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For the recently introduced isotropic relaxed micromorphic generalized continuum model, we show that under the assumption of positive definite energy, planar harmonic waves have real velocity. We also obtain a necessary and sufficient condition for real wave velocity which is weaker than positive-definiteness of the energy. Connections to isotropic linear elasticity and micropolar elasticity are established. Notably, we show that strong ellipticity does not imply real wave velocity in micropolar elasticity, while it does in isotropic linear elasticity.

Introduction

Investigations of real wave propagation and ellipticity are not new in principle. Indeed, it is textbook knowledge for linear elasticity that positive definiteness of the elastic energy implies real wave velocities (phase velocities) v = ω/k where ω [rad/s] is the angular frequency and k [rad/m] ∈ R is the wavenumber of planar propagating waves. In classical elasticity, having real wave velocities is equivalent to rank-one convexity (strong ellipticity or Legendre-Hadamard ellipticity). Moreover, ellipticity is equivalent to the positive definiteness of the acoustic tensor. For anisotropic linear elasticity we mention [START_REF] Chiriţă | On the strong ellipticity of the anisotropic linearly elastic materials[END_REF], while for anisotropic nonlinear elasticity we refer the reader to [START_REF] Balzani | A polyconvex framework for soft biological tissues. Adjustment to experimental data[END_REF][START_REF] Merodio | A note on tensile instabilities and loss of ellipticity for a fiber-reinforced nonlinearly elastic solid[END_REF][START_REF] Schröder | Application of polyconvex anisotropic free energies to soft tissues[END_REF][START_REF] Schröder | Anisotropic polyconvex energies on the basis of crystallographic motivated structural tensors[END_REF].

The same question of ellipticity and real wave velocities in generalized continuum mechanics has been discussed for micropolar models, e.g. in [START_REF] Smith | Waves in micropolar elastic solids[END_REF] and for elastic materials with voids in [START_REF] Chiriţă | Strong ellipticity and progressive waves in elastic materials with voids[END_REF]. For the isotropic micromorphic model results can be found with respect to positive definite energy and/or real wave velocity [START_REF] Nowacki | Theory of Asymmetric Elasticity[END_REF][START_REF] Smith | Inequalities between the constants of a linear micro-elastic solid[END_REF], Mindlin [START_REF] David | Microstructure in linear elasticity[END_REF][START_REF] David | Micro-structure in linear elasticity[END_REF] and Eringen's book [11, pp. 277-280]. These latter results present conditions which are neither easily verifiable nor are truly transparent. This is due to the very high number of material coefficients of the Eringen-Mindlin theory that are strongly reduced in the relaxed micromorphic model [29]. Indeed, the implication that positive definiteness of the energy always implies real wave velocities is not directly established and demonstrated. In this paper we investigate the relaxed micromorphic model in terms of conditions for real wave velocities for planar waves and establish a necessary and sufficient conditions for this to happen.

This paper is organized as follows. We shortly recall the basics of the relaxed micromorphic model and discuss the wave propagation problem for propagating planar waves. Since we deal with an isotropic model, we can, without loss of generality, assume wave propagation in one specific direction only. The dispersion relations are then obtained and real wave-velocities under assumption of uniform-positiveness of the elastic energy are established.

We next present a set of necessary and sufficient conditions for real wave-velocities in the relaxed micromorphic model which is weaker than positivity of the energy, as the strong ellipticity condition is with respect to positive definiteness of the energy in the case of linear elasticity. Then, for didactic purposes, we repeat the analysis for isotropic linear elasticity in order to see relations of our necessary and sufficient condition to the strong ellipticity condition in linear elasticity. Similarly, we discuss micropolar elasticity and establish necessary and sufficient conditions for real wave propagation. We finally show that strong ellipticity in micropolar and micromorphic models is not sufficient for having real wave velocities, when dealing with plane waves.

The relaxed micromorphic model

The relaxed micromorphic model has been recently introduced into continuum mechanics in [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]. In subsequent works [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF], the model has shown its wider applicability compared to the classical Mindlin-Eringen micromorphic model in diverse areas [START_REF] Cemal | Microcontinuum field theories[END_REF][START_REF] Greene | Microelastic wave field signatures and their implications for microstructure identification[END_REF][START_REF] David | Microstructure in linear elasticity[END_REF][START_REF] David | Micro-structure in linear elasticity[END_REF].

The dynamic relaxed micromorphic model counts only 8 constitutive parameters in the (simplified) isotropic case, namely 5 elastic moduli µ e , λ e , µ micro , λ micro , µ c [Pa], one characteristic length L c [m], the average macroscopic inertia ρ [kg], and the micro-inertia η [kg/m]. The simplification consists in assuming one scalar micro-inertia parameter η and a uni-constant curvature expression. The characteristic length L c is intrinsically related to non-local effects due to the fact that it weights a suitable combination of first order space derivatives of the microdistorion tensor in the strain energy density [START_REF] Holm Altenbach | Acceleration waves and ellipticity in thermoelastic micropolar media[END_REF]. For a general presentation of the features of the relaxed micromorphic model in the anisotropic setting, we refer to [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF].

Elastic energy density

The relaxed micromorphic model couples the macroscopic displacement u ∈ R 3 and an affine substructure deformation attached at each macroscopic point encoded by the micro-distortion field P ∈ R 3×3 . Our novel relaxed micromorphic model endows Mindlin-Eringen's representation of linear micromorphic models with the second order dislocation density tensor α = -CurlP instead of the full gradient ∇P . 7 In the isotropic hyperelastic case the elastic energy density reads

W = µ e sym ( ∇u -P ) 2 + λ e 2 (tr ( ∇u -P )) 2 + µ c skew ( ∇u -P ) 2 (1) 
+ µ micro sym P 2 + λ micro 2 (trP ) 2 + µ e L 2 c 2 CurlP 2
= µ e dev sym ( ∇u -P ) 2 + 2 µ e + 3 λ e 3 (tr ( ∇u -P )) where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen micromorphic model. The model is well-posed in the statical and dynamical case even for zero Cosserat couple modulus µ c = 0, see [START_REF] Ghiba | The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics[END_REF][START_REF] Neff | The relaxed linear micromorphic continuum: wellposedness of the static problem and relations to the gauge theory of dislocations[END_REF]. In that case, it is non-redundant in the sense of [START_REF] Romano | Micromorphic continua: non-redundant formulations[END_REF]. Well-posedness results for the statical and dynamical cases have been provided in [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] making decisive use of recently established new coercive inequalities, generalizing Korn's inequality to incompatible tensor fields [START_REF] Bauer | New Poincaré-type inequalities[END_REF][START_REF] Bauer | Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions[END_REF][START_REF] Neff | A canonical extension of Korn's first inequality to H(Curl) motivated by gradient plasticity with plastic spin[END_REF][START_REF] Neff | Maxwell meets Korn: A new coercive inequality for tensor fields in R n×n with square-integrable exterior derivative[END_REF][START_REF] Neff | Poincaré meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields[END_REF].

