpainted
central view is required. This information is used to warp the
depth layers with different homographies. Our experiments with
natural light fields captured with plenoptic cameras demonstrate
the robustness of the low rank approach to noisy data as well as
large color and illumination variations between the views of the
light field.

Index Terms—Light Field, Inpainting, Low rank matrix com-
pletion, homography.

I. INTRODUCTION

L IGHT Field imaging is becoming increasingly popular
thanks to the recent advances in Light Field capture of

real scenes. While a traditional 2D camera loses a lot of
information of the captured 3D scene (e.g. no depth infor-
mation, limited depth of field), light field imaging devices
are able to yield a much richer description of the scene in
a 4D representation, enabling novel post-capture processing.
For instance, refocusing, extended depth of field and different
viewpoint rendering can be performed from a single capture
[1]–[3]. A light field can be seen as an array of views of the
scene (also called sub-aperture images) with densely sampled
view points. For the sake of parametrization, a light field is
often considered as a 4D function L(x, y, u, v), where u and v
represent the angular dimensions, corresponding respectively
to a horizontal and vertical shift in the viewpoint. The x
and y parameters are the horizontal and vertical axis in each
view. Thus, for u, and v fixed respectively to u∗ and v∗,
L(x, y, u∗, v∗) represents one sub-aperture image.

As the capture of 4D light fields from real scenes grows
in popularity, the need for a generalization of traditional
image editing tools is expected to rise as well. In particular,
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for inpainting, which is the recovery of missing parts of an
image, plenty of algorithms already exist in the 2D case. For
instance, diffusion based methods [4] can efficiently recover
thin holes. Exemplar based methods [5]–[7] are better suited
for applications such as object removal thanks to their ability
to fill larger holes using patches of texture taken from the
known parts of the image. However, applying independently
these methods to each sub-aperture image of a light field is
very unlikely to result in a consistent inpainting in the angular
direction (i.e. across sub-aperture images) as illustrated in
Figure 1(b) and (c). In addition, in some challenging examples,
where large holes in a background with complex geometry
and textures need to be recovered, even advanced patch-based
methods do not give satisfactory results. Therefore, a manual
editing remains necessary. For light field inpainting, though,
manually editing each sub-aperture image in a consistent
manner is extremely tedious.

For those reasons, in our approach, only the inpainting
of the central view is required and can be performed either
manually or using existing 2D algorithms. Our method thus
focuses on consistently propagating the inpainted region to
all the other views of the light field, as in Figure 1. In a first
step, a matrix is built where each column is a vectorized view.
Additional images, and thus additional columns of the matrix,
are constructed by warping the inpainted central view using
randomly sampled homographies. In order to cope with the
case where the area to inpaint contains depth discontinuities,
an extension of the method is proposed where a segmentation
map of the depth layers of the inpainted central view is
required as additional input. It is used by our algorithm to warp
each depth layer with a different random homography. Because
of the redundancy existing between the different views of the
light field and the warped versions of the inpainted view,
the constructed matrix can be well approximated by a low
rank matrix. Our algorithm then draws on the recent advances
in low rank matrix completion to fill the unknown parts of
the matrix corresponding to the region to inpaint in each
view. Although a large number of low rank matrix completion
algorithms have already been developed (e.g. [8]–[16]), they
have been seldom used for inpainting. They are not suitable
for this problem for at least one of the following reasons:
either the rank must be known a priori or the method assumes
the positions of the unknown matrix entries are uniformly
distributed. In summary, the contributions of the paper include:

• The definition of a new low rank matrix completion
algorithm suitable for completing large parts of a matrix
without requiring the exact matrix rank.



2

(a) (b) (c) (d)
Fig. 1. Illustration of our inpainting propagation method : (a) Original central view (5,5). (b) Central view inpainted with [6]. Note that because of the short
baseline, disocclusion is not available and a single image inpainting method must be used. (c) View (8,8) inpainted with [6]. (d) Propagated inpainting from
central view to view (8,8). Our propagation method keeps consistent inpainting across views.

• The use of this algorithm for propagating an inpainted
area from the central view to all the other views of a
light field. In case of depth discontinuities within the
inpainted area, an extension of the method using a depth
layer segmentation map is also proposed.

• As an intermediate step of the inpainting propagation,
we define a method for randomly generating homogra-
phy warpings that are consistent with the displacement
between views in actual light field data.

II. RELATED WORK

Light Field inpainting

Although the problem of image or video inpainting has
already been extensively studied, only a few methods in the
literature address the specific case of 4D light field data.

In [17], the authors propose a variational framework for
solving various inverse problems including inpainting. By
exploiting depth information, they defined constraints on the
structure of the epipolar plane images of the light field, thus
ensuring a consistent inpainting across views. This method can
successfully recover missing parts of the light field as long
as the regions unknown in some views are visible in several
other views. However, for removing an object in all the views,
the method no longer applies since a consistent inpainting of
several views should already be available in order to infer
depth information in the area to recover.

A different approach is used in [18], where the spatial
consistency is ensured by minimizing a 4D patch consistency
measure extending the bidirectional similarity measure of [19].
A depth estimation of each view of the light field is required
to evaluate this measure.

In [20], the editing of the central view is first performed
using a 2D patch based method, and the offsets between
the filled patches and their best match in the known region
are memorized. Using a layered depth map, the offsets are
propagated to other views in order to fill them in a consistent
manner. However, the method does not generalize to the case
where the central view has been inpainted with an arbitrary
method that does not provide the offset information.

