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Abstract

In this paper the role of gradient micro-inertia terms η‖∇u ,t‖2 and free micro-inertia terms η‖p,t‖2
is investigated to unveil their respective effect on the dynamical behavior of band-gap metamaterials.
We show that the term η‖∇u ,t‖2 alone is only able to disclose relatively simplified dispersive behavior.
On the other hand, the term η‖P,t‖2 is in charge of the description of the full complex behavior of
band-gap metamaterials. A suitable mixing of the two micro-inertia terms allows to describe a new
feature of the relaxed-micromorphic model, i.e. the description of a second band-gap occurring for higher
frequencies. We also show that a split of the gradient micro-inertia η‖∇u ,t‖2, in the sense of Cartan-Lie
decomposition of matrices, allows to flatten separately longitudinal and transverse optic branches thus
giving the possibility of a second band-gap. Finally, we investigate the effect of the gradient inertia
η‖∇u ,t‖2 on more classical enriched models as the Mindlin-Eringen and the internal variable ones.
We find that the addition of such gradient micro-inertia allows for the onset of one band-gap in the
Mindlin-Eringen model and of three band-gaps in the internal variable model. In this last case, however,
non-local effects cannot be accounted for which is a too drastic simplification for most metamaterials. We
conclude that, even when adding gradient micro-inertia terms, the relaxed micromorphic model remains
the most performing one, among the considered enriched models, for the description of non-local band-gap
metamaterials.
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1 Introduction
The question of effectively studying the dynamical behavior of microscopically heterogeneous materials in
the simplified framework of continuum mechanics is a major challenge for engineering sciences.

Indeed, it is rather clear at the present state of knowledge that classical Cauchy continuum models are
too simplified to describe the behavior of a huge class of materials in the dynamical regime. As a matter of
fact, almost all real materials show dispersive behavior with respect to wave propagation, especially when
considering waves with small wavelengths. More precisely, this means that the speed of propagation of waves
is not a constant, as it happens for Cauchy continua, but it depends on the wavelength of the traveling
wave. Such phenomenon is rather comprehensible if one thinks of the fact that the mechanical properties
of materials vary when going down to lower scales. It is then sensible that the speed of propagation of
mechanical waves varies when considering waves with wavelength which are small enough to be comparable
to the characteristic size of the underlying heterogeneities.

If Cauchy continuum theories are not rich enough to catch these dispersive behavior, generalized con-
tinuum theories offer the possibility of describing wave dispersion while still remaining in the framework of
continuum mechanics. Although various generalized continuum models have been introduced to describe
dispersion (see the pioneering works [9, 23], while for a review of the use of enriched models in dynamics of
heterogeneous materials we refer to [8]), it is still not completely clear whether such dispersive properties can
be attributed to the constitutive assumptions which are made on the strain energy density or to the choice
of the micro-inertia terms which can be introduced.

The aforementioned considerations about the dispersive behavior of materials can be reformulated with
renewed awareness when talking about metamaterials.

Metamaterials are man-made artifacts which are conceived by assembling small structural elements in
periodic or quasi-periodic patterns in such a way that novel mechanical behavior emerges. Metamaterials
are often studied both from a static (those with enhanced mechanical properties with respect to traditional
materials) [13,33,37] and dynamic (those exhibiting band gaps, negative refraction, cloaking, focusing, etc.)
point of view [10, 11, 15, 22, 24, 25, 32, 35]. The characteristic size of microstructures in such metamaterials
usually ranges from microns to centimeters, so that they show dispersive behaviors for wavelengths which
are relatively large.
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More than this, some metamaterials can exhibit dispersive behavior which gives rise to unorthodox
mechanical properties which are not encountered in natural materials. For example, some metamaterials
are able to inhibit wave propagation within certain frequency ranges due to the presence of an underlying
microstucture which is able to resonate locally when excited at those frequencies or even to remain completely
unperturbed. The energy of the incident wave remains trapped at the level of the microstructure and the
macroscopic propagation results to be inhibited. Evidences of this type have been reported in the literature
based both on theoretical studies [1, 34] and experimental results [22,36].

In order to catch the complex behavior exhibited by such metamaterials while remaining in the framework
of continuum mechanics, generalized continuum models with enriched kinematics are needed. This means
that extra degrees of freedom must be introduced in the spirit of micromorphic theories [9,23] which allow to
account for micro-motions at the level of the microstructure. More particularly, the kinematical unknowns
of such micromorphic models are usually the macro-displacements u and the micro-distortion tensor P . Well
adapted constitutive choices must then be introduced for the strain energy density in order to describe
accurately the behavior of the considered metamaterials in the static regime.

As a last point, appropriate inertia terms must be introduced to model its mechanical behavior in the
dynamic regime. It is exactly this point that will be the focus of the present paper: how to choose well-suited
micro-inertia terms when dealing with enriched continuum models of the micromorphic type? How does
each of these terms affect the dynamic behavior of real band-gap metamaterials? Some hints on the role of
micro-inertia to model dispersive behavior are given in [2] but many fundamental questions still remain open.