Decisive for the relaxed micromorphic formulation is the definition of the elastic energy in terms of suitable strain tensors. Since ∇u is the macroscopic displacement gradient and P is the micro-distortion there appears the possibility to use the non-symmetric relative (elastic) strain tensor ∇u -P as basic building block in the energy. Using the Cartan-Lie orthogonal orthogonal decomposition we may introduce:

µ e dev sym ( ∇u -P ) 2 + 2 µ e + 3 λ e 3 (tr ( ∇u -P )) 2 + µ c skew ( ∇u -P ) 2 . ( 2 
)
The microstructure contribution based on P alone is restricted, by infinitesimal frame-indifference to

µ micro dev sym P 2 + 2 µ micro + 3 λ micro 3 (tr P ) 2 + µ e L 2 c 2 Curl P 2 . ( 3 
)
Strict positive definiteness of the potential energy is equivalent to the following simple relations for the introduced parameters [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]:

µ e > 0, µ c > 0, 2 µ e + 3 λ e > 0, µ micro > 0, 2 µ micro + 3 λ micro > 0, L c > 0. (4) 
As for the kinetic energy density, we consider that it takes the following (simplified) form

J = ρ 2 u ,t 2 + η 2 P ,t 2 , simplified micro -inertia (5) 
where ρ > 0 is the value of the averaged macroscopic mass density of the considered material, while η > 0 is its micro-inertia density.

For very large sample sizes, a scaling argument shows easily that the relative characteristic length scale L c of the micromorphic model must vanish. Therefore, we have a way of comparing a classical first gradient formulation with the relaxed micromorphic model and to offer an a priori relation between the microscopic parameters λ e , λ micro , µ e , µ micro on the one side and the resulting macroscopic parameters λ macro , µ macro on the other side [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF][START_REF] Neff | On material constants for micromorphic continua[END_REF][START_REF] Neff | A geometrically exact micromorphic model for elastic metallic foams accounting for affine microstructure. Modelling, existence of minimizers, identification of moduli and computational results[END_REF]. We have 

(
where µ macro , λ macro are the moduli obtained for L c → 0.

For future use we define the elastic bulk modulus κ e , the microscopic bulk modulus κ micro and the macroscopic bulk modulus κ macro , respectively:

κ e = 2 µ e + 3 λ e 3 , κ micro = 2 µ micro + 3 λ micro 3 , κ macro = 2 µ macro + 3 λ macro 3 . (7) 
In terms of these moduli, strict positive-definiteness of the energy is equivalent to:

µ e > 0, µ c > 0, κ e > 0, µ micro > 0, κ micro > 0, L c > 0. (8) 
If strict positive-definiteness (8) holds we can write the macroscopic consistency conditions as:

κ macro = κ e κ micro κ e + κ micro , µ macro = µ e µ micro µ e + µ micro , (9) 
and, again under condition ( 8)

κ e = κ micro κ macro κ micro -κ macro , κ micro = κ e κ macro κ e -κ macro , µ e = µ micro µ macro µ micro -µ macro , µ micro = µ e µ macro µ e -µ macro . (10) 
Here, strict positivity [START_REF] Chiriţă | Strong ellipticity and progressive waves in elastic materials with voids[END_REF] implies that:

κ e + κ micro > 0, µ e + µ micro > 0, κ e > κ macro , κ micro > κ macro , µ e >µ macro , (11) 
µ micro > µ macro .
Since it is useful in what follows we explicitly remark that: 

With these relations, it is easy to show how µ e > 0 and κ e > 0 imply 2 µ e + λ e > 0. Moreover, as shown in the appendix (equations ( 94) and ( 95)), we note here that if only µ e + µ micro > 0 and κ e + κ micro > 0, then the macroscopic parameters are less or equal than respective microscopic parameters, namely:

κ e ≥ κ macro , κ micro ≥ κ macro µ e ≥ µ macro , µ micro ≥ µ macro , (13) 
and moreover the following inequalities are satisfied:

2 µ e + λ e ≥ 2 µ macro + λ macro , 2 µ micro + λ micro ≥ 2 µ macro + λ macro , 4 µ macro + 3 κ e 3 ≥ 2 µ macro + λ macro . (14) 
Note that the Cosserat couple modulus µ c [START_REF] Neff | The Cosserat couple modulus for continuous solids is zero viz the linearized Cauchy-stress tensor is symmetric[END_REF] does not appear in the introduced scale between micro and macro.

Dynamic formulation

The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The dynamical equilibrium equations are: 

ρ u ,tt =
+ λ e tr ( ∇u -P ) 1 -[2 µ micro sym P + λ micro tr (P )1] .

We note here that the presence of the Curl P in the energy generates a non-local term Curl Curl P in the equation of motion, while the possibility of band-gaps is still present, see [START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF]. The presence of the Curl P term is essential to simultaneously allow for the description of non localities and band gap in an enriched continuum mechanics framework. Sufficiently far from a source, dynamic wave solutions may be treated as planar waves. Therefore, we now want to study harmonic solutions traveling in an infinite domain for the differential system [START_REF] Gilbert | Positive definite matrices and Sylvester's criterion[END_REF]. To do so, we define:

P S := 1 3 tr (P ) , P [ij] := ( skewP ) ij = 1 2 (P ij -P ji ) , (16) 
P D := P 11 -P S , P (ij) := ( sym P ) ij = 1 2 (P ij + P ji ) , P V := P 22 -P 33
and we introduce the unknown vectors

v 1 = u 1 , P D , P S longitudinal v τ = u τ , P (1τ ) , P [1τ ] , transversal τ = 2, 3, v 4 = P (23) , P [23] , P V . uncoupled (17) 
The definition of the unknown vectors was made considering the coupling of the variables in the equations of motion, see [START_REF] Valerio D'agostino | A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model[END_REF][START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF][START_REF] Madeo | On the role of microinertia in enriched continuum mechanics[END_REF][START_REF] Madeo | A review on wave propagation modeling in band-gap metamaterials via enriched continuum models[END_REF][START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF]. More particularly, it has been shown in these previous works that three sets of equations can be isolated: one involving only longitudinal quantities, one involving only transverse quantities and one of three completely uncoupled equations. We suppose that the space dependence of all introduced kinematic fields are limited to a direction defined by a unit vector ξ ∈ R 3 , which is the direction of propagation of the wave and which is assumed given. Hence, we look for solutions of (15) in the form:

v 1 = β 1 e i(k ξ, x R 3 -ωt) , v τ = β τ e i(k ξ, x R 3 -ωt) , τ = 2, 3, v 4 = β 4 e i(k ξ, x R 3 -ωt) . ( 18 
)
where