Note that each of these algorithms require a depth map
and are thus highly dependent on the quality of the depth
estimation. Furthermore, the depth map must also be inpainted
in the area to be removed. Another difference with our

approach is that they do not propagate the inpainting result of a
single view performed by an arbitrary method. Therefore, they
do not allow a user to control the quality of the inpainting for
one of the views in the complex cases where a fully automatic
inpainting is not possible.

Concerning the propagation of one inpainted view (by an
arbitrary method) to the rest of the light field, very few works
have been conducted yet to the best of our knowledge. The
authors of [21] inpaint an all-in-focus image and propagate
it to the light field represented as a focal stack (i.e. set of
refocused images) instead of processing directly the light field
views. The method in [22] propagates user strokes performed
on one view to edit all the light field views, but the method
only applies to the re-colorization application. In [23], the
authors propose a simple adaptation of the exemplar based
inpainting of Criminisi et al. [5] where one of the views
is inpainted first. For the other views, instead of searching
a corresponding patch in the known regions of the view to
inpaint, the patch is searched in the first inpainted view in
order to ensure a better consistency across views. However,
because of the greedy nature of the algorithm and the fact
that the views are processed separately, the inpainting results
may still contain severe angular inconsistencies.

Other methods have been proposed in the related topic
of multiview image inpainting [24], [25]. These methods
were designed for images with large differences between
viewpoints. Experiments from the authors have shown that
the generalization to densely sampled light fields with short
baselines is not straightforward because their camera calibra-
tion step failed with such data. The complexity in [24] is also
an issue considering the large number of views of a light
field. Similarly, the method in [26] processes light fields with
a sparse set of views and a large baseline, which makes it
possible to recover occluded areas of an image from different
viewpoints where the corresponding area is visible. However,
this method hardly applies to densely sampled light fields
because of its computational cost and the fact that very few
disoccluded areas can be exploited.

Low rank matrix completion

The low rank matrix completion problem has received a
great deal of attention in the past few years. For a matrix
M ∈ Rm×n of sufficiently low rank r (r � min (m,n)) and
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given only a subset of its entries, the goal is to recover the en-
tire matrix by exploiting the low rank prior. The optimization
problem is then:

min
X

rank(X)

s.t. PΩ(X) = PΩ(M),
(1)

where Ω is the set of indices of the known elements of M ,
and PΩ is such that the element (i, j) of PΩ(X) is equal to
Xi,j if (i, j) ∈ Ω and zero otherwise.

Candes and Recht [27] have determined conditions under
which the problem has a unique solution. Furthermore, al-
though the rank is not a convex function, replacing it by
the trace norm ‖X‖∗ leads to a convex problem with the
same unique solution, assuming the conditions in [27] are
satisfied. An algorithm based on singular value soft thresh-
olding has then been developed in [8] to solve this trace
norm minimization problem. The authors in [10] accelerate
the latter algorithm by using the alternating direction method
of multipliers (ADMM) [28]. In [29], a similar algorithm,
HaLRTC, have been used for filling holes in an image by
considering the 2D image directly as a matrix to complete.
Note that in this context of spatial 2D inpainting, the low
rank prior is only satisfied for images containing essentially
horizontal and vertical repetitions. Our application, though,
is not concerned by this limitation since the 4D light field is
inpainted in the angular dimensions given the complete central
view (previously spatially inpainted with an arbitrary method).

Another important issue must be taken into consideration
when performing inpainting using low rank completion al-
gorithms. The theoretical results in [27] are based on the
assumption that the known elements Ω of the matrix are
selected uniformly at random. However, this is not the case
in the context of object removal in an image or a light field.
Therefore, replacing the rank by the trace norm in equation (1)
does not necessarily yield optimal results. In a second type of
approach, the true rank is considered. For a given target rank
r, the r-rank matrix that best approximates the known entries
of the input matrix is sought:

min
X

1

2
‖PΩ (M −X)‖2F

s.t. rank(X) ≤ r,
(2)

where ‖.‖F is the Frobenius norm. Many algorithms have
been developed to solve this problem such as ADMiRA [11],
OptSpace [12], GoDec [13], NIHT [14]. They are based on
singular value decomposition (SVD) and hard thresholding.
In the weighted non negative matrix factorization (WNMF)
[15] and in LMaFit [16], a similar rank constraint is enforced
by expressing X as a product of two matrices A ∈ Rm×r
and B ∈ Rr×n. These methods are however impractical
for inpainting because they require an accurate rank estimate
which is in itself difficult to obtain.

III. PROPOSED LOW RANK COMPLETION ALGORITHM

In order to solve the problem of Equation (1), we use
the alternating direction method of multipliers (ADMM) [28],
similarly to several low rank approximation algorithms [10],

[29]–[31]. Unlike those methods however, we directly want
to solve the problem of rank minimization instead of its
convex relaxation formed with the trace norm. Furthermore,
in order to increase the robustness of the method in the
case where the matrix is only approximately low rank, we
propose to relax the equality constraint of Equation (1) by
the inequality ‖PΩ(X)− PΩ(M)‖2F /‖PΩ(M)‖2F ≤ ε, given
a positive value ε. The problem can be equivalently written:

min
X

rank(X)

s.t. X = Z

Z ∈ C,
(3)

with C =
{
Z ∈ Rm×n | ‖PΩ(Z)−PΩ(M)‖2F

‖PΩ(M)‖2F
≤ ε
}

.