We will show in this paper that6:

• Gradient micro-inertia terms η ‖∇u ,t‖2 only allow to describe dispersion either in classical or enriched
continuum models [2] ,

• Micro-inertia terms involving time derivatives of the extra kinematical degrees of freedom η ‖P,t‖2 allow
to describe and control optic branches in the dispersion relations of classical and relaxed micromorphic
continuum models [9, 12,16,18–21,23,26,27],

• The relaxed micromorphic model with micro-inertia of the type η ‖P,t‖2 is able to describe the onset
of the first band-gaps in mechanical metamaterials [16,18–21],

• The relaxed micromorphic model with both micro-inertia terms η ‖P,t‖2 and η ‖∇u ,t‖2 allows to ac-
count for the first and also for the second band-gap which occurs for higher frequencies,

• Classical Mindlin-Eringen models with full micro-inertia η ‖P,t‖2 and η ‖∇u ,t‖2 allow for the description
of only the first band-gap.

• Internal variable models with full micro-inertia η ‖P,t‖2 and η ‖∇u ,t‖2 allow for the description of three
band-gaps, even if some peculiar phenomena related to non-locality cannot be accounted for and the
resulting behavior is thus not versatile enough to model realistic metamaterials.

For the first 3 points clear treatise is present in the literature, while the last 3 points are discussed for the
first time in the present paper.

Finally, we show that a weighted gradient micro-inertia of the type 1
2η1 ‖ dev sym ∇u ,t‖

2
+ 1

2η2 ‖ skew∇u ,t‖
2
+

1
6η3 tr (∇u ,t)

2 allows to flatten some optic curves independently for longitudinal and transverse waves. More
precisely, if the parameter η3 allows to flatten one optic curve for longitudinal waves, the parameter η2 has
an analogous effect for transverse waves. Such improved control on the dispersion curves will allow for a
more effective fitting procedure on real band-gap metamaterials, since the description of the second band-gap
occurring at higher frequencies becomes accessible. The effects of analogous decompositions on the other
terms of the energy densities have already been studied in [7].

6 In order to clarify the nomenclature used in this paper, we call "classical continua" the classical continua of Cauchy for
which the strain energy density depends on the first gradient of the displacement u. When we talk about "enriched continua",
we are referring to continua with enriched kinematics, i.e. continua whose motion is defined by the displacement "u" and the
micro-distortion P . Different sub-classes of enriched continua can be introduced depending on the constitutive choice of the
strain energy density. For example, we talk about "classical micromorphic" media when the strain energy depends on ∇u , P
and ∇P , while we call "relaxed micromorphic media" those for which the strain energy density is a function of ∇u , P and
CurlP .
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We already showed in [16] that the relaxed micromorphic model with free micro-inertia can be successfully
used to describe the dynamical behavior of actual band-gap metamaterials. In that case, we showed that the
model is perfectly able to catch experimental results related to the transmission coefficient at an interface
between a classical Cauchy material and a specific band-gap metamaterial. The proposed use of the relaxed
micromorphic model for the description of that particular physical system is accurate enough to faithfully
reproduce the transmission coefficient as a function of frequency, also capturing specific internal resonance
phenomena that are characteristic of the targeted metamaterial.

Moreover, preliminary studies on other band-gap metamaterials which will be reported in papers in
preparation or already submitted to other journals allow us to:

• confirm the effectiveness of the use of the relaxed micromorphic model for the description of actual band-
gap metamaterials via a restricted number of constitutive parameters (such parameters are true material
parameters, i.e. they are constants when fixing the metamaterial and independent of frequency), see [17],

• perfectly fit the relaxed micromorphic model on both the dispersion curves of the targeted metamaterials
and the reflection/transmission spectra at material surfaces embedded in such metamaterials,

• show the specific effect that both free and gradient micro-inertia have on the dispersion patterns of such
specific metamaterials. Indeed, as it will be shown in subsequent works, both types of micro-inertia
are needed when one wants to describe, with sufficient precision, a wide class of realistic band-gap
metamaterials.

The present paper lays the foundations for the extensive use of enriched continuum models of the micro-
morphic type for the characterization of the behavior of a huge class of actual metamaterials. The advantage
of the use of such models will become evident when the mechanical behavior of a consistent number of meta-
materials will be described with the simple introduction of few material parameters which are true material
constants, independent of frequency and not relying on the usual hypothesis of separation of scale.

2 The relaxed micromorphic model
Our novel relaxed micromorphic model endows Mindlin-Eringen’s representation with the second order dis-
location density tensor α = −CurlP instead of the full gradient ∇P .7 In the isotropic case the elastic energy
reads

W =µe ‖ sym (∇u − P )‖2 + λe
2

(tr (∇u − P ))2︸ ︷︷ ︸
isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(1)

+ µmicro ‖ symP‖2 + λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µeL

2
c

2
‖CurlP‖2︸ ︷︷ ︸

isotropic curvature

,

where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen micromorphic
model. The model is well-posed in the statical and dynamical case including when µc = 0, see [12,26].