β 1 = (β 1 1 , β 1 2 , β 1 3 ) T ∈ C 3 , β τ = (β τ 1 , β τ 2 , β τ 3 ) T ∈ C 3 and β 4 = (β 4 1 , β 4 2 , β 4 
3 ) T ∈ C 3 are the unknown amplitudes of the considered waves, C 3 is the space of complex constant three-dimensional vectors8 , k is the wavenumber and ω is the wave-frequency. Since our formulation is isotropic, we can, without loss of generality, specify the propagation direction ξ = e 1 . Then X = e 1 , x R 3 = x 1 , and we obtain that the space dependence of all introduced kinematic fields are limited to the component X which is now the direction of propagation of the wave 9 . This means that we look for solutions in the form:

v 1 = β 1 e i(kX-ωt) , v τ = β τ e i(kX-ωt) , τ = 2, 3, v 4 = β 4 e i(kX-ωt) , (19) 
Replacing these expressions in equations [START_REF] Gilbert | Positive definite matrices and Sylvester's criterion[END_REF], it is possible to express the system (see [START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF]) as:

A 1 • β 1 = 0, A τ • β τ = 0, τ = 2, 3, A 4 • β 4 = 0, (20) 
with

A 1 (ω, k) =       -ω 2 + c 2 p k 2 i k 2µ e /ρ i k (2 µ e + 3 λ e ) /ρ -i k 4 3 µ e /η -ω 2 + 1 3 k 2 c 2 m + ω 2 s -2 3 k 2 c 2 m -1 3 i k (2 µ e + 3 λ e ) /η -1 3 k 2 c 2 m -ω 2 + 2 3 k 2 c 2 m + ω 2 p       , (21) 
A 2 (ω, k) = A 3 (ω, k) =        -ω 2 + k 2 c 2 s i k 2µ e /ρ -i k η ρ ω 2 r , -i k µ e /η, -ω 2 + c 2 m 2 k 2 + ω 2 s c 2 m 2 k 2 i 2 ω 2 r k c 2 m 2 k 2 -ω 2 + c 2 m 2 k 2 + ω 2 r        , (22) 
A 4 (ω, k) =       -ω 2 + c 2 m k 2 + ω 2 s 0 0 0 -ω 2 + c 2 m k 2 + ω 2 r 0 0 0 -ω 2 + c 2 m k 2 + ω 2 s       . (23) 
Here, we have defined:

c m = µ e L 2 c η , c s = µ e + µ c ρ , c p = 2 µ e + λ e ρ , ω s = 2 (µ e + µ micro ) η , ω p = (2 µ e + 3 λ e ) + (2 µ micro + 3 λ micro ) η , ω r = 2 µ c η , ω l = 2 µ micro + λ micro η , ω t = µ micro η .
Let us next define the diagonal matrix:

diag 1 =   √ ρ 0 0 0 i √ 6η 2 0 0 0 i √ 3η   . (24) 
Considering γ = diag 1 • β and the matrix

A 1 (ω, k) = diag 1 • A 1 (ω, k) • diag -1 1
, it is possible to formulate the problem (20) equivalently as 10 :

A 1 • γ =        -ω 2 + c 2 p k 2 2 √ 6 3 k µ e / √ ρη √ 3 3 k (2 µ e + 3 λ e ) / √ ρη 2 √ 6 3 k µ e / √ ρη -ω 2 + 1 3 k 2 c 2 m + ω 2 s - √ 2 3 k 2 c 2 m √ 3 3 k (2 µ e + 3 λ e ) / √ ρη - √ 2 3 k 2 c 2 m -ω 2 + 2 3 k 2 c 2 m + ω 2 p          γ 1 γ 2 γ 3   = 0. ( 25 
)
Analogously considering

diag 2 =   √ ρ 0 0 0 i √ 2η 0 0 0 i √ 2η   , (26) 
it is possible to obtain

A 2 (ω, k) = A 3 (ω, k) = diag 2 • A 2 (ω, k) • diag -1 2 A 2 (ω, k) = A 3 (ω, k) =        -ω 2 + k 2 c 2 s k √ 2µ e / √ ρη -k √ 2 µ c / √ ρη, k √ 2µ e / √ ρη, -ω 2 + c 2 m 2 k 2 + ω 2 s c 2 m 2 k 2 -k √ 2 µ c / √ ρη c 2 m 2 k 2 -ω 2 + c 2 m 2 k 2 + ω 2 r        . (27) 
In order to have non-trivial solutions of the algebraic systems [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF], one must impose that

det A 1 (ω, k) = 0, det A 2 (ω, k) = det A 3 (ω, k) = 0, det A 4 (ω, k) = 0, (28) 
the solution of which allow us to determine the so-called dispersion relations ω = ω (k) for the longitudinal and transverse waves in the relaxed micromorphic continuum, see Figure 1 11 . The solutions of the eigenvalue problem obtained via the proposed decomposition are the same as the ones obtained via the standard formulation shown in the Appendix 7.2 with the full 12 × 12 matrix, for more details see [START_REF] Valerio D'agostino | A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model[END_REF]. For estimates on the isotropic moduli, we refer [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF] and, for a comparison with other micromorphic models, to [START_REF] Madeo | A review on wave propagation modeling in band-gap metamaterials via enriched continuum models[END_REF][START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF].

For solutions ω = ω(k) of ( 28) we define the

phase velocity: v = ω k , group velocity: dω(k) dk . ( 29 
)
Real wave numbers k ∈ R correspond to propagating waves, while complex values of k are associated with waves whose amplitude either grows or decays along the coordinate X. In linear elasticity, phase velocity and group velocity coincide since there is no dispersion and both are real, see section 3.

Since in this paper we are only interested in real k (outside the band gap region), the wave velocity (phase velocity) is real if and only if ω is real.

10 It is possible to face the problem in two more equivalent ways. The first one is to consider from the start that the amplitudes of the micro-distortion field are multiplied by the imaginary unit i, i.e. β = (β 1 , i β 2 , i β 3 ) T ∈ C 3 , as done in [31, p. 24, eq. 8.6].

Doing so, we obtaining a real matrix that can be symmetrized with

diag 1 =   √ ρ 0 0 0 √ 6η 2 0 0 0 √ 3η   .
On the other hand, it is also possible to consider from the beginning β = (

√ ρβ 1 , i √ 6η 2 β 2 , i √ 3η β 3 ) T ∈ C 3
obtaining directly a real symmetric matrix. 11 The formal limit η → +∞ shows no dispersion at all giving two pseudo-acoustic linear curves, longitudinal and transverse with slopes cp = (2µe + λe)/ρ and cs = (µe + µc)/ρ, respectively. Since ω 2 appears on the diagonal only, the problem ( 28) can be analogously expressed as an eigenvalueproblem:

(a) det A 4 (ω, k) = 0 (b) det A 1 (ω, k) = 0 (c) det A 2 (ω, k) = 0
det B 1 (k) -ω 2 1 = 0, det B 2 (k) -ω 2 1 = 0, (30) 
det B 3 (k) -ω 2 1 = 0, det B 4 (k) -ω 2 1 = 0,
where

B 1 (k) =        c 2 p k 2 2 √ 6 3 k µ e / √ ρη √ 3 3 k (2 µ e + 3 λ e ) / √ ρη 2 √ 6 3 k µ e / √ ρη 1 3 k 2 c 2 m + ω 2 s - √ 2 3 k 2 c 2 m √ 3 3 k (2 µ e + 3 λ e ) / √ ρη - √ 2 3 k 2 c 2 m + 2 3 k 2 c 2 m + ω 2 p        , (31) 
B 2 (k) = B 3 (k) =        k 2 c 2 s k √ 2µ e / √ ρη -k √ 2 µ c / √ ρη, k √ 2µ e / √ ρη, c 2 m 2 k 2 + ω 2 s c 2 m 2 k 2 -k √ 2 µ c / √ ρη c 2 m 2 k 2 c 2 m 2 k 2 + ω 2 r        , (32) 
B 4 (k) =       c 2 m k 2 + ω 2 s 0 0 0 c 2 m k 2 + ω 2 r 0 0 0 c 2 m k 2 + ω 2 s       . ( 33 
)
Note that B 1 (k), B 2 (k), B 3 (k) and B 4 (k) are real symmetric matrices and therefore the resulting eigenvalues ω 2 are real. Obtaining real wave velocities is tantamount to having ω 2 ≥ 0 for all solutions of (30).

