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Introduction

The question of effectively studying the dynamical behavior of microscopically heterogeneous materials in the simplified framework of continuum mechanics is a major challenge for engineering sciences.

Indeed, it is rather clear at the present state of knowledge that classical Cauchy continuum models are too simplified to describe the behavior of a huge class of materials in the dynamical regime. As a matter of fact, almost all real materials show dispersive behavior with respect to wave propagation, especially when considering waves with small wavelengths. More precisely, this means that the speed of propagation of waves is not a constant, as it happens for Cauchy continua, but it depends on the wavelength of the traveling wave. Such phenomenon is rather comprehensible if one thinks of the fact that the mechanical properties of materials vary when going down to lower scales. It is then sensible that the speed of propagation of mechanical waves varies when considering waves with wavelength which are small enough to be comparable to the characteristic size of the underlying heterogeneities.

If Cauchy continuum theories are not rich enough to catch these dispersive behavior, generalized continuum theories offer the possibility of describing wave dispersion while still remaining in the framework of continuum mechanics. Although various generalized continuum models have been introduced to describe dispersion (see the pioneering works [START_REF] Cemal Eringen | Nonlinear theory of simple micro-elastic solids -I[END_REF][START_REF] David | Micro-structure in linear elasticity[END_REF], while for a review of the use of enriched models in dynamics of heterogeneous materials we refer to [START_REF] Engelbrecht | Internal structures and internal variables in solids[END_REF]), it is still not completely clear whether such dispersive properties can be attributed to the constitutive assumptions which are made on the strain energy density or to the choice of the micro-inertia terms which can be introduced.

The aforementioned considerations about the dispersive behavior of materials can be reformulated with renewed awareness when talking about metamaterials.

Metamaterials are man-made artifacts which are conceived by assembling small structural elements in periodic or quasi-periodic patterns in such a way that novel mechanical behavior emerges. Metamaterials are often studied both from a static (those with enhanced mechanical properties with respect to traditional materials) [START_REF] Lakes | Foam Structures with a Negative Poisson ' s Ratio[END_REF][START_REF] Schaedler | Ultralight Metallic Microlattices[END_REF][START_REF] Zheng | Ultralight, ultrastiff mechanical metamaterials[END_REF] and dynamic (those exhibiting band gaps, negative refraction, cloaking, focusing, etc.) point of view [START_REF] Florescu | Complete band gaps in two-dimensional photonic quasicrystals[END_REF][START_REF] Florescu | Designer disordered materials with large, complete photonic band gaps[END_REF][START_REF] Lucklum | Two-dimensional phononic crystal sensor based on a cavity mode[END_REF][START_REF] Man | Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast[END_REF][START_REF] Miniaci | Large scale mechanical metamaterials as seismic shields[END_REF][START_REF] Miniaci | Complete band gaps in a polyvinyl chloride (PVC) phononic plate with cross-like holes: Numerical design and experimental verification[END_REF][START_REF] Pham | Transient computational homogenization for heterogeneous materials under dynamic excitation[END_REF][START_REF] Sridhar | Homogenization of locally resonant acoustic metamaterials towards an emergent enriched continuum[END_REF]. The characteristic size of microstructures in such metamaterials usually ranges from microns to centimeters, so that they show dispersive behaviors for wavelengths which are relatively large.

More than this, some metamaterials can exhibit dispersive behavior which gives rise to unorthodox mechanical properties which are not encountered in natural materials. For example, some metamaterials are able to inhibit wave propagation within certain frequency ranges due to the presence of an underlying microstucture which is able to resonate locally when excited at those frequencies or even to remain completely unperturbed. The energy of the incident wave remains trapped at the level of the microstructure and the macroscopic propagation results to be inhibited. Evidences of this type have been reported in the literature based both on theoretical studies [START_REF] Armenise | Phononic and photonic band gap structures: Modelling and applications[END_REF][START_REF] Spadoni | Phononic properties of hexagonal chiral lattices[END_REF] and experimental results [START_REF] Man | Photonic band gap in isotropic hyperuniform disordered solids with low dielectric contrast[END_REF][START_REF] Steurer | Photonic and phononic quasicrystals[END_REF].