In our relaxed model the complexity of the general micromorphic model has been decisively reduced
featuring basically only symmetric gradient micro-like variables and the Curl of the micro-distortion P .
However, the relaxed model is still general enough to include the full micro-stretch as well as the full Cosserat
micro-polar model, see [27]. Furthermore, well-posedness results for the statical and dynamical cases have
been provided in [27] making decisive use of recently established new coercive inequalities, generalizing Korn’s
inequality to incompatible tensor fields [4, 5, 29–31].

The relaxed micromorphic model counts 6 constitutive parameters in the isotropic case (µe, λe, µmicro,
λmicro, µc, Lc). The characteristic length Lc is intrinsically related to non-local effects due to the fact that it

7The dislocation tensor is defined as αij = − (CurlP )ij = −Pih,kεjkh, where ε is the Levi-Civita tensor and Einstein notation
of sum over repeated indices is used.
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weights a suitable combination of first order space derivatives in the strain energy density (1). For a general
presentation of the features of the relaxed micromorphic model in the anisotropic setting, we refer to [3].

As for the kinetic energy, we consider in this paper that it takes the following form8:

J =
1

2
ρ ‖u,t‖2︸ ︷︷ ︸

Cauchy inertia

+
1

2
η ‖P,t‖2︸ ︷︷ ︸

free micro-inertia

+
1

2
η1 ‖ dev sym ∇u ,t‖

2
+

1

2
η2 ‖ skew∇u ,t‖

2
+

1

6
η3 tr (∇u ,t)

2︸ ︷︷ ︸
new gradient micro-inertia

, (2)

where ρ is the value of the average macroscopic mass density of the considered metamaterial, η is the free
micro-inertia density and the ηi, i = {1, 2, 3} are the gradient micro-inertia densities associated with the
different terms of the Cartan-Lie decomposition of ∇u .

If the first two terms appearing in Eq. (2) can be directly related to those introduced by Mindlin [23], the
last three terms of gradient micro-inertia are considered here for the first time when dealing with enriched
continua of the micromorphic type. In fact, gradient micro-inertia terms are currently used when dealing
with second gradient continua [6,14], but never when considering micromorphic models. Nevertheless, basing
ourselves on our first comparisons with experimental results [16, 17], we are persuaded that gradient micro-
inertia is essential also when considering enriched models of the micromorphic type if the ultimate goal is
that of describing the behavior of actual physical systems.

The associated equations of motion in strong form, obtained by a classical least action principle take the
form (see [19–21,26])

ρ u,tt −Div[ I ]︸ ︷︷ ︸
new augmented term

= Div [ σ̃ ] , η P,tt = σ̃ − s− Curlm, (3)

where

I = η1 dev sym ∇u ,tt + η2 skew∇u ,tt +
1

3
η3 tr (∇u ,tt) ,

σ̃ = 2µe sym (∇u − P ) + λe tr (∇u − P ) 1+ 2µc skew (∇u − P ) , (4)
s = 2µmicro symP + λmicro tr (P ) 1,

m = µeL
2
c CurlP.

The addition of a gradient micro-inertia to the kinetic energy (2) modifies the strong-form PDEs of the
relaxed micromorphic model with the addition of the new term I. Of course, boundary conditions would also
be modified with respect to the ones presented in [16,21]. The study of the new boundary conditions induced
by gradient micro-inertia will be the object of a subsequent paper where the effect of such extra terms on
the conservation of energy will also be analyzed.

3 Plane wave propagation
Sufficiently far from a source, dynamic wave solutions may be treated as planar waves. Therefore, we now
want to study harmonic solutions traveling in an infinite domain for the differential system (3). We suppose
that the space dependence of all introduced kinematical fields are limited to the scalar component X which
is also the direction of propagation of the wave. To do so, following [16,18–21,28] we define:

PS :=
1

3
tr (P ) , P[ij] := ( skewP )ij =

1

2
(Pij − Pji) , (5)

PD := P11 − PS , P(ij) := ( symP )ij =
1

2
(Pij + Pji) ,

PV := P22 − P33.