Necessary and sufficient conditions for real wave propagation

We will show next that all the eigenvalues ω 2 of B 1 (k), B 2 (k) and B 3 (k) are real and positive for every k = 0 and non-negative for k = 0 provided certain conditions on the material coefficients are satisfied. Sylvester's criterion states that a Hermitian matrix M is positive-definite if and only if the leading principal minors are positive [START_REF] Gilbert | Positive definite matrices and Sylvester's criterion[END_REF]. For the matrix B 1 the three principal minors are: The three principal minors of B 1 are clearly positive for k = 0 if 12 :

(B 1 ) 11 = 2µ e + λ e ρ , (34) 
µ e > 0, µ micro > 0, κ e + κ micro > 0, 2 µ macro + λ macro > 0, (37) 
4 µ macro + 3 κ e > 0, 2 µ e + λ e > 0, 2 µ micro + λ micro > 0.

Similarly, for the matrix B 2 the three principal minors are:

(B 2 ) 11 = µ e + µ c ρ , (38) 
(Cof (B 2 )) 33 = k 2 2ηρ 4 (µ e µ c + µ micro (µ e + µ c ) + (µ e + µ c ) µ e L 2 c k 2 . ( 39 
) det (B 2 ) = k 2 η 2 ρ 4 µ micro µ c µ e + (µ e + µ c )µ micro µ e L 2 c k 2 . ( 40 
)
For the matrix B 2 (k) = B 3 (k), considering positive η, ρ and separating terms in the brackets by looking at large and small values of k, we can state necessary and sufficient conditions for strict positive-definiteness of B 2 (k) at arbitrary k = 0:

µ e > 0, µ micro > 0, µ c ≥ 0. (41) 
Since B 4 (k) is diagonal, it easy to show that positive definiteness is tantamount to the set of necessary and sufficient conditions for k = 0:

µ e > 0, µ e + µ micro > 0, µ c ≥ 0. (42) 
On the other hand, considering the case k = 0, we obtain that the matrices reduce to:

B 1 (0) =   0 0 0 0 ω 2 s 0 0 0 ω 2 p   , B 2 (0) = B 3 (0) =   0 0 0 0 ω 2 s 0 0 0 ω 2 r   , B 4 (0) =   ω 2 s 0 0 0 ω 2 r 0 0 0 ω 2 s   . ( 43 
)
Since the matrices are diagonal for k = 0, it easy to show that positive semi-definiteness is tantamount to the set of necessary and sufficient conditions :

µ e ≥ 0, µ e + µ micro ≥ 0, µ c ≥ 0, κ e + κ micro ≥ 0. (44) 
Hence, we can state a simple sufficient condition for real wave velocities for all real k:

µ e > 0, µ micro > 0, κ e + κ micro > 0, 2 µ macro + λ macro > 0, (45) 
4 µ macro + 3 κ e > 0, 2 µ e + λ e > 0, 2 µ micro + λ micro > 0.

In order to see a set of global necessary conditions for positivity at arbitrary k = 0 we consider first large and small values of k = 0 separately. For k → +∞ we must have:

2 µ e + λ e > 0, ( 2 
µ e + λ e )µ e L 2 c > 0, ( 2 
µ e + λ e )(2 µ micro + λ micro )µ e L 2 c > 0, (46) 
or analogously:

2 µ e + λ e > 0, µ e L 2 c > 0, 2 µ micro + λ micro > 0, (47) 
while for k → 0 we must have:

2 µ e + λ e > 0, ( 4 
µ macro + 3 κ e )(µ e + µ micro ) > 0, (κ e + κ micro )(µ e + µ micro )(2 µ macro + λ macro ) > 0. ( 48 
)
Since from [START_REF] Neff | A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy[END_REF] we have necessarily µ e > 0, µ micro > 0, and from ( 44) we get κ e + κ micro ≥ 0 and considering together the two limits for k we obtain the necessary condition:

2 µ e + λ e > 0, 2 µ micro + λ micro > 0, 4 µ macro + 3 κ e > 0, κ e + κ micro > 0, (49) 
µ e > 0, µ micro > 0, µ c ≥ 0, 2 µ macro + λ macro > 0.
Inspection shows that ( 49) is our proposed sufficient condition [START_REF] Neff | Relations of constants for isotropic linear Cosserat elasticity[END_REF]. From µ e > 0 and µ micro > 0, it follows that µ macro > 0. Therefore condition ( 49) is necessary and sufficient. We have shown our main proposition:

Proposition (real wave velocities). The dynamic relaxed micromorphic model (eq. ( 15)) admits real planar waves if and only if

µ c ≥ 0, µ e > 0, 2 µ e + λ e > 0, (50) 
µ micro > 0, 2 µ micro + λ micro > 0, (µ macro > 0), 2 µ macro + λ macro > 0, κ e + κ micro > 0, 4 µ macro + 3 κ e > 0.
In [START_REF] Smith | Waves in micropolar elastic solids[END_REF] the requirement µ macro > 0 is redundant, since it is already assumed that µ e , µ micro > 0. It is clear that positive definiteness of the elastic energy (4) implies [START_REF] Smith | Waves in micropolar elastic solids[END_REF]. We remark that, as shown in the appendix 7.1, the set of inequalities ( 50) is already implied by:

µ e > 0, µ micro > 0, µ c ≥ 0, κ e + κ micro > 0, 2 µ macro + λ macro > 0. ( 51 
)
Letting finally µ micro → +∞ and κ micro → +∞ (or µ micro → +∞ and λ micro > const.) generates the limit condition for real wave velocities (µ e → µ macro )

µ macro > 0, µ c ≥ 0, 2 µ macro + λ macro > 0. ( 52 
)
which coincides, up to µ c , with the strong ellipticity condition in isotropic linear elasticity, see section 3, and it coincides fully with the condition for real wave velocities in micropolar elasticity, see section 4. A condition similar to (52) can be found in [31, eq. 8.14 p. 26] where Mindlin requires that µ macro > 0, 2 µ macro +λ macro > 013 (in our notation) which are obtained from the requirement of positive group velocity at k = 0

dω acoustic, long (0) dk > 0, dω acoustic, trans (0) dk > 0. ( 53 
)
Let us emphasize that our method is not easily generalized to two immediate extensions. First, one could be interested in the isotropic relaxed micromorphic model with weighted inertia contributions and weighted curvatures [START_REF] Valerio D'agostino | A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model[END_REF]. Second, one could be interested in the anisotropic setting [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF]. In the second cases the blockstructure of the problem will be lost and one has to deal with the full 12 × 12 case, see equation ( 115) in the Appendix. Nonetheless, we expect positive-definiteness to always imply real wave propagation.