In order to catch the complex behavior exhibited by such metamaterials while remaining in the framework of continuum mechanics, generalized continuum models with enriched kinematics are needed. This means that extra degrees of freedom must be introduced in the spirit of micromorphic theories [START_REF] Cemal Eringen | Nonlinear theory of simple micro-elastic solids -I[END_REF][START_REF] David | Micro-structure in linear elasticity[END_REF] which allow to account for micro-motions at the level of the microstructure. More particularly, the kinematical unknowns of such micromorphic models are usually the macro-displacements u and the micro-distortion tensor P . Well adapted constitutive choices must then be introduced for the strain energy density in order to describe accurately the behavior of the considered metamaterials in the static regime.

As a last point, appropriate inertia terms must be introduced to model its mechanical behavior in the dynamic regime. It is exactly this point that will be the focus of the present paper: how to choose well-suited micro-inertia terms when dealing with enriched continuum models of the micromorphic type? How does each of these terms affect the dynamic behavior of real band-gap metamaterials? Some hints on the role of micro-inertia to model dispersive behavior are given in [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF] but many fundamental questions still remain open.

We will show in this paper that6 :

• Gradient micro-inertia terms η ∇u ,t 2 only allow to describe dispersion either in classical or enriched continuum models [START_REF] Askes | Gradient elasticity in statics and dynamics: An overview of formulations, length scale identification procedures, finite element implementations and new results[END_REF] ,

• Micro-inertia terms involving time derivatives of the extra kinematical degrees of freedom η P ,t 2 allow to describe and control optic branches in the dispersion relations of classical and relaxed micromorphic continuum models [9, 12, 16, 18-21, 23, 26, 27],

• The relaxed micromorphic model with micro-inertia of the type η P ,t 2 is able to describe the onset of the first band-gaps in mechanical metamaterials [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF],

• The relaxed micromorphic model with both micro-inertia terms η P ,t 2 and η ∇u ,t 2 allows to account for the first and also for the second band-gap which occurs for higher frequencies,

• Classical Mindlin-Eringen models with full micro-inertia η P ,t 2 and η ∇u ,t 2 allow for the description of only the first band-gap.

• Internal variable models with full micro-inertia η P ,t 2 and η ∇u ,t 2 allow for the description of three band-gaps, even if some peculiar phenomena related to non-locality cannot be accounted for and the resulting behavior is thus not versatile enough to model realistic metamaterials.

For the first 3 points clear treatise is present in the literature, while the last 3 points are discussed for the first time in the present paper.

Finally, we show that a weighted gradient micro-inertia of the type 2 allows to flatten some optic curves independently for longitudinal and transverse waves. More precisely, if the parameter η 3 allows to flatten one optic curve for longitudinal waves, the parameter η 2 has an analogous effect for transverse waves. Such improved control on the dispersion curves will allow for a more effective fitting procedure on real band-gap metamaterials, since the description of the second band-gap occurring at higher frequencies becomes accessible. The effects of analogous decompositions on the other terms of the energy densities have already been studied in [START_REF] Valerio D'agostino | A panorama of dispersion curves for the weighted isotropic relaxed micromorphic model[END_REF].

We already showed in [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF] that the relaxed micromorphic model with free micro-inertia can be successfully used to describe the dynamical behavior of actual band-gap metamaterials. In that case, we showed that the model is perfectly able to catch experimental results related to the transmission coefficient at an interface between a classical Cauchy material and a specific band-gap metamaterial. The proposed use of the relaxed micromorphic model for the description of that particular physical system is accurate enough to faithfully reproduce the transmission coefficient as a function of frequency, also capturing specific internal resonance phenomena that are characteristic of the targeted metamaterial.

Moreover, preliminary studies on other band-gap metamaterials which will be reported in papers in preparation or already submitted to other journals allow us to:

• confirm the effectiveness of the use of the relaxed micromorphic model for the description of actual bandgap metamaterials via a restricted number of constitutive parameters (such parameters are true material parameters, i.e. they are constants when fixing the metamaterial and independent of frequency), see [START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF],

• perfectly fit the relaxed micromorphic model on both the dispersion curves of the targeted metamaterials and the reflection/transmission spectra at material surfaces embedded in such metamaterials,

• show the specific effect that both free and gradient micro-inertia have on the dispersion patterns of such specific metamaterials. Indeed, as it will be shown in subsequent works, both types of micro-inertia are needed when one wants to describe, with sufficient precision, a wide class of realistic band-gap metamaterials.