With this decomposition, equations (3) can be rewritten as (see [19,20])
8The Cauchy inertia and free micro-inertia terms appearing in Eq. (2) are classical and already introduced by Mindlin and

Eringen [9,23], while the gradient micro-inertia terms are introduced here for the first time in a micromorphic framework. Indeed,
Mindlin [23] recognized inertia terms which are similar to our gradient micro-inertia terms when considering the particular case
of the long-wavelength limit of his micromorphic model. The expression (2) of the energy that we propose here is more general
(i.e. not restricted to large wavelengths) and indeed the gradient micro-inertia will show its higher effect for relatively small
wavelengths (high wavenumbers).
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• a set of three equations only involving longitudinal quantities:

ρ ü1 −
2 η1 + η3

3
ü1,11︸ ︷︷ ︸

new augmented terms

= (2µe + λe)u1,11 − 2µe P
D
,1 − (2µe + 3λe)P

S
,1 ,

η P̈D =
4

3
µe u1,1 +

1

3
µeL

2
c P

D
,11 −

2

3
µeL

2
cP

S
,11 − 2 (µe + µmicro) P

D , (6)

η P̈S =
2µe + 3λe

3
u1,1 −

1

3
µeL

2
cP

D
,11 +

2

3
µeL

2
cP

S
,11

− (2µe + 3λe + 2µmicro + 3λmicro) P
S ,

• two sets of three equations only involving transverse quantities in the ξ-th direction, with ξ = 2, 3:

ρ üξ −
η1 + η2

2
üξ,11︸ ︷︷ ︸

new augmented terms

= (µe + µc)uξ,11 − 2µe P(1ξ),1 + 2µc P[1ξ],1,

η P̈(1ξ) = µe uξ,1 +
1

2
µeL

2
c P(1ξ),11 +

1

2
µeL

2
c P[1ξ],11 (7)

− 2 (µe + µmicro) P(1ξ),

η P̈[1ξ] = −µc uξ,1 +
1

2
µeL

2
c P(1ξ),11 +

1

2
µeL

2
cP[1ξ],11 − 2µc P[1ξ],

• One equation only involving the variable P(23):

η P̈(23) = −2 (µe + µmicro)P(23) + µeL
2
cP(23),11, (8)

• One equation only involving the variable P[23] :

η P̈[23] = −2µc P[23] + µeL
2
cP[23],11, (9)

• One equation only involving the variable PV :

η P̈V = −2 (µe + µmicro)P
V + µeL

2
cP

V
,11. (10)

Once this symplified system of PDEs is obtained, we look for a wave form solution of the type:

v1(X, t) = β ei(kX−ωt)︸ ︷︷ ︸
longitudinal

, vτ (X, t) = γ τei(kX−ωt)︸ ︷︷ ︸
transversal

, τ = 2, 3, v4(X, t) = γ 4ei(kX−ωt)︸ ︷︷ ︸
uncoupled

, (11)

where we set for compactness

v1 =
(
u1, P

D, PS
)

vτ =
(
uτ , P(1τ), P[1τ ]

)
, τ = 2, 3, v4 =

(
P(23), P[23], P

V
)
. (12)

where β = (β1, β2, β3)
T ∈ C3, γτ = (γτ1 , γ

τ
2 , γ

τ
3 )
T ∈ C3 and γ4 = (γ41 , γ

4
2 , γ

4
3)
T ∈ C3 are the unknown

amplitudes of the considered waves9, k is the wavenumber and ω is the wave-frequency.
Replacing the wave form solution (11) in Eqs. (6), (7), (8), (9) and (10), it is possible to express the

system as:
A1 · β = 0, Aτ · γτ = 0, τ = 2, 3, A4 · γ4 = 0, (13)

9Here, we understand that having found the (in general, complex) solutions of (11) only the real or imaginary parts separately
constitute actual wave solutions which can be observed in reality.

6



where

A1(ω, k) =


−ω2

(
1 + k2 2 η1+η3

3 ρ

)
+ c2p k

2 i k 2µe/ρ i k (2µe + 3λe) /ρ

−i k 4
3 µe/η −ω2 + 1

3k
2c2m + ω2

s − 2
3 k

2c2m

− 1
3 i k (2µe + 3λe) /η − 1

3 k
2 c2m −ω2 + 2

3 k
2 c2m + ω2

p

 ,

A2(ω, k) = A3(ω, k) =


−ω2

(
1 + k2 η1+η22 ρ

)
+ k2c2s i k 2µe/ρ −i kρη ω

2
r ,

− i k µe/η, −ω2 +
c2m
2 k

2 + ω2
s

c2m
2 k

2

i
2 ω

2
r k

c2m
2 k

2 −ω2 +
c2m
2 k

2 + ω2
r

 ,

(14)

A4(ω, k) =


−ω2 + c2m k

2 + ω2
s 0 0

0 −ω2 + c2m k
2 + ω2

r 0

0 0 −ω2 + c2m k
2 + ω2

s

 .

Here, we have defined:

cm =

√
µeL2

c

η
, cs =

√
µe + µc

ρ
, cp =

√
2µe + λe

ρ
,

ωs =

√
2 (µe + µmicro)

η
, ωp =

√
(2µe + 3λe) + (2µmicro + 3λmicro)

η
, ωr =

√
2µc
η
,

In order to have non-trivial solutions of the algebraic systems (13), one must impose that

detA1(ω, k) = 0,︸ ︷︷ ︸
longitudinal

detA2(ω, k) = detA3(ω, k) = 0,︸ ︷︷ ︸
transverse

detA4(ω, k) = 0,︸ ︷︷ ︸
uncoupled

(15)

The solutions ω = ω(k) of these algebraic equations are called the dispersion curves of the relaxed micromor-
phic model for longitudinal, transverse and uncoupled waves, respectively.