In [START_REF] Valerio D'agostino | A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model[END_REF] we show that the tangents of the acoustic branches in k = 0 in the dispersion curves are

c l = dω acoustic, long (0) dk = 2 µ macro + λ macro ρ , c t = dω acoustic, trans (0) dk = µ macro ρ . ( 54 
)
The tangents coincide with the classical linear elastic response if the latter has Lamé constants µ macro and λ macro , as it is shown in Figure 2. 

A comparison: classical isotropic linear elasticity

For classical linear elasticity with isotropic energy density and kinetic energy density:

W ( ∇u ) = µ macro sym ∇u 2 + λ macro 2 (tr ( ∇u )) 2 , J = ρ 2 u ,t 2 . ( 55 
)
The positive definiteness of the energy is equivalent to:

µ macro > 0, 2 µ macro + 3 λ macro > 0. (56) 
It is easy to see that our homogenization formula ( 6) implies (56) under condition of positive definiteness of the relaxed micromorphic model. The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The dynamical equilibrium equations are:

ρ u ,tt = Div [2 µ macro sym ( ∇u ) + λ macro tr ( ∇u ) 1] . (57) 
As before, in our study of wave propagation in micromorphic media we limit ourselves to the case of plane waves traveling in an infinite domain. We suppose that the space dependence of all introduced kinematic fields are limited to a direction defined by a unit vector ξ ∈ R 3 which is the direction of propagation of the wave. Therefore, we look for solutions of (57) in the form:

u(x, t) = u e i(k ξ, x R 3 -ω t) , u ∈ C 3 , ξ 2 = 1 . (58) 
Since our formulation is isotropic, we can, without loss of generality, specify the direction ξ = e 1 . Then X = e 1 , x R 3 = x 1 , and we obtain:

u(x, t) = u e i(k X-ω t) , u ∈ C 3 . (59) 
With this ansatz, it is possible to write (57) as:

A 5 (e 1 , ω, k) • u = 0 ⇐⇒ (B(e 1 , k) -ω 2 1) • u = 0 , (60) 
where:

A 5 (e 1 , ω, k) = 2 µmacro+λmacro ρ k 2 -ω 2 0 0 0 µmacro ρ k 2 -ω 2 0 0 0 µmacro ρ k 2 -ω 2 , (61) 
B(e 1 , k) = k 2 ρ 2 µ macro + λ macro 0 0 0 µ macro 0 0 0 µ macro . (62) 
Here, we observe that A 5 (e 1 , ω, k) is already diagonal and real. Requesting real wave velocities means ω 2 ≥ 0. For k = 0, this leads to the classical so-called strong ellipticity condition:

µ macro > 0, 2 µ macro + λ macro > 0, (63) 
which is implied by positive definiteness of the energy (56).

In classical (linear or nonlinear) elasticity, the condition of real wave propagation (63) is equivalent to strong ellipticity and rank-one convexity. Indeed, rank-one convexity amounts to set (ξ = k ξ with ξ 2 = 1):

d 2 dt 2 t=0 W ( ∇u + t u ⊗ ξ) ≥ 0 ⇐⇒ C ( u ⊗ ξ) , u ⊗ ξ R 3×3 ≥ 0, (64) 
where C is the fourth-order elasticity tensor. Condition (64) reads then:

0 ≤ 2 µ macro sym ( u ⊗ ξ) 2 + λ macro (tr ( u ⊗ ξ)) 2 = µ macro u 2 ξ 2 + (µ macro + λ macro ) u, ξ 2 R 3 .
We may express (65) given ξ ∈ R 3 as a quadratic form in u ∈ R 3 , which results in:

µ macro u 2 ξ 2 + (µ macro + λ macro ) u, ξ 2 R 3 = D(ξ) u, u R 3 , (65) 
where the components of the symmetric and real 3 × 3 matrix D(ξ) read

D(ξ) = (2 µ macro + λ macro )ξ 2 1 + µ macro (ξ 2 2 + ξ 2 3 ) (λ macro + µ macro )ξ 1 ξ 2 (λ macro + µ macro )ξ 1 ξ 2 (2 µ macro + λ macro )ξ 2 2 + µ macro (ξ 2 1 + ξ 2 3 ) (λ macro + µ macro )ξ 1 ξ 3 (λ macro + µ macro )ξ 1 ξ 2 (66) 
(λ macro + µ macro )ξ 1 ξ 3 (λ macro + µ macro )ξ 2 ξ 3 2 µ macro + λ macro )ξ 2 3 + µ macro (ξ 2 1 + ξ 2 2 )
.

The three principal invariants are independent of the direction ξ due to isotropy and are given by:

tr (D(ξ)) = ξ 2 (4 µ macro + λ macro ) = k 2 (4 µ macro + λ macro ), tr (Cof D(ξ)) = ξ 4 µ macro (5 µ macro + 2 λ macro ) = k 4 µ macro (5 µ macro + 2 λ macro ), (67) 
det(D(ξ)) = ξ 6 µ 2 macro (2, µ macro + λ macro ) = k 6 µ 2 macro (2 µ macro + λ macro ). Since D(ξ) is real and symmetric, its eigenvalues are real. The eigenvalues of the matrix D(ξ) are k 2 (2 µ macro + λ macro ) and k 2 µ macro (of multiplicity 2) such that positivity at k = 0 is satisfied if and only if 14 :

µ macro > 0, 2 µ macro + λ macro > 0, (68) 
which are the usual strong ellipticity conditions. We note here that the latter calculations also show that B(e 1 ) = 1 ρ k 2 D(e 1 ). Alternatively, one may directly form the so-called acoustic tensor B(ξ) ∈ R 3×3 by

B(ξ) • u := [C( u ⊗ ξ)] • ξ, ∀ u ∈ R 3 , (69) 
in indices we have (B(ξ)) ij = C ikjl u k u l = C(ξ ⊗ ξ). With (69) we obtain 15 :

u, B(ξ) • u R 3 = [C( u ⊗ ξ)] =: B∈R 3×3 ξ, • u R 3 = B • ξ, u R 3 = B • (ξ ⊗ u), 1 R 3×3 = B, (ξ ⊗ u) T R 3×3 (70) = B, u ⊗ ξ R 3×3 = C ( u ⊗ ξ), u ⊗ ξ R 3×3 ,
and we see that strong ellipticity C ( u ⊗ ξ), u ⊗ ξ R 3×3 > 0 is equivalent to the positive definiteness of the acoustic tensor B(ξ).