The constraint X = Z can be removed by defining the
following augmented Lagrangian function:

L(X,Z,Λ, ρ) = rank(X) + 〈Λ, X −Z〉+ ρ

2
‖X − Z‖2F (4)

where Λ is a matrix of lagrangian multipliers, ρ is a positive
scalar, and 〈., .〉 is the scalar product (i.e. 〈A,B〉 = Tr(A>B)).
The ADMM method then alternatively solves a sub-problem
for each of the matrices X , Z and Λ using the update rules
given in Algorithm 1. The value of ρ is also increased at each
iteration in order to accelerate the convergence.

Algorithm 1 Low rank completion with ADMM
Input: Ω, PΩ(M), ε, ρ, t.

1: Initialize : Z = PΩ(M), Λ = 0,
2: repeat
3: X ← arg min

X
L(X,Z,Λ, ρ) (see Equation 5)

4: Z ← arg min
Z∈C

L(X,Z,Λ, ρ) (see Equation 6)

5: Λ← Λ + ρ(X − Z)
6: ρ← t · ρ (with t > 1)
7: until ‖PΩ(Z)− PΩ(M)‖2F /‖PΩ(M)‖2F ≤ ε

Output: X

In subsections III-A and III-B, we will demonstrate that
the X and Z sub-problems, (lines 3 and 4 of Algorithm 1
respectively), have the following closed form solutions:

arg min
X

L(X,Z,Λ, ρ) = H√
2
ρ

(
Z − Λ

ρ

)
, (5)

where Hs is the singular value hard thresholding operator
defined by, Hs(A) = U diag({Hs(σi)})V >, for a matrix A
of singular vectors U and V , and singular values {σi}, and
where Hs(σi) is equal to σi if σi ≥ s, and 0 otherwise.

The solution of the Z sub-problem is given by:

PΩ(Z) = PΩ ((N + λM)/(1 + λ)) , (6a)
PΩ(Z) = PΩ(N), (6b)

with N = X + Λ
ρ , and λ = max

(
‖PΩ(M−N)‖F√
ε·‖PΩ(M)‖F

− 1, 0
)

.

We can note from equation (5), that the singular values
threshold depends on ρ. As ρ increases with iterations, the
threshold decreases. Therefore the rank is likely to increase.
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(a) incomplete image (b) trace norm minimized (ε = 0)

(c) rank minimized (ε = 0) (d) rank minimized (ε = 0.03)
Fig. 2. Example of low rank matrix completion. For this test, each column
of the matrix to complete contains the R,G and B values of the pixels of one
column of the image. The rank minimization results in (c) and (d) are sharper
than in (b) where the trace norm is minimized. For (d), ε has a non-zero value
resulting in less noisy completion. The simulations (b), (c), (d) give respective
ranks of 233, 119, and 54 after respectively 16, 26 and 49 iterations.

For that reason we initialize ρ as ρ = 8/(σ1 + σ2)2 (with σ1

and σ2 the two largest singular values of the initial Z) so
that the threshold

√
(2/ρ) at the first iteration is between σ1

and σ2. This way the algorithm starts with a rank-1 estimate
of X and increases the rank progressively. Although the
general ADMM method was designed for convex optimization,
convergence is observed in practice in our non-convex rank
minimization thanks to the update of ρ. From our experiments,
satisfactory results were obtained by multiplying ρ by the
parameter t = 1.45 at each iteration. A trade-off between
convergence speed and accuracy can be obtained by increasing
this value.

Note that replacing the rank by the trace norm in the
problem formulation (3) would lead to a very similar expres-
sion of the solution where singular value soft thresholding
is used instead of hard thresholding (e.g. [8], [29]) in the
X subproblem. The value of the threshold is also different
(1/ρ for trace norm minimization instead of

√
(2/ρ) in our

algorithm). Therefore, in order to compare both approaches,
the initialization of ρ was adapted in our implementation of
the trace norm minimization as ρ = 2/(σ1 + σ2), so that the
threshold at the first iteration is the same as the one used in
our method. Figure 2 shows the results obtained using either
rank or trace norm minimization for matrix completion in a
simple 2D inpainting example. Sharper details are recovered
in Figure 2(c) and (d) (rank minimization), than in Figure
2(b) (trace norm minimization). Note, for example, how the
repetition of the black crosses is preserved in our method
while these detail have almost vanished in the inpainted area

with trace norm minimization. In addition, we can observe in
Figure 2(d) that the introduction of the tolerance parameter ε
successfully removes noise in the inpainted area. Intuitively,
the sharper results obtained with the rank minimization can be
understood by the fact that the hard thresholding only removes
the lowest singular values which are associated to the singular
vectors containing the highest frequencies. But it does not
affect the singular vectors with medium frequencies associated
to singular values just above the threshold. Soft thresholding
also attenuates those medium frequencies as it reduces all the
singular values.

A. X sub-problem

One can verify that the X sub-problem is equivalent to
determining X that minimizes the following expressions:

min
X

rank(X) +
ρ

2

∥∥∥∥X − Z +
Λ

ρ

∥∥∥∥2

F

(7a)

= min
r

(
r + min

X s.t. rank(X)≤r

ρ

2

∥∥∥∥X − Z +
Λ

ρ

∥∥∥∥2

F

)
. (7b)

Let us denote by UΣV > the SVD of Z − Λ
ρ (where Σ is

a diagonal matrix with non-increasing diagonal entries). We
define σi := Σ(i, i) and Σr ∈ Rm×n by:

Σr(i, j) :=

{
σi if i = j, i ≤ r
0 otherwise.