In what follows we will present the results obtained for the numerical values of the elastic coefficients
chosen as in Table 1 if not differently specified.

Parameter Value Unit
µe 200 MPa

λe = 2µe 400 MPa
µc = 5µe 1000 MPa
µmicro 100 MPa
λmicro 100 MPa
Lc 1 mm
ρ 2000 kg/m3

Parameter Value Unit
λmacro 82.5 MPa
µmacro 66.7 MPa
Emacro 170 MPa
νmacro 0.28 −

Table 1: Values of the parameters used in the numerical simulations (left) and corresponding values of the
Lamé parameters and of the Young modulus and Poisson ratio (right), for the formulas needed to calculate
the homogenized macroscopic parameters starting from the microscopic ones, see [3].
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In the following sections we will explicitly discuss which is the effect of each micro-inertia parameter on
the dispersion curves of the relaxed micromorphic model. More particularly, we will focus on the cases:

• vanishing free micro-inertia η = 0 and non-vanishing gradient micro-inertia,

• both non-vanishing gradient micro-inertia and free micro-inertia.

The remaining case (vanishing gradient micro-inertia η = 0 and non-vanishing free micro-inertia η 6= 0) is the
classical case treated for the relaxed micromorphic model in [16, 18–21,28]. To the sake of completeness, we
present in Fig. 1 the dispersion curves for this case when using the values of the parameters given in Table
1.

Figure 1: Dispersion relations ω = ω(k) for the uncoupled (left), longitudinal (center) and transverse (right)
waves of the relaxed micromorphic model with free micro-inertia η = 10−2 kg/m.

It can be found that, when considering the free micro-inertia alone, the relaxed micromorphic model is
able to predict the first band-gap which usually occurs at relatively low frequencies. Moreover, the relaxed
micromorphic model is, to the current state of the art, the only continuum model which is able to describe
simultaneously band-gaps and non-local behavior [16].

In the next sections we will present the new results concerning the effect of the gradient micro-inertia
terms on the dispersion curves of the relaxed micromorphic model, as well as the effect of such gradient
micro-inertia on more classical enriched models (Mindlin, internal variable).

4 Case of vanishing free micro-inertia η and non-vanishing gradient
micro-inertia η

In this section we discuss the effect, on the dispersion curves of enriched continuum models, of the gradient
micro-inertia term alone. We will show that the fact of complementing the macro-inertia ρ‖u,t‖2 only with the
gradient micro-inertia η‖∇u ,t‖2 is a fundamental modeling limitation since the complexity of the dynamical
behavior of micromorphic models cannot be unveiled. Nevertheless, the gradient micro-inertia allows to
describe some dispersion which is not allowed by classical Cauchy models.
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4.1 Study of the dispersion curves
In the case in which we consider only the gradient micro-inertia η 6= 0 to be non-vanishing, the matrix
associated with the longitudinal dynamical system can be expressed as10:

A1(ω, k) =


−ω2

(
ρ+ k2 2 η1+η3

3

)
+ (2µe + λe) k

2 i k 2µe i k (2µe + 3λe)

−i k 4
3 µe

1
3k

2µeL
2
c + 2 (µe + µmicro) − 2

3 k
2µeL

2
c

− 1
3 i k (2µe + 3λe) − 1

3 k
2 µeL

2
c

2
3 k

2 µeL
2
c + ω2

p

 .

(16)

It is possible to remark that the polynomial detA1(ω, k) is of the second order in ω. This implies that we
have a unique positive solution of the equation detA1(ω, k) = 0 when considering positive k 11. In particular,
when plotting such solution in the (ω, k) plane only one acoustic branch can be detected (see Fig. 2)12.

Figure 2: Dispersion relations ω = ω(k) for the longitudinal waves of the relaxed micromorphic model with
gradient micro-inertia η3 = (0, 3× 10−3, 3× 10−2) kg/m and η = 0. Dotted in black the dispersion relations
for a first gradient model with Lamé parameters µmacro and λmacro and the same inertiae ρ and η3 (left). The
same picture obtained imposing λmicro = 0 (right): a very slight variation with respect to the 1st gradient
case can be detected.