A further comparison: the linear Cosserat model

In the isotropic hyperelastic case the elastic energy density and the kinetic energy density of the Cosserat model read:

W = µ macro sym ∇u 2 + µ c skew ( ∇u -A) 2 + λ macro 2 (tr ( ∇u )) 2 + µ macro L 2 c 2 CurlA 2 , (71) 
J = ρ 2 u ,t 2 + η 2 A ,t 2 .
Introducing the canonical identification of R 3 with so(3), A can be expressed as a function of a ∈ R 3 as:

A = anti(a) =   0 -a 3 a 2 a 3 0 -a 1 -a 2 a 1 0   . (72) 
Here, we assume for clarity a uni-constant curvature expression in terms of only Curl A 2 . Strict positive definiteness of the potential energy is equivalent to the following simple relations for the introduced parameters

2 µ macro + 3 λ macro > 0, µ macro > 0, µ c > 0, L c > 0. ( 73 
)
The dynamical formulation is obtained defining a joint Hamiltonian and assuming stationary action. The dynamical equilibrium equations are:

ρ u ,tt = Div [2 µ macro sym ( ∇u -A) + 2 µ c skew ( ∇u -A) + λ macro tr ( ∇u -A) 1] , (74) η 
A ,tt = -µ macro L 2 c skew ( Curl CurlA) + 2 µ c skew ( ∇u -A) ,
see also [START_REF] Jeong | Existence, uniqueness and stability in linear Cosserat elasticity for weakest curvature conditions[END_REF][START_REF] Jeong | A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature[END_REF][START_REF] Neff | A new paradigm: the linear isotropic Cosserat model with conformally invariant curvature energy[END_REF][START_REF] Neff | Stable identification of linear isotropic Cosserat parameters: bounded stiffness in bending and torsion implies conformal invariance of curvature[END_REF] for formulations in terms of axial vectors. Note that for zero Cosserat couple modulus µ c = 0 the coupling of the two fields (u, A) is absent, in opposition to the relaxed micromorphic model (eq. ( 15)). Considering plane and stationary waves of amplitudes u and a, it is possible to express this system as:

A 6 (ω, k) • u 1 a 1 T = 0, A 7 (ω, k) • u 2 -a 3 T = 0, A 7 (ω, k) • u 3 a 2 T = 0, (75) 
where

A 6 (ω, k) = k 2 (2 µ macro + λ macro ))/ρ -ω 2 0 0 (2µ macro L 2 c k 2 + 2µ c )/η -ω 2 , (76) 
A 7 (ω, k) = k 2 (µ macro + µ c )/ρ -ω 2 -2ikµ c /ρ ikµ c /η (k 2 µ macro L 2 c + 4µ c )/(2η) -ω 2 .
(77) 15 The term [C( u⊗ξ)]•( u⊗ξ) that in index notation reads

C ijkl u k ξ l u j ξm, is different from C[( u⊗ξ)•( u⊗ξ)], i.e. C ijkl u k ξm umξ l . k 2 (µ macro + µ c )/ρ -ω 2 √ 2kµ c / √ ρη √ 2kµ c / √ ρη (k 2 µ macro L 2 c + 4µ c )/(2η) -ω 2 , (78) 
where

diag 7 = √ ρ 0 0 i √ 2η . (79) 
Since ω2 appears only on the diagonal, the problem can be analogously expressed as the following eigenvalueproblems:

det B 6 (k) -ω 2 1 = 0, det B 7 (k) -ω 2 1 = 0, (80) 
where

B 6 (k) = k 2 (2 µ macro + λ macro ))/ρ 0 0 (2µ macro L 2 c k 2 + 2µ c )/η 2 , (81) 
B 7 (k) = k 2 (µ macro + µ c )/ρ √ 2kµ c / √ ρη √ 2kµ c / √ ρη (k 2 µ macro L 2 c + 4µ c )/(2η) , (82) 
are the blocks of the acoustic tensor B

B(k) =   B 6 0 0 0 B 7 0 0 0 B 7   . (83) 
The eigenvalues of the matrix B 6 (k) are simply the elements of the diagonal, therefore we have:

ω acoustic, long (k) = k 2 µ macro + λ macro ρ , ω optic, long (k) = 2µ macro L 2 c k 2 + 2µ c η , (84) 
while for B 7 (k) it is possible to find:

ω acoustic, trans (k) = a(k) -a(k) 2 -b 2 k 2 , ω optic, trans (k) = a(k) + a(k) 2 -b 2 k 2 , (85) 
where we have set:

a(k) = 4 µ c + µ macro L 2 c k 2 η + 2 µ macro + µ c ρ k 2 , b 2 = 8 µ macro (4µ c + k 2 L 2 c (µ macro + µ c )) ρ η . (86) 
The acoustic branches are those curves ω = ω(k) as solutions of (79) that satisfy ω(0) = 0. We note here that the acoustic branches of the longitudinal and transverse dispersion curves have as tangent in k = 0 16

c l = dω acoustic, long (0) dk = 2 µ macro + λ macro ρ , c t = dω acoustic, trans (0) dk = µ macro ρ , (87) 
respectively. Moreover, the longitudinal acoustic branch is non-dispersive, i.e. a straight line with slope (87) 1 . The matrix B 6 (k) is positive-definite for arbitrary k = 0 if:

The 12 × 12 acoustic tensor for arbitrary direction

We suppose that the space dependence of all introduced kinematic fields are limited to a direction defined by a unit vector ξ which is the direction of propagation of the wave. Therefore, we look for solutions of: ρ u,tt = Div [2 µe sym ( ∇u -P ) + 2 µc skew ( ∇u -P ) + λe tr ( ∇u -P ) 1] ,

ηP,tt = -µe L 2 c Curl CurlP + 2 µe sym ( ∇u -P ) + 2 µc skew ( ∇u -P )

+ λe tr ( ∇u -P ) 1 -[2µ micro sym P + λ micro tr (P )1] ,

in the form:

u(x, t) = u e i(k ξ, x R 3 -ω t) s(x,t)∈R/C scalar , u ∈ C 3 , ξ 2 = 1 , (101) 
P (x, t) = P e i(k ξ, x R 3 -ω t) s(x,t)∈R/C scalar , P ∈ C 3×3 ,
where u is the polarization vector and P is the polarization matrix. We start by remarking that considering A, B ∈ R 3×3 we have that:

Curl(A • B) = L B (∇A) + A • Curl(B), (102) 
where L B : R 27 → R 3×3 is a linear operator with constant coefficients defined by the appropriate product rule of differentiation. Therefore we obtain:

Curl( P s(x, t)) = Curl( P • 1 s(x, t)) = P • Curl( 1 s(x, t)), (103) 
where:

Curl( 1 s(x, t)) =   0 ∂ 3 s(x, t) ∂ 2 s(x, t) -∂ 3 s(x, t) 0 ∂ 1 s(x, t) ∂ 2 s(x, t) -∂ 1 s(x, t) 0   ∈ so(3). ( 104 
)
The derivatives of s(x, t) can be evaluated considering:

∇xs(x, t) =   ∂ 1 s(x, t) ∂ 2 s(x, t) ∂ 3 s(x, t)   = e i(k ξ, x R 3 -ω t)   i k ξ 1 i k ξ 2 i k ξ 3   = e i(k ξ, x R 3 -ω t) i k ξ = i k ξ s(x, t). (105) 
It can be noticed that:

Curl(s(x, t) 1) = anti(∇s(x, t)) = e i(k ξ, x R 3 -ω t) i k anti(ξ) = s(x, t) i k anti(ξ). On the other hand, the second derivative of P with respect to time is: P,tt = ∂ 2 t ( P e i(k ξ, x R 3 -ω t) ) = -ω 2 P e i(k ξ, x R 3 -ω t) ) = -ω 2 P s(x, t).