(8)

From the Eckart-Young theorem, we know that given r,
Equation (7b) is minimized for X = UΣrV

>. We can then
rewrite Equation (7b) as follows:

min
r

(
r +

ρ

2

∥∥UΣrV
> − UΣV >

∥∥2

F

)
(9a)

= min
r

(
ρ

2

(
2

ρ
· r + ‖Σr − Σ‖2F

))
(9b)

= min
r

ρ
2

 r∑
i=1

2

ρ
+

min(m,n)∑
i=r+1

σ2
i

 . (9c)

This expression is minimized by choosing r such that
σi ≥

√
2
ρ if and only if i ≤ r. Therefore, the solution of

the X sub-problem is X = UΣrV
> = H√

2
ρ

(Z − Λ
ρ ). �

B. Z sub-problem

Similarly to subsection III-A, we can express the Z sub-
problem as:

min
Z
‖N − Z‖2F

s.t. ‖PΩ(Z)− PΩ(M)‖2F /‖PΩ(M)‖2F ≤ ε
(10)

where N = X + Λ
ρ . The problems for PΩ(Z) and PΩ(Z) can

be solved independently. For PΩ(Z), the constraint does not
apply. Then, the solution is PΩ(Z) = PΩ(N).

For PΩ(Z), let us define the Lagrangian function:

Lz(z, λ) = ‖n− z‖2F + λ
(
‖m− z‖22 − ε · ‖m‖

2
2

)
. (11)
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For convenience, we define vectors z, n, and m as the
vectorized entries within Ω of respectively Z, N , and M .

Since the Frobenious norm is convex, the solution only
needs to satisfy the first order Kuhn-Tucker conditions:

• Stationary condition (i.e. ∂Lz∂z (z) = 0):

∂Lz
∂z

(z) = 0⇔ 2(z− n) + 2λ(z−m) = 0, (12a)

⇔ z =
n + λm

1 + λ
. (12b)

• Complementary slackness:{
λ ≥ 0

λ = 0 or ‖m− z‖22 − ε · ‖m‖
2
2 = 0.

(13)

Using Equation (12b), z can be replaced by its expression.
We obtain: ‖m− z‖22 = ‖m− n‖22 /(1 + λ)2. The
condition (13) thus becomes:

λ = max

(
‖m− n‖2√
ε · ‖m‖2

− 1, 0

)
. (14)

This concludes the proof of equation (6).

IV. APPLICATION TO LIGHT FIELD INPAINTING

In this section, we show how the inpainting of one light field
view (e.g. the central view) can be consistently propagated
to the rest of the light field by means of low rank matrix
completion. Figure 3 illustrates how the light field data is
organized in a matrix that can be completed by our algorithm.
The method is based on the premise that the views are highly
correlated. As a consequence, the matrix formed by vector-
izing each view and by concatenating the resulting column
vectors, can be assumed to have a low rank (with respect
to the number of views). Here, a row of the matrix contains
the pixels’ values in all the views at a fixed (x,y) coordinate.
Unfortunately, when the area to be removed has roughly the
same position in all the views, many rows of the matrix
only contain one known entry, corresponding to the central
view. In this configuration, low rank completion is not able to
recover reliably the unknown entries. Thus, in a preliminary
step, we generate several additional views by warping the
inpainted central view with a set of homography projections,
as shown in Figure 3. Instead of computing the homographies
that globally compensate for the disparities between the central
view and the other views, we prefer to generate a set of random
homographies. This approach allows a more uniform sampling
of all the possible displacements of each region of the image.

Note that the low rank property is relative to the matrix size.
Therefore, a light field with large amount of parallax may still
satisfy this property as long as it contains a sufficient number
of views, including the additional warped views. However, for
practical reasons, this application essentially targets light fields
with a limited baseline such as those captured by plenoptic
cameras, for which a dense view sampling can be achieved
with a limited number of views.

Fig. 3. Construction of the matrix to complete.

A. Random generation of homographies

A homography transformation is defined by a 3× 3 matrix
H , transforming 2D coordinates (x, y) into (x′, y′) as:

w · [x′, y′, 1]
>

= H · [x, y, 1]
>
. (15)

Note that the element (3, 3) of H can be fixed to 1
without loss of generality. Therefore, eight parameters are
needed to determine one homography. In our method, we
need to carefully generate those values so that the resulting
homographies are within a reasonable range of rotation angle,
translation, shear etc. In order to determine a suitable proba-
bility distribution function (pdf) for the eight parameters, we
have built a dataset of homographies from a set of 62 light
field images captured with a Lytro camera. For all the images,
we have matched one homography between the central view
and each of the other views.

Note that the homography matrix depends on the image size.
For instance, applying the same homography transformation
to two images of different definition will result in a larger
translation for the lower definition image relatively to its size.
In order to remove the influence of the image size, one must
determine the relation between a homography matrix H trans-
forming any point (x, y) into (x′, y′) and the corresponding
scaled matrix Ha,b transforming (ax, by) into (ax′, by′), given
scaling values a, b > 0. By noting hi,j the element (i, j) of
H , one can find that Ha,b is expressed as (see Appendix):

Ha,b =

 h1,1 h1,2
b
a

h1,3

a

h2,1
a
b h2,2

h2,3

b
h3,1 · a h3,2 · b 1

 . (16)

For building our dataset, each homography H was then
replaced by its scaled version Ha,b where a and b are the
inverse of the image width and height respectively. This
simulates the homography one would obtain for images of
size 1× 1.