Comparing the results shown in Fig. 2 with those presented in Fig. 1, it is immediate to notice that the
fact of considering the gradient micro-inertia alone significantly constrains the behavior of the considered
enriched continuum. Even if the constitutive expression for the strain energy density W is the same both in
Fig. 2 and in Fig. 1 (see Eq. (1)), the fact of using a gradient micro-inertia η‖∇u ,t‖2 instead of a free micro-
inertia η‖P,t‖2 drastically simplifies the patterns which are found for the dispersion curves. With reference
to Fig. 2, we can remark that a unique acoustic branch is found and that the presence of a non-vanishing
micro-inertia parameter η3 induces a dispersive behavior. When the gradient micro-inertia parameters are
all vanishing (η1 = η2 = η3 = 0), this means that only a macro-inertia ρ‖u,t‖2 is present and this correspond
to an almost constant speed of the traveling waves, which it is what happens for the classical Cauchy case. It
can be shown that, considering an adapted choice of the constitutive parameters for the relaxed micromorphic

10We can notice from the form of A1(ω, k) that considering an additional micro-inertia η is equivalent to defining an average
macroscopic density depending on the wavelength as ρ∗(k) = ρ+ k2 η. The same can be found for the transverse waves.

11It can be checked that, when considering elastic parameters which guarantee positive definiteness of the elastic energy the
solution ω = ω(k) of the characteristic polynomials are always real [28].

12Here and in the sequel, we will always set η1 = 0, since we could not isolate a characteristic effect of such parameters on
the dispersion curves.
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model with macro-inertia ρ‖u,t‖2 alone, the dispersion curve obtained is exactly the straight one obtained
with classical Cauchy model.

With a similar reasoning as the one made for longitudinal waves, considering the case η 6= 0 for transverse
waves, the matrix associated with the transverse dynamical system can be expressed as

A2(ω, k) =


−ω2

(
ρ+ k2 η1+η22

)
+ k2(µe + µc) i k 2µe −i k 2µc

−i k 2µe µeL
2
ck

2 + 4(µe + µmicro) µeL
2
ck

2

i k 2µc µeL
2
ck

2 µeL
2
c k

2 + 4µc

 , (17)

It is possible to see that the new inertia terms η2 plays the same role for the transverse waves that was played
by η3 for the longitudinal waves. The results concerning the solutions ω = ω(k) of the characteristic equation
detA2(ω, k) = 0 are analogous to the case of longitudinal waves, see Fig. 3.

Figure 3: Dispersion relations ω = ω(k) for the transverse waves of the relaxed micromorphic model with
gradient micro-inertia η2 = (0, 2×10−3, 2×10−2) kg/m and η = 0 and dotted in black the dispersion relations
for a first gradient model with Lamé parameters µmacro and λmacro and the same inertiae ρ and ηt.

If the particular case with non-null gradient micro-inertia η 6= 0 and null free micro-inertia η = 0 is
considered, the matrix associate to the uncoupled waves reduces to:

A4(ω, k) =


µeL

2
c k

2 + 2 (µe + µmicro) 0 0

0 µeL
2
c k

2 + 2µc 0

0 0 µeL
2
c k

2 + 2 (µe + µmicro)

 . (18)

from which it is not possible to derive any dispersion curve, due to the absence of inertia terms.

4.2 A first conclusion on the effect of gradient micro-inertia on enriched con-
tinuum models.

• When considering a macro-inertia term ρ‖u,t‖2 alone, only one acoustic branch is present and has an
almost constant speed of propagation. Such behavior is strongly dictated by the macro-inertia term
since the difference on the associated dispersion curves between a simple Cauchy energy W (∇u ) and
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an enriched model W =W (∇u , P, CurlP ) is small and vanishing considering an adapted choice of the
constitutive parameters.

• When complementing the macro-inertia ρ‖u,t‖2 with a gradient micro-inertia η‖∇u ,t‖2 the speed of
propagation of waves is not constant anymore, but it depends on the wavelength of the traveling waves.
Nevertheless, only an acoustic branch can be described, independently of the more or less complicated
(standard or enriched) kinematics.

• Complementing the macro-inertia ρ‖u,t‖2 with a free micro-inertia η‖P,t‖2 allows to disclose the full rich
constitutive behavior provided by the fact of considering an enriched model, as studied in [16,18–21,28]
and reproduced in Fig. 1. Two optic branches are observed, both for longitudinal and transverse waves,
in addition to the acoustic ones already discussed in the previous case (see Fig. 1). The properties
of such curves depend both on the constitutive parameters appearing in the expression of the energy
(Eq. (1)) and on the free inertia parameter η. In this framework of inertia of the type ρ‖u,t‖2+ η‖P,t‖2
, the relaxed micromorphic model is the only non-local, enriched continuum model allowing for the
presence of band-gaps [18].

5 Case of both non-vanishing free micro-inertia η and gradient micro-
inertia η

In this section we will discuss the effect of a full inertia ρ‖u,t‖2 + η‖P,t‖2 on the dispersion curves of the
relaxed micromorphic model. We will show that the complementation of the macro inertia with both the
gradient and free micro-inertia allows for the description of a new feature of the relaxed micromorphic model,
i.e. the onset of a second band-gap occurring at higher frequencies with respect to the first one.