Analogously for u it is possible to evaluate the gradient and the derivatives with respect to time as:

∇xu = i k s(x, t) u ⊗ ξ, u,tt = -ω 2 u s(x, t). (109) 
The sym, skew and tr of ∇u -P can then be expressed as:

sym ( ∇u -P ) = sym (i k u ⊗ ξ -P ) s(x, t) = (i k sym ( u ⊗ ξ) -sym P ) s(x, t), skew( ∇u -P ) = skew(i k u ⊗ ξ -P ) s(x, t) = (i k skew( u ⊗ ξ) -skew P ) s(x, t),

tr ( ∇u -P ) = tr (i k u ⊗ ξ -P ) s(x, t) = (i k u, ξ R 3 -tr P ) s(x, t).

Therefore, we have: Here, we have considered that, given a generic B ∈ R 3×3 and a scalar s(x, t), we have:

Div[B s(x, t)] = Div[B] =0 s(x, t) + B • ∇xs(x, t), (112) 
With all the formulas obtained it is possible to write (100) simplifying s(x, t) everywhere as:

-ρ ω At given ξ ∈ R 3 , this is a linear system in ( u, P ) ∈ C 12 which can be written in 12 × 12 matrix format as:

2 µ e + λ e = 4 3 µ e + 2 µ e + 3 λ e 3 = 4 3 µ e + κ e = 4 µ e + 3 κ e 3 , 2 µ

 32 micro + λ micro = 4 µ micro + 3 κ micro 3 .

  Div [2 µ e sym ( ∇u -P ) + 2 µ c skew ( ∇u -P ) + λ e tr ( ∇u -P ) 1] , ηP ,tt = -µ e L 2 c Curl Curl P + 2 µ e sym ( ∇u -P ) + 2 µ c skew ( ∇u -P )

Figure 1 :

 1 Figure 1: Dispersion relations ω = ω(k) [20] for the relaxed micromorphic model with non-vanishing Cosserat couple modulus µ c > 0. Uncoupled waves (a), longitudinal waves (b) and transverse waves (c). TRO: transverse rotational optic, TSO: transverse shear optic, TCVO: transverse constant-volume optic, LA: longitudinal acoustic, LO 1 -LO 2 : 1 st and 2 nd longitudinal optic, TA: transverse acoustic, TO 1 -TO 2 : 1 st and 2 nd transverse optic.

Figure 2 :

 2 Figure 2: Dispersion relations ω = ω(k) for the longitudinal acoustic wave LA, and the transverse acoustic TA in the relaxed micromorphic model (a) and in a classical Cauchy medium (b).

  is possible to evaluate the Curl CurlP as:Curl Curl( P s(x, t)) = Curl( P • anti(ξ) ∈so(3) i k s(x, t)) = i k Curl([ P • anti(ξ)] • 1s(x, t)) = i k P • anti(ξ) Curl( 1s(x, t)) (107) = i k i k P • anti(ξ) • anti(ξ) s(x, t) = -k 2 P • anti(ξ) • anti(ξ) e i(k ξ, x R 3 -ω t) .

  Div sym ( ∇u -P ) = Div (i k sym ( u ⊗ ξ)-sym P ) s(x, t) = (i k sym ( u ⊗ ξ) -sym P ) • ∇x s(x, t) = (i k sym ( u ⊗ ξ) -sym P ) • (i k ξ s(x, t)) = -(k 2 sym ( u ⊗ ξ) • ξ + i k sym P • ξ) s(x, t), Div skew( ∇u -P ) = Div (i k skew( u ⊗ ξ) -skew P ) s(x, t) = (i k skew( u ⊗ ξ) -skew P ) • ∇x s(x, t)(111)= (i k skew( u ⊗ ξ) -skew P ) • (i k ξ s(x, t)) = -(k 2 skew( u ⊗ ξ) • ξ + i k skew P • ξ) s(x, t), Div( tr ( ∇u -P ) 1) = Div (i k u, ξ R 3 -tr P ) 1 s(x, t) = (i k u, ξ R 3 -tr P ) 1 • ∇x s(x, t) = (i k u, ξ R 3 -tr P ) 1 • (i k ξ s(x, t)) = -(k 2 u, ξ R 3 + i k tr P )ξ s(x, t).

  2 u = -2 µe (k 2 sym ( u ⊗ ξ) • ξ + i k sym P • ξ)) + 2 µc (k 2 skew( u ⊗ ξ) • ξ + i k skew P • ξ) + λe(k 2 u, ξ R 3 + i k tr P ) ξ , -η ω 2 P = µe L 2 c k 2 P anti(ξ) • anti(ξ) + 2 µe (i k sym ( u ⊗ ξ) -sym P ) + 2 µc (i k skew( u ⊗ ξ) -skew P )(113)+ λe(i k u, ξ R 3 -tr P )1 -2µ micro sym P + λ micro tr ( P )1 , or analogously:-ρ ω 2 u + k 2 (2 µe sym ( u ⊗ ξ) • ξ + 2 µc skew( u ⊗ ξ) • ξ + λe u, ξ R 3 ξ) +i k (2 µe sym P • ξ + 2 µc skew P • ξ + λe tr P ξ) = 0, -η ω 2 P -µe L 2 c k 2 P anti(ξ) • anti(ξ) + 2(µe + µ micro ) sym P + 2µc skew P + (λe + λ micro ) tr ( P )1(114)-2 µe i k sym ( u ⊗ ξ) -2 µc i k skew( u ⊗ ξ) -λei k u, ξ R 3 1 = 0.

  + λ e )µ micro + 6 µ e κ e + (2 µ e + λ e )µ e L 2 e κ micro (µ e + µ micro ) + 8 µ e µ micro (κ e + κ micro ) + (2 µ e + λ e )(2 µ micro + λ micro )µ e L 2

	(Cof (B 1 )) 33 =	k 2 3ηρ	6(2 µ e c k 2	(35)
	=	k 2 3ηρ	2 (4µ macro + 3κ e ) (µ e + µ micro ) + (2 µ e + λ e )µ e L 2 c k 2 ,	
	det (B 1 ) =	k 2 η 2 ρ	6 κ c k 2
				(36)
	=	k 2 η 2 ρ	6 (κ	

e + κ micro ) µ e + µ micro 2 µ macro + λ macro + 2 µ e + λ e 2 µ micro + λ micro µ e L 2 c k 2 .