Figure 4 shows the marginal distributions of all the ho-
mography parameters for our dataset. We observe that the
eight distributions have a narrow peak around the mean that is
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Fig. 4. Marginal distributions of the eight homography parameters (each
corresponding to an entry of the homography matrix).

(a) (b) (c)
Fig. 5. (a) Input inpainted central view with layer segmentation. (b) and (c)
are two examples of random warpings. Red areas correspond to pixels with
no color information after the warping. In (b), the foreground layer partly
occludes the background.

better modeled by a generalized gaussian distribution (GGD)
than a simple gaussian distribution. In order to take into
account the dependencies between the parameters, we fit a
multivariate GGD (MGGD) to the data using the method in
[32]. For each homography to generate, a 8× 1 vector is first
generated randomly with our MGGD distribution as described
in [33]. The vector is re-arranged into a homography matrix
H . Finally, in order to warp an image, the scaled version Ha,b

of the matrix must be used, where a and b are the image width
and height respectively.

For our experiments, we considered light field images with a
limited baseline (e.g. captured with a plenoptic Lytro camera).
In this situation, generating 400 warpings of the central view
using this procedure was found to give a sufficiently dense
sampling of the homographies for our inpainting application.

B. Extension to multiple depth layers

In the case where the area to recover contains several layers
with different depths, the global homography warping is not
sufficient to represent the depth discontinuity. The method
has then been extended to better handle this case. For that
purpose, a segmentation map of the different depth layers of
the inpainted central view must be provided additionally, and
the depth order of the segments must be known.

This information is used to warp the layers with different
homographies (each homography being chosen randomly as

(a) (b) (c)
Fig. 6. (a) Central view inpainted with [6] within the red boundary. (b)
Inpainting propagated to another view without filling the invalid regions of
the warped views (they are set to zero). (c) Result when the invalid regions
are set into Ω (i.e. filled by low rank matrix completion).

described in the previous subsection). The warped regions
corresponding to each layer are combined in one image. In
case of overlap between several warped layers, the layer
labelled with the lowest depth should occlude the other ones.
Several images are generated randomly with this method to
augment the matrix to complete as shown in Figure 3. Two
examples of warpings obtained with this method are shown in
Figure 5(b) and (c).

Note that depth cannot be directly estimated in the area
to be inpainted since only the central view is fully available.
Therefore, a certain level of user interaction is required in
order to segment the different depth layers. State-of-the art
segmentation tools with user interaction such as grab-cut [34]
can be used for that purpose. In this method, a user can paint
strokes associated to different labels to coarsely define the
different regions. The labels are then propagated to the rest
of the image to generate the segmentation map. Since this
segmentation is only needed for the central view, the user input
required for this step is limited.

C. Determination of the unknown pixels

Once the matrix M has been defined, the set of unknown
entries Ω must be determined in order to perform matrix com-
pletion. Ω essentially contains the entries corresponding to the
area to be removed in the original light field views, as shown
in Figure 3. For simplicity, the area to be removed in each view
is defined by enlarging the mask that was used for inpainting
the central view. For all the light field images considered in
our experiments (i.e. essentially plenoptic capture), enlarging
the mask by 10 pixels was sufficient to completely cover the
object to be removed in each view.

In addition to the original views, the warped versions of the
central views may also contain unknown pixels. When warping
the central view, some pixels at the border of the warped
image are undetermined if their projection in the central view
is outside of the image area (e.g. red areas in Figure 5(b) and
(c)). In the case where several depth layers are considered,
a disocclusion area between the warped layers may also be
unknown as shown in red in Figure 5(c). All those unknown
regions should be included in Ω so that they are filled jointly
with the original views by the low rank completion algorithm.
Figure 6 shows the benefit of filling the borders of the warped
views by matrix completion.
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(a) (b)
Fig. 7. Inpainting results for one view of the light field ’Figurine’ using (a)
RGB colorspace (b) Yu’v’ colorspace. The zoomed detail is included in the
inpainted area.

D. Color Processing

In our method, the color components are treated sepa-
rately. This is more computationally and memory efficient
than building one matrix containing all the color components.
However, instead of processing the light field directly in the
RGB colorspace, we compute the luminance channel Y, and
the two chromaticity components CIE u’v’. The choice of this
Yu’v’ colorspace is due to its perceptual uniformity. Since the
three components are treated separately, there may be small
difference between the completed regions of each component
(e.g. slightly shifted textures). If the RGB colorspace was
used, these differences would be perceived more easily than in
the Yu’v’ colorspace which decouples the luminance from the
chromaticity components that are less important perceptually.

Additionally, since the human eye is less sensitive to chro-
maticity than luminance, the memory and computation time
can be further reduced by using less homography warpings
for the u’ and v’ components (100 in our experiments, instead
of 400) without significantly degrading the perceived result.
Similarly, for the chromaticity components, we use a higher
value for the parameter t controlling the convergence speed
(t = 5 for u’ and v’ instead of t = 1.45), which significantly
reduces the number of iterations without noticeable difference.
Figure 7 shows an example of inpainting results obtained using
either the Yu’v’ or RGB colorspaces. Some color artifacts can
be seen around the white line when the images are processed in
RGB (Figure 7(a)). Note that the matrix completion algorithm
was also faster with Yu’v’ (19 seconds instead of 45 with
RGB) because of the reduced computation time for the u’ and
v’ components.