5.1 Dispersion relations
Now, we show in Fig. 4 the results obtained for non-null micro-inertia η 6= 0 with the addition of gradient
micro-inertia η 6= 0. Surprisingly, the combined effect of the traditional micro-inertia η with the gradient
micro-inertiae can lead to the onset of a second longitudinal and transverse band-gap. Indeed, the existence
of a horizontal asymptote for the first optic branches in Fig. 4 could be shown. Nevertheless, an explicit
computation of such asymptotes becomes over-burdening. For this reason, we limit ourselves to remark
that, for all the metamaterials that we tested up to now, it is always possible to find η1, η2 and η3 that
are large enough to have horizontal asymptotes appearing in graphics considering k ranging from 0 (infinite
wave-length) to values of k corresponding to wave-lengths smaller than the size of the unit cell. Moreover,
it is possible to notice that the addition of gradient micro-inertiae η1, η2 and η3 has no effect on the cut-off
frequencies, which only depend on the free micro-inertia η (and of course on the constitutive parameters).

11



Figure 4: Dispersion relations ω = ω(k) of the relaxed micromorphic model for the longitudinal waves with
free micro-inertia η = 10−3 and gradient micro-inertia η3 = (3 × 10−4, 3 × 10−3, 3 × 10−2) kg/m (left) and
transverse waves with micro-inertia η = 10−3 and gradient micro-inertia η2 = (2× 10−4, 2× 10−3, 2× 10−2)
kg/m (right).

The uncoupled waves in the relaxed micromorphic model with generalized inertia behave as in the relaxed
micromorphic model as it is possible to see analyzing the matrix:

A4(ω, k) =


−ω2 + c2m k

2 + ω2
s 0 0

0 −ω2 + c2m k
2 + ω2

r 0

0 0 −ω2 + c2m k
2 + ω2

s

 . (19)

The resulting dispersion curves are the same to the ones obtained with the classical relaxed micromorphic
model, see Fig. 1, right.

5.2 Cut-offs and asymptotic behavior
To study the asymptotic behavior of the dispersion curves for the relaxed micromorphic model with full
inertia, let us introduce the following quantities:

ωv =

√
(2µe + λe) + (2µmicro + λmicro)

η
, ωl =

√
2µmicro + λmicro

η
, ωt =

√
µmicro

η
,

ωl =

√
2µe + λe
2 η1+η3

3

, ωt =

√
2 (µc + µe)

η1+η2
2

.

As stated in the previous section the cut-off frequencies are not modified by the insertion of a gradi-
ent micro-inertia term. Therefore, considering the longitudinal waves, we have one acoustic branch of the
dispersion curve and two optic branches with cut-off frequencies:

ωs =

√
2 (µe + µmicro)

η
, ωp =

√
(2µe + 3λe) + (2µmicro + 3λmicro)

η
, (20)
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On the other hand, the asymptotic behavior changes in a radical fashion from the classical relaxed micro-
morphic model. The horizontal asymptote of the acoustic curve changes and we have the onset of a new
horizontal asymptote for one of the optic branches, which values are respectively:

ωl,acoustic =

√√√√ω2
l
+ ω2

v −
√
(ω2
l
+ ω2

v)
2 − 4ω2

l
ω2
l

2
, (21)

ωl,optic =

√√√√ω2
l
+ ω2

v +
√
(ω2
l
+ ω2

v)
2 − 4ω2

l
ω2
l

2
.

No difference is found in the other optic branch that has an asymptote with slope cm as in the classical
relaxed micromorphic model.

Analogously, considering the transverse waves, we have one acoustic branch and two optic branches with
cut-off frequencies:

ωs =

√
2 (µe + µmicro)

η
, ωr =

√
2µc
η
. (22)

Once again, the horizontal asymptote of the acoustic curve changes with respect to the classical relaxed case
and we have an extra horizontal asymptote for one of the optic branches, which values are respectively:

ωt,acoustic =
1

2

√
ω2
t
+ ω2

s + ω2
r −

√
(ω2
t
+ ω2

s + ω2
r)

2 − 4ω2
t
ω2
t , (23)

ωt,optic =
1

2

√
ω2
t
+ ω2

s + ω2
r +

√
(ω2
t
+ ω2

s + ω2
r)

2 − 4ω2
t
ω2
t .

No difference is found in the other optic branch that has an asymptote with slope cm as in the classical
relaxed micromorphic model.

Finally, no change whatsoever is present in the uncoupled waves that keep having cut-off frequencies ωs
and ωr and oblique asymptote of slope cm.

6 Combined effect of the free and gradient micro-inertiae on more
classical enriched models (Mindlin-Eringen and internal variable)

In this section, we discuss the effect on the Mindlin-Eringen and the internal variable model of the addition of
the gradient micro-inertia η‖∇u ,t‖2 to the classical terms ρ‖u,t‖2+η‖P,t‖2. We will show that the previously
discussed effect of the parameters η2 and η3 is maintained both for the Mindlin-Eringen and for the internal
variable case.