The present paper lays the foundations for the extensive use of enriched continuum models of the micromorphic type for the characterization of the behavior of a huge class of actual metamaterials. The advantage of the use of such models will become evident when the mechanical behavior of a consistent number of metamaterials will be described with the simple introduction of few material parameters which are true material constants, independent of frequency and not relying on the usual hypothesis of separation of scale.

The relaxed micromorphic model

Our novel relaxed micromorphic model endows Mindlin-Eringen's representation with the second order dislocation density tensor α = -CurlP instead of the full gradient ∇P . 7 In the isotropic case the elastic energy reads

W = µ e sym ( ∇u -P ) 2 + λ e 2 (tr ( ∇u -P )) 2 isotropic elastic -energy + µ c skew ( ∇u -P ) 2 rotational elastic coupling (1) 
+ µ micro sym P 2 + λ micro 2 (trP ) 2 micro -self -energy + µ e L 2 c 2 CurlP 2 isotropic curvature
, where the parameters and the elastic stress are analogous to the standard Mindlin-Eringen micromorphic model. The model is well-posed in the statical and dynamical case including when µ c = 0, see [START_REF] Ghiba | The relaxed linear micromorphic continuum: existence, uniqueness and continuous dependence in dynamics[END_REF][START_REF] Neff | The relaxed linear micromorphic continuum: wellposedness of the static problem and relations to the gauge theory of dislocations[END_REF].

In our relaxed model the complexity of the general micromorphic model has been decisively reduced featuring basically only symmetric gradient micro-like variables and the Curl of the micro-distortion P . However, the relaxed model is still general enough to include the full micro-stretch as well as the full Cosserat micro-polar model, see [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]. Furthermore, well-posedness results for the statical and dynamical cases have been provided in [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF] making decisive use of recently established new coercive inequalities, generalizing Korn's inequality to incompatible tensor fields [START_REF] Bauer | New Poincaré-type inequalities[END_REF][START_REF] Bauer | Dev-Div-and DevSym-DevCurl-inequalities for incompatible square tensor fields with mixed boundary conditions[END_REF][START_REF] Neff | A canonical extension of Korn's first inequality to H(Curl) motivated by gradient plasticity with plastic spin[END_REF][START_REF] Neff | Maxwell meets Korn: A new coercive inequality for tensor fields in R n×n with square-integrable exterior derivative[END_REF][START_REF] Neff | Poincaré meets Korn via Maxwell: Extending Korn's first inequality to incompatible tensor fields[END_REF].

The relaxed micromorphic model counts 6 constitutive parameters in the isotropic case (µ e , λ e , µ micro , λ micro , µ c , L c ). The characteristic length L c is intrinsically related to non-local effects due to the fact that it weights a suitable combination of first order space derivatives in the strain energy density (1). For a general presentation of the features of the relaxed micromorphic model in the anisotropic setting, we refer to [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF].

As for the kinetic energy, we consider in this paper that it takes the following form8 :

J = 1 2 ρ u ,t 2 
Cauchy inertia + 1 2 η P ,t 2 free micro-inertia + 1 2 η 1 dev sym ∇u ,t 2 + 1 2 η 2 skew ∇u ,t 2 + 1 6 η 3 tr ( ∇u ,t ) 2 new gradient micro-inertia , ( 2 
)
where ρ is the value of the average macroscopic mass density of the considered metamaterial, η is the free micro-inertia density and the η i , i = {1, 2, 3} are the gradient micro-inertia densities associated with the different terms of the Cartan-Lie decomposition of ∇u .

If the first two terms appearing in Eq. ( 2) can be directly related to those introduced by Mindlin [START_REF] David | Micro-structure in linear elasticity[END_REF], the last three terms of gradient micro-inertia are considered here for the first time when dealing with enriched continua of the micromorphic type. In fact, gradient micro-inertia terms are currently used when dealing with second gradient continua [START_REF] Berezovski | Waves in microstructured solids: A unified viewpoint of modeling[END_REF][START_REF] Edward | A treatise on the mathematical theory of elasticity[END_REF], but never when considering micromorphic models. Nevertheless, basing ourselves on our first comparisons with experimental results [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Modeling real phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia[END_REF], we are persuaded that gradient microinertia is essential also when considering enriched models of the micromorphic type if the ultimate goal is that of describing the behavior of actual physical systems.