E. Limitations

The main limitation of our method is the memory require-
ment, since a large set of views (400 for the luminance) are
added to the original light field views to form the matrix M .
In order to alleviate this problem, in our implementation, only
the pixels within an area surrounding the object to be removed
are used to build the matrix M . The number of lines of M is
then the number of pixels in this area.

Our method has been designed and validated for light fields
captured by plenoptic cameras or synthetic light fields with
a limited baseline. Other types of capture devices such as a
camera array or a camera mounted on a gantry can produce
light fields with larger baselines. Such data would require a
different probability distribution for the homography sampling,
and a larger number of warped views.

TABLE I
RUNNING TIMES AND NUMBER OF ITERATIONS OF ALGORITHM 1 FOR THE

TESTED LIGHT FIELDS. THE NUMBER OF ITERATION IS GIVEN FOR EACH
COLOR COMPONENT YU’V’. THE RUNNING TIME IS THE SUM ON THE

THREE COMPONENTS.

Light field (#views) Central view
inpainting

Running
Time

#iterations
Y u’ v’

butterfly (9x9) manual 45.0 s 30 8 8
stillife (9x9) Turkan et al. [7] 13.2 s 32 9 9
TotoroWaterfall (7x7) Daisy et al. [6] 9.1 s 30 8 9
TotoroAlley (7x7) Daisy et al. [6] 9.2 s 34 8 10
Bee2 (11x11) manual 4.2 s 29 7 9
Figurines (11x11) manual 19.3 s 34 9 9

V. EXPERIMENTAL RESULTS

Our method has been evaluated on both synthetic and real
world light field images presented in Table I. For some of
the tested light fields, manual inpainting of the central view
was necessary. This task was performed with the open source
GIMP software [35], essentially using the cloning tool.

The synthetic light fields ’butterfly’ and ’stillife’ are taken
from the HCI database [36]. The other ones were captured with
a Lytro camera and the sub-aperture images were extracted
with the toolbox of Dansereau et al. [37]. This produces chal-
lenging data with noise and color and illumination variations
between views. The images shown in subsections V-A, V-B,
and V-C do not present depth discontinuity in the area to
inpaint. Hence, no depth layer segmentation was used for these
experiments. We show in subsection V-D how our method is
improved by the use of a depth layer segmentation for light
fields with a depth discontinuity.

For all the experiments, the parameters of the Algorithm
1 are fixed as: ε = 0.003, t = 1.45 for the luminance and
t = 5 for the chromaticity components. The parameter ρ is
initialized automatically as explained in section III.

The experiments were performed with our matlab imple-
mentation using a PC with an Intel Core i7-7700 CPU with
4 cores (8 threads) at 3.6GHz and 32GB RAM. The number
of iterations and running times of Algorithm 1 are given in
Table I for each tested light field.

A. Rank vs trace norm minimization

First, in order to confirm the interest of minimizing the rank
instead of the trace norm (e.g. [10], [29]), a comparison of both
approaches is shown in Figure 8. In our implementation of
the trace norm based matrix completion [10], the same values
were used for the parameters ε and t. The only differences
with our rank minimization are the thresholding step and the
initialization of the parameter ρ as explained in section III.
This example illustrates that our low rank matrix completion
better preserves the details when propagating the inpainted
area. This observation is consistent with the 2D inpainting
result of Figure 2 which is sharper with our algorithm based
on rank minimization. Note that in the case of the trace norm
minimization, the effect of the noise tolerance parameter ε is
very limited. Taking ε = 0 does not produce sharper results.
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(a) Central view with mask (b) Central view inpainted by [7]

(c) Propagation to view (8,8)
with trace norm minimization

(d) Propagation to view (8,8)
with our rank minimization

Fig. 8. Light field consistent inpainting of the synthetic lightfield ”stilllife”
with low rank matrix completion algorithm using either rank or trace norm
minimization. For (c), our implementation of the trace norm based matrix
completion [10] was used. More results can be found in the supplementary
materials.

B. Comparison with patch-based methods

Additionally, we have implemented the method described in
[23] that propagates an inpainted reference view to the other
views of the light field. Each view is inpainted independently
using a modified version of the patch based algorithm of
Criminisi et al. [5] that searches patches from the inpainted
reference view. Note that in their method, an extended focus
image is used as a reference in place of the central sub-
aperture image. However, for the comparison, we have used
the central view as a reference in both methods. Figure 9 shows
that the inpainting in [23] may yield inconsistent results. This
is caused by the greedy procedure which fills patches of the
unknown region one by one. Moreover, since the patches are
selected from the central view, it is not robust to color and
light intensity differences between the views.

(a) (b) (c)
Fig. 9. (a) Central view inpainted with [6] within the red boundary. (b)
Propagation to view (8,8) with the method described in [23]. (c) Propagation
to view (8,8) with our method.

Chen et al. [18] and Zhang et al. [20] also proposed more
advanced patch-based methods taking advantage of the 4D
structure of the light field. Unlike our method, they cannot be
used to propagate a view inpainted with an arbitrary technique
to the rest of the light field. Although in PlenoPatch [20],
the central view is inpainted first and then propagated to the
other views, the propagation requires additional information
retrieved from the initial 2D inpainting step. This information
(i.e. patch offsets) is specific to the patch-based 2D inpainting
method used in their implementation. Therefore, the method
may not apply to complex cases such as the light field
“butterfly” in Figure 11 for which a patch-based inpainting
of the central view is unlikely to provide satisfactory results.