Fig. 5 refers to the study of the effects of the parameters η2 and η3 on the dispersion curves of the
classical Mindlin-Eringen micromorphic model. To the sake of completeness, we recall that the (simplified)
strain energy density for this model in the isotropic case takes the form:

W =µe ‖ sym (∇u − P )‖2 + λe
2

(tr (∇u − P ))2︸ ︷︷ ︸
isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(24)

+ µmicro ‖ symP‖2 + λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

+
µeL

2
c

2
‖∇P‖2︸ ︷︷ ︸

isotropic curvature

,
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Figure 5: Dispersion relations ω = ω(k) of the standard Mindlin-Eringen model for the longitudinal waves
with free micro-inertia η = 10−3 and gradient micro-inertia η3 = (3×10−4, 3×10−3, 3×10−2) kg/m (left) and
transverse waves with micro-inertia η = 10−3 and gradient micro-inertia η2 = (2× 10−4, 2× 10−3, 2× 10−2)
kg/m (right).

Recalling the results of [19], we remark that when the gradient micro-inertia is vanishing (η1 = η2 = η3 =
0) the Mindlin-Eringen model does not allow the description of band-gaps, due to the presence of a straight
acoustic branch. On the other hand, when switching on the parameters η2 and η3 , the acoustic branches
are flattened (they take a horizontal asymptote), so that the first band-gap can be described. The analogous
case for the relaxed micromorphic model (Fig. 1) allowed instead for the description of 2 band-gaps.

Fig. 6 shows the behavior of the addition of the gradient micro-inertia η‖∇u ,t‖2 on the internal variable
model. We recall (see [27]) that the energy for the internal variable model does not include higher space
derivatives of the micro-distortion tensor P and, in the isotropic case, takes the form:

W =µe ‖ sym (∇u − P )‖2 + λe
2

(tr (∇u − P ))2︸ ︷︷ ︸
isotropic elastic− energy

+ µc ‖ skew (∇u − P )‖2︸ ︷︷ ︸
rotational elastic coupling

(25)

+ µmicro ‖ symP‖2 + λmicro

2
(trP )

2︸ ︷︷ ︸
micro− self − energy

,
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Figure 6: Dispersion relations ω = ω(k) of the internal variable model for the longitudinal waves with
free micro-inertia η = 10−3 and gradient micro-inertia η3 = (3 × 10−4, 3 × 10−3, 3 × 10−2) kg/m (left) and
transverse waves with micro-inertia η = 10−3 and gradient micro-inertia η2 = (2× 10−4, 2× 10−3, 2× 10−2)
kg/m (right).

By direct observation of Fig. 6, we can notice that suitably choosing the relative position of ωr and ωp,
the internal variable model allows to account for 3 band-gaps.

We thus have an extra band-gap with respect to the analogous case for the relaxed micromorphic model
(see Fig. 1), but we are not able to consider non-local effects. The fact of excluding the possibility of describing
non-local effects in metamaterials can be sometimes too restrictive. For example, flattening the curve which
originates from ωr and which is associated with rotational modes of the microstructure is unphysical for the
great majority of metamaterials.

7 Conclusions
In this paper we discuss the fundamental role of micro-inertia in enriched continuum models of the micro-
morphic type.

We show that if, on one hand, the free micro-inertia term η‖P,t‖2 is strictly necessary to disclose the full
rich behavior of micromorphic media in the dynamic regime, on the other hand the gradient micro-inertia
η‖∇u,t‖2 has the macroscopic effect of flattening some of the dispersion curves so allowing for the description
of extra band-gaps. In particular, we show that:

• In the case of the relaxed micromorphic model one band-gap can be described when introducing the free
micro-inertia η‖P,t‖2 alone. When introducing a mixed micro-inertia η‖P,t‖2+η‖∇u,t‖2 two band-gaps
can be accounted for by the same model.

• In the case of Mindlin-Eringen model no band-gaps are possible with the term η‖P,t‖2 alone, while the
onset of a single band-gap can be granted by the addition of the extra term η‖∇u,t‖2.

• In the internal variable model two band-gaps are possible with the term η‖P,t‖2 alone, even if non-
localities cannot be accounted for by such model. When adding the extra term η‖∇u,t‖2 even three
band-gaps become possible, but the behavior of the dispersion curves becomes fairly unrealistic for a
huge class of real metamaterials.

In conclusion, the results presented in this paper confirm the preceding findings according to wich the relaxed
micromorphic model is the most suitable enriched model for the simultaneous description of i) band-gaps
and ii) non-localities in mechanical metamaterials.
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Future work will be devoted to the application of the results obtained in this paper for the fitting of the
proposed model with enriched micro-inertia on real metamaterials exhibiting multiple band-gaps.
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