The associated equations of motion in strong form, obtained by a classical least action principle take the form (see [START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF][START_REF] Neff | The relaxed linear micromorphic continuum: wellposedness of the static problem and relations to the gauge theory of dislocations[END_REF])

ρ u ,tt -Div[ I ] new augmented term = Div [ σ ] , η P ,tt = σ -s -Curl m, (3) 
where

I = η 1 dev sym ∇u ,tt + η 2 skew ∇u ,tt + 1 3 η 3 tr ( ∇u ,tt ) , σ = 2 µ e sym ( ∇u -P ) + λ e tr ( ∇u -P ) 1 + 2 µ c skew ( ∇u -P ) , (4) 
s = 2 µ micro sym P + λ micro tr (P ) 1, m = µ e L 2 c
CurlP. The addition of a gradient micro-inertia to the kinetic energy (2) modifies the strong-form PDEs of the relaxed micromorphic model with the addition of the new term I. Of course, boundary conditions would also be modified with respect to the ones presented in [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF]. The study of the new boundary conditions induced by gradient micro-inertia will be the object of a subsequent paper where the effect of such extra terms on the conservation of energy will also be analyzed.

Plane wave propagation

Sufficiently far from a source, dynamic wave solutions may be treated as planar waves. Therefore, we now want to study harmonic solutions traveling in an infinite domain for the differential system (3). We suppose that the space dependence of all introduced kinematical fields are limited to the scalar component X which is also the direction of propagation of the wave. To do so, following [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF][START_REF] Neff | Real wave propagation in the isotropic relaxed micromorphic model[END_REF] we define:

P S := 1 3 tr (P ) , P [ij] := ( skewP ) ij = 1 2 (P ij -P ji ) , (5) 
P D := P 11 -P S , P (ij) := ( sym P ) ij = 1 2 (P ij + P ji ) , P V := P 22 -P 33 .
With this decomposition, equations (3) can be rewritten as (see [START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF])

• a set of three equations only involving longitudinal quantities: -(2 µ e + 3 λ e + 2 µ micro + 3 λ micro ) P S ,

ρ ü1 - 2 η 1 + η 3 3 ü1,
• two sets of three equations only involving transverse quantities in the ξ-th direction, with ξ = 2, 3:

ρ üξ - η 1 + η 2 2 üξ,11
new augmented terms

= (µ e + µ c ) u ξ,11 -2 µ e P (1ξ),1 + 2 µ c P [1ξ],1 , η P(1ξ) = µ e u ξ,1 + 1 2 µ e L 2 c P (1ξ),11 + 1 2 µ e L 2 c P [1ξ],11 (7) 
-2 (µ e + µ micro )

P (1ξ) , η P[1ξ] = -µ c u ξ,1 + 1 2 µ e L 2 c P (1ξ),11 + 1 2 µ e L 2 c P [1ξ],11 -2 µ c P [1ξ] ,
• One equation only involving the variable P (23) :

η P(23) = -2 (µ e + µ micro ) P (23) + µ e L 2 c P (23),11 , (8) 
• One equation only involving the variable P [START_REF] David | Micro-structure in linear elasticity[END_REF] :

η P[23] = -2 µ c P [23] + µ e L 2 c P [23],11 , (9) 
• One equation only involving the variable P V :

η P V = -2 (µ e + µ micro ) P V + µ e L 2 c P V ,11 . (10) 
Once this symplified system of PDEs is obtained, we look for a wave form solution of the type:

v 1 (X, t) = β e i(kX-ωt) longitudinal , v τ (X, t) = γ τ e i(kX-ωt) transversal , τ = 2, 3, v 4 (X, t) = γ 4 e i(kX-ωt) uncoupled , (11) 
where we set for compactness

v 1 = u 1 , P D , P S v τ = u τ , P (1τ ) , P [1τ ] , τ = 2, 3, v 4 = P (23) , P [23] , P V . ( 12 
)
where

β = (β 1 , β 2 , β 3 ) T ∈ C 3 , γ τ = (γ τ 1 , γ τ 2 , γ τ 3 ) T ∈ C 3 and γ 4 = (γ 4 1 , γ 4 2 , γ 4 
3 ) T ∈ C 3 are the unknown amplitudes of the considered waves9 , k is the wavenumber and ω is the wave-frequency.