Nevertheless, a comparison between these patch-based
methods and our approach can still be led by evaluating the
consistency between the inpainted views. Section III of the
supplementary materials shows that inconsistencies appear in
the results of [18] and [23] (e.g flickering of texture details
between views in [18], texture not following the geometry of
the object in [23]), while our method does not produce such
artifacts.

Visual comparisons with PlenoPatch [20] could not be
performed. However, it should be noted that the depth layer
estimation step used in this algorithm was not designed to
cope with the amount of noise and color variations between
views in the data extracted from plenoptic captures with [37].
Furthermore, regardless of the accuracy of the depth layers
as well as the quality of the initial 2D inpainting of the
central view, the authors of [20] have also reported that their
depth layer based patch synthesis does not accurately model
geometry with slanted surfaces. This is not the case of our
method thanks to the use of homography warpings (e.g. light
field “figurine” in figure 10).

C. Comparison with direct homography projection

Additional results of our method are presented in Figure 10.
It also shows the results obtained when the inpainted region
of the central view is directly projected onto the other views
with an homography. For this experiment the homographies
were determined by matching SIFT descriptors [38] between
the central view and each of the other views, and outliers were
eliminated with RANSAC [39].

In the light field “figurines” (first example in Figure 10),
the input top left view has severe distortion (noise, ghosting
effect) caused by the capture and inaccuracies in the decoding
process. This issue makes it difficult to find accurate cor-
respondences between the central view and the other ones.
It explains the discontinuities observed at the boundary of
the inpainted region propagated with direct projection. These
inaccuracies consequently impair the images generated by
refocusing the inpainted light field. For example, in the light
field “figurine” refocused on the foreground, the inpainted area
appears blurred in the foreground with the direct projection
method. In contrast, our method can cope with this type of
data and ensures a consistent inpainting propagation to all the
views. As a result, the refocused image has a realistic depth of
field, where only the out-of-focus areas appear blurred. Note
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however that the inpainted area may still have a different
appearance (less noise) than the rest of the image for the
views that are more noisy than the central inpainted view.
This is visible in the inpainted top left view shown in Figure
10 because the outer views of the light fields captured with
plenoptic cameras are more noisy than the central views.
However, this effect is no longer visible after the refocusing
step which reduces the noise by averaging all the views.

Another type of distortion introduced by plenoptic capture
can be observed in “Bee2” and “TotoroAlley” (second and
third examples of Figure 10) : a global variation of color and
light intensity appears between the central and the outer views.
While our low rank matrix completion approach is able to
adjust the overall color and brightness of the inpainted area to
each view, the direct projection causes a color discontinuity.
Note however that this artifact is less perceptible after refocus-
ing the light field, since only a few of the views are concerned
by this issue.

D. Extension with depth layer segmentation

Finally, Figure 11 shows the results obtained for two light
fields containing a depth discontinuity, either using the simple
version of our method (without segmentation) or with the ex-
tended version which takes a segmentation map of depth layers
as input. In both cases, the results are improved by the use of
the segmentation. It is particularly visible in the refocused
image where we can see a clearer separation between the in-
focus foreground and the out-of-focus background.

E. Convergence and complexity

Because of the non-convexity of the rank minimization
problem, the use of the ADMM method does not provide
theoretical guarantees of convergence. Studying the theoretical
convergence is particularly challenging for this problem and
is out of the scope of this paper. However, in our experiments,
convergence was obtained in approximately 30 iterations for
the luminance and less than 10 for the chromaticity which
requires less accuracy (see Table I).

The running time also depends on the size of the matrix to
complete. For a m× n matrix, the complexity of the SVD is
O(min(n2m,nm2)), which is the complexity bottleneck for
each iteration of our algorithm. In the light field inpainting
application, the number of columns n is equal to the number
of views including the additional warped views. The number
of rows m is equal to the number of pixels within an area
surrounding the inpainting mask, which is generally much
higher than n. The complexity is then O(n2m) per iteration.

Therefore, the complexity depends on the square of the
number of added warped views. For that reason and for the
memory limitations, this parameter should not be taken higher
than necessary. An example showing the effect of the number
of warped views on the inpainting quality is shown in the
supplementary materials. Increasing this parameter improves
the quality of the inpainted area (e.g. reduce blur and ghosting
artifacts), but the results tend to stabilize for sufficiently high
numbers of added warped images. From our experiments, we
have considered that setting this parameter to 400 for the

luminance component and 100 for the chrominance was a
reasonable tradeoff between the result quality and the compu-
tational load since higher values did not produce significantly
better results in most cases.

In order to reduce unnecessary memory consumption and
computing time, single precision arithmetic was used in the
implementation. However, further speed optimizations could
be considered. In practice, less than a third of the matrix
completion running time is spent on the singular value thresh-
olding step that includes the most complex operations of the
algorithm (i.e. SVD computation and matrix multiplications).
More than half of the time is used for internal matlab compu-
tations which may include unnecessary duplications of large
matrices in memory. Therefore, significant gains may still be
obtained. Furthermore, our algorithm may also benefit from
accelerations with parallel computing since there exist parallel
algorithms for the singular value decomposition of large
matrices. For example, significant speed improvements were
reported by the authors of [40] for their SVD implementation
on GPU compared to that of matlab.