The dislocation tensor is defined as α ij = -( CurlP ) ij = -P ih,k jkh , where is the Levi-Civita tensor.

Here, we understand that having found the (in general, complex) solutions of[START_REF] Jeong | A numerical study for linear isotropic Cosserat elasticity with conformally invariant curvature[END_REF] only the real or imaginary parts separately constitute actual wave solutions which can be observed in reality.

In an isotropic model it is clear that there is no direction dependence. More specifically, let us consider an arbitrary direction ξ ∈ R 3 . Now we consider an orthogonal spatial coordinate change Q • e 1 = ξ with Q ∈ SO(3). In the rotated variables, the ensuing system of PDE's (15) is form-invariant, see[START_REF] Münch | Rotational invariance conditions in elasticity, gradient elasticity and its connection to isotropy[END_REF].

We note here that 4 µmacro +3 κe > 0 ⇐⇒ 2 µe +λe > 4 3 (µe -µmacro) ⇐⇒ 2 µmacro +λmacro > κmacro -κe. Furthermore, if µe + µ micro > 0 and κe + κ micro > 0, we have 3 (2 µe + λe) ≥ 4 µmacro + 3 κe ≥ 3 (2 µmacro + λmacro), see Appendix.

Mindlin explains that such parameters "are less than those that would be calculated from the strain-stiffnesses [of the unit cell]. This phenomenon is due to the compliance of the unit cell and has been found in a theory of crystal lattices by Gazis and Wallis[START_REF] Denos | Extensional waves in cubic crystals plates[END_REF]".

The eigenvalues of D(ξ) are independent of the propagation direction ξ ∈ R 3 which makes sense for the isotropic formulation at hand.

µ macro + λ macro > 0, µ macro > 0, µ c ≥ 0,(88)[START_REF] Gourgiotis | Stress channelling in extreme couple-stress materials Part I: Strong ellipticity, wave propagation, ellipticity, and discontinuity relations[END_REF] To obtain the slopes in 0 it is possible to search for a solution of the type ω = a k and then evaluate the limit for a → 0, see[START_REF] Valerio D'agostino | A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model[END_REF] for a thorough explanation in the relaxed micromorphic case.

succeed by choosing immediately the propagation direction ξ = e 1 and by considering a set of new variables[START_REF] Gourgiotis | Stress channelling in extreme couple-stress materials Part I: Strong ellipticity, wave propagation, ellipticity, and discontinuity relations[END_REF]. This allows us to obtain a certain pre-factorization of B(e 1 , k) in 3 × 3 blocks. Since the formulation is isotropic, choosing ξ = e 1 is no restriction, as argued before.
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Using the Sylvester criterion, B 7 (k) is positive-definite if and only if the principal minors are positive, namely:

from which we obtain the condition:

Considering these two sets of conditions, it is possible to state a necessary and sufficient condition for the positive definiteness of B 6 (k) and B 7 (k) and therefore of the acoustic tensor B(k):

which are implied by the positive-definiteness of the energy (73). Eringen [11, p.150] also obtains correctly (88) and (90) (in his notation µ c = κ/2, µ macro = µ Eringen + κ/2).

In [START_REF] Holm Altenbach | Acceleration waves and ellipticity in thermoelastic micropolar media[END_REF][START_REF] Victor | Acceleration waves in micropolar elastic media[END_REF] strong ellipticity for the Cosserat-micropolar model is defined and investigated. In this respect we note that ellipticity is connected to acceleration waves while our investigation concerns real wave velocities for planar waves. Similarly to [START_REF] Neff | Relations of constants for isotropic linear Cosserat elasticity[END_REF] it is established in [START_REF] Holm Altenbach | Acceleration waves and ellipticity in thermoelastic micropolar media[END_REF][START_REF] Victor | Acceleration waves in micropolar elastic media[END_REF] that strong ellipticity for the micropolar model holds if and only if (the uni-constant curvature case in our notation):

We conclude that for micropolar material models, (and therefore also for micromorphic materials) strong ellipticity ( 92) is too weak to ensure real planar waves since it is implied by, but does not imply (91). This fact seems to have been appreciated also in the study of the Cosserat model [START_REF] Bigoni | Folding and faulting of an elastic continuum[END_REF][START_REF] Ghiba | A variant of the linear isotropic indeterminate couplestress model with symmetric local force-stress, symmetric nonlocal force-stress, symmetric couple-stresses and orthogonal boundary conditions[END_REF][START_REF] Gourgiotis | Stress channelling in extreme couple-stress materials Part I: Strong ellipticity, wave propagation, ellipticity, and discontinuity relations[END_REF][START_REF] Madeo | A new view on boundary conditions in the Grioli-Koiter-Mindlin-Toupin indeterminate couple stress model[END_REF][START_REF] Münch | The modified indeterminate couple stress model: Why Yang et al.'s arguments motivating a symmetric couple stress tensor contain a gap and why the couple stress tensor may be chosen symmetric nevertheless[END_REF].

Conclusion

In this paper we derive the set of necessary and sufficient conditions that have to be imposed on the constitutive parameters of the relaxed micromorphic model in order to guarantee

• positive definiteness,

• real wave velocity ,

• Legendre-Hadamard strong ellipticity condition.

We show that, if, on the one hand, definite positiveness implies real wave propagation, on the other hand, real wave propagation is not guaranteed by the strong ellipticity condition. We conclude that, in strong contrast to the case of classical isotropic linear elasticity, where the three concepts are known to be equivalent, in the case of the relaxed micromorphic continua only definite positiveness of the strain energy density can be considered to be a good criterion to guarantee real wave speeds in the considered media. The proposed considerations can be extended to all generalized continua where the equivalence between the three notions is far from being straightforward.
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References 7 Appendix

Inequality relations between material parameters

The formulas in section 2.1 are based on the harmonic mean of two numbers κe and κ micro (or µe and µ micro ). If the two numbers are positive, it is easy to see that:

Here, we show that the same conclusion still holds if we merely assume that κe + κ micro > 0. This allows for either κe < 0 or κ micro < 0. Therefore, considering that κe + κ micro > 0, even if the energy is not strictly positive, it is possible to derive that:

Considering similarly µe + µ micro > 0, it is possible to obtain: Therefore, if µe + µ micro > 0 and κe + κ micro > 0, the macroscopic parameters are less or equal than respective microscopic parameters, namely:

and it is possible to show that: Therefore, the set of inequalities ( 50) is implied from the smaller set: µe > 0, µ micro > 0, µc ≥ 0, κe + κ micro > 0, 2 µmacro + λmacro > 0.

(98)

We note here that 3 (2 µe + λe) ≥ 4 µmacro + 3 κe ≥ 3 (2 µmacro + λmacro) because: (99)