Replacing the wave form solution [START_REF] Florescu | Designer disordered materials with large, complete photonic band gaps[END_REF] in Eqs. ( 6), ( 7), ( 8), ( 9) and [START_REF] Florescu | Complete band gaps in two-dimensional photonic quasicrystals[END_REF], it is possible to express the system as:

A 1 • β = 0, A τ • γ τ = 0, τ = 2, 3, A 4 • γ 4 = 0, (13) 
where

A 1 (ω, k) =        -ω 2 1 + k 2 2 η 1 +η 3 3 ρ + c 2 p k 2 i k 2 µ e /ρ i k (2 µ e + 3 λ e ) /ρ -i k 4 3 µ e /η -ω 2 + 1 3 k 2 c 2 m + ω 2 s -2 3 k 2 c 2 m -1 3 i k (2 µ e + 3 λ e ) /η -1 3 k 2 c 2 m -ω 2 + 2 3 k 2 c 2 m + ω 2 p        , A 2 (ω, k) = A 3 (ω, k) =         -ω 2 1 + k 2 η 1 +η 2 2 ρ + k 2 c 2 s i k 2 µ e /ρ -i k ρ η ω 2 r , -i k µ e /η, -ω 2 + c 2 m 2 k 2 + ω 2 s c 2 m 2 k 2 i 2 ω 2 r k c 2 m 2 k 2 -ω 2 + c 2 m 2 k 2 + ω 2 r         , (14) 
A 4 (ω, k) =       -ω 2 + c 2 m k 2 + ω 2 s 0 0 0 -ω 2 + c 2 m k 2 + ω 2 r 0 0 0 -ω 2 + c 2 m k 2 + ω 2 s      
.

Here, we have defined:

c m = µ e L 2 c η , c s = µ e + µ c ρ , c p = 2 µ e + λ e ρ , ω s = 2 (µ e + µ micro ) η , ω p = (2 µ e + 3 λ e ) + (2 µ micro + 3 λ micro ) η , ω r = 2 µ c η ,
In order to have non-trivial solutions of the algebraic systems [START_REF] Lakes | Foam Structures with a Negative Poisson ' s Ratio[END_REF], one must impose that

det A 1 (ω, k) = 0, longitudinal det A 2 (ω, k) = det A 3 (ω, k) = 0, transverse det A 4 (ω, k) = 0, uncoupled (15) 
The solutions ω = ω(k) of these algebraic equations are called the dispersion curves of the relaxed micromorphic model for longitudinal, transverse and uncoupled waves, respectively.

In what follows we will present the results obtained for the numerical values of the elastic coefficients chosen as in , for the formulas needed to calculate the homogenized macroscopic parameters starting from the microscopic ones, see [START_REF] Barbagallo | Transparent anisotropy for the relaxed micromorphic model: macroscopic consistency conditions and long wave length asymptotics[END_REF].

In the following sections we will explicitly discuss which is the effect of each micro-inertia parameter on the dispersion curves of the relaxed micromorphic model. More particularly, we will focus on the cases:

• vanishing free micro-inertia η = 0 and non-vanishing gradient micro-inertia,

• both non-vanishing gradient micro-inertia and free micro-inertia.

The remaining case (vanishing gradient micro-inertia η = 0 and non-vanishing free micro-inertia η = 0) is the classical case treated for the relaxed micromorphic model in [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF][START_REF] Neff | Real wave propagation in the isotropic relaxed micromorphic model[END_REF]. To the sake of completeness, we present in Fig. 1 the dispersion curves for this case when using the values of the parameters given in Table 1. It can be found that, when considering the free micro-inertia alone, the relaxed micromorphic model is able to predict the first band-gap which usually occurs at relatively low frequencies. Moreover, the relaxed micromorphic model is, to the current state of the art, the only continuum model which is able to describe simultaneously band-gaps and non-local behavior [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF].