VI. CONCLUSION

In this paper we proposed a novel light field inpainting
algorithm where the central view is inpainted first using a
classical automatic or semi-supervised 2D image inpainting
method. Our focus was on the consistent propagation of the
inpainted area to the rest of the light field. For that purpose we
first generate a set of warped versions of the inpainted central
view with random homographies, using a carefully chosen
random distribution. If the area to inpaint contains depth
discontinuities, a segmentation map of the depth layers of the
inpainted central view may be given as additional input. It is
used by our algorithm to warp the depth layers with different
homographies. Then, a matrix is formed by vectorizing and
concatenating the warped images and the original light field
views. Thanks to the high correlation between views, the
matrix can be assumed to have a low rank, which enables
the use of a low rank matrix completion algorithm.

The current matrix completion methods have been designed
essentially for the case where the positions of the unknown
entries are uniformly distributed in the matrix. Therefore, we
also proposed a new matrix completion algorithm that is better
suited to the inpainting application where a large region is
unknown instead of random entries. We have demonstrated the
effectiveness of our matrix completion scheme for inpainting
all the views of a light field. In particular, the method is well
suited for real world light fields captured by plenoptic cameras,
that have a short baseline but present challenging features such
as noise and color and illumination variations between the
views. Furthermore, thanks to the consistency of the inpainting
across views, the resulting light field can be used to produce
refocused images with realistic depth of field, which is an
important application of plenoptic photography.

APPENDIX
PROOF OF THE HOMOGRAPHY SCALING EQUATION (16)
Given a homography matrix H transforming a 2D point

(x, y) into (x′, y′), we want to find the matrix Ha,b that
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Fig. 10. Results for the three light fields “figurine”, “Bee2” and “TotoroAlley” (from top to bottom) captured with a Lytro Illum camera. Our method
based on matrix completion is compared to the direct projection of the inpainted region using homographies computed by matching SIFT points between
the central view and the other views. The last column shows an example of refocused image generated by shifting and averaging all the views. For
‘figurine” and “Bee2”, the inpainting of the central view was performed manually since traditional 2D inpainting methods did not produce satisfactory
results. More results including videos displaying all the views of the light fields can be found in the supplementary materials and on our web page:
https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html

https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html
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Fig. 11. Results of our method for the light fields “butterfly” (synthetic) and “TotoroWaterfall” (captured with a Lytro Illum camera). Those light fields
contain a depth discontinuity, and the result are shown either with or without using a segmentation of the depth layers as input (segmentation map shown on
top of the inpainted central view). The last column shows an example of refocused image generated by shifting and averaging all the views. For ‘butterfly”,
the inpainting of the central view was performed manually since traditional 2D inpainting methods did not produce satisfactory results. More results including
videos displaying all the views of the light fields can be found in the supplementary materials and on our web page: https://www.irisa.fr/temics/demos/
lightField/InpaintMC/LFinpaintMC.html

transforms (ax, by) into (ax′, by′) for arbitrary scaling values
a, b > 0, and any point (x, y).

For a given a pair of coordinates (x, y), its projection (x′, y′)

with the homography defined by H =

h1,1 h1,2 h1,3

h2,1 h2,2 h2,3

h3,1 h3,2 h3,3

,

is expressed as:

w · [x′, y′, 1] = [x, y, 1] ·H (17)

Therefore, 
wx′ = h1,1 · x+ h2,1 · y + h3,1 (18a)
wy′ = h1,2 · x+ h2,2 · y + h3,2 (18b)
w = h1,3 · x+ h2,3 · y + 1 (18c)

Then, by replacing w by its expression in Equations (18a) and
(18b), we obtain:


h1,3 · xx′+h2,3 · yx′ + x′

= h1,1 · x+ h2,1 · y + h3,1

(19a)

h1,3 · xy′+h2,3 · yy′ + y′

= h1,2 · x+ h2,2 · y + h3,2

(19b)

Similarly, Ha,b being defined as the homography matrix

https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html
https://www.irisa.fr/temics/demos/lightField/InpaintMC/LFinpaintMC.html
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projecting (ax, by) to (ax′, by′), we obtain:
ha,b1,3 · a2xx′+ha,b2,3 · abyx′ + ax′

= ha,b1,1 · ax+ ha,b2,1 · by + ha,b3,1

(20a)

ha,b1,3 · abxy′+h
a,b
2,3 · b2yy′ + by′

= ha,b1,2 · ax+ ha,b2,2 · by + ha,b3,2

(20b)

where the element (i, j) of Ha,b is noted ha,bi,j . By dividing
Equation (20a) by a and Equation (20b) by b, we obtain:

aha,b1,3 · xx′+bh
a,b
2,3 · yx′ + x′

= ha,b1,1 · x+ ha,b2,1 ·
b

a
· y +

ha,b3,1

a

(21a)

aha,b1,3 · xy′+bh
a,b
2,3 · yy′ + y′

= ha,b1,2 ·
a

b
· x+ ha,b2,2 · y +

ha,b3,2

b

(21b)

We note that the systems of equations (19) and (21) are
identical by taking:

Ha,b =

 h1,1 h1,2
b
a

h1,3

a

h2,1
a
b h2,2

h2,3

b
h3,1 · a h3,2 · b 1

 . (22)

Therefore, for any point (x, y) and its projection (x′, y′)
with the homography defined by H , the homography matrix
projecting (ax, by) to (ax′, by′) is given by equation (22).
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