In the next sections we will present the new results concerning the effect of the gradient micro-inertia terms on the dispersion curves of the relaxed micromorphic model, as well as the effect of such gradient micro-inertia on more classical enriched models (Mindlin, internal variable).

Case of vanishing free micro-inertia η and non-vanishing gradient micro-inertia η

In this section we discuss the effect, on the dispersion curves of enriched continuum models, of the gradient micro-inertia term alone. We will show that the fact of complementing the macro-inertia ρ u ,t 2 only with the gradient micro-inertia η ∇u ,t 2 is a fundamental modeling limitation since the complexity of the dynamical behavior of micromorphic models cannot be unveiled. Nevertheless, the gradient micro-inertia allows to describe some dispersion which is not allowed by classical Cauchy models.

Study of the dispersion curves

In the case in which we consider only the gradient micro-inertia η = 0 to be non-vanishing, the matrix associated with the longitudinal dynamical system can be expressed as10 :

A 1 (ω, k) =        -ω 2 ρ + k 2 2 η 1 +η 3 3 + (2 µ e + λ e ) k 2 i k 2µ e i k (2 µ e + 3 λ e ) -i k 4 3 µ e 1 3 k 2 µ e L 2 c + 2 (µ e + µ micro ) -2 3 k 2 µ e L 2 c -1 3 i k (2 µ e + 3 λ e ) -1 3 k 2 µ e L 2 c 2 3 k 2 µ e L 2 c + ω 2 p        . ( 16 
)
It is possible to remark that the polynomial det A 1 (ω, k) is of the second order in ω. This implies that we have a unique positive solution of the equation det A 1 (ω, k) = 0 when considering positive k11 . In particular, when plotting such solution in the (ω, k) plane only one acoustic branch can be detected (see Fig. 2) 12 . Comparing the results shown in Fig. 2 with those presented in Fig. 1, it is immediate to notice that the fact of considering the gradient micro-inertia alone significantly constrains the behavior of the considered enriched continuum. Even if the constitutive expression for the strain energy density W is the same both in Fig. 2 and in Fig. 1 (see Eq. ( 1)), the fact of using a gradient micro-inertia η ∇u ,t 2 instead of a free microinertia η P ,t 2 drastically simplifies the patterns which are found for the dispersion curves. With reference to Fig. 2, we can remark that a unique acoustic branch is found and that the presence of a non-vanishing micro-inertia parameter η 3 induces a dispersive behavior. When the gradient micro-inertia parameters are all vanishing (η 1 = η 2 = η 3 = 0), this means that only a macro-inertia ρ u ,t

2 is present and this correspond to an almost constant speed of the traveling waves, which it is what happens for the classical Cauchy case. It can be shown that, considering an adapted choice of the constitutive parameters for the relaxed micromorphic model with macro-inertia ρ u ,t 2 alone, the dispersion curve obtained is exactly the straight one obtained with classical Cauchy model. With a similar reasoning as the one made for longitudinal waves, considering the case η = 0 for transverse waves, the matrix associated with the transverse dynamical system can be expressed as

A 2 (ω, k) =        -ω 2 ρ + k 2 η 1 +η 2 2 + k 2 (µ e + µ c ) i k 2µ e -i k 2µ c -i k 2µ e µ e L 2 c k 2 + 4(µ e + µ micro ) µ e L 2 c k 2 i k 2µ c µ e L 2 c k 2 µ e L 2 c k 2 + 4µ c        , ( 17 
)
It is possible to see that the new inertia terms η 2 plays the same role for the transverse waves that was played by η 3 for the longitudinal waves. The results concerning the solutions ω = ω(k) of the characteristic equation det A 2 (ω, k) = 0 are analogous to the case of longitudinal waves, see Fig. 3. If the particular case with non-null gradient micro-inertia η = 0 and null free micro-inertia η = 0 is considered, the matrix associate to the uncoupled waves reduces to:

A 4 (ω, k) =       µ e L 2 c k 2 + 2 (µ e + µ micro ) 0 0 0 µ e L 2 c k 2 + 2 µ c 0 0 0 µ e L 2 c k 2 + 2 (µ e + µ micro )       . ( 18 
)
from which it is not possible to derive any dispersion curve, due to the absence of inertia terms.

4.2 A first conclusion on the effect of gradient micro-inertia on enriched continuum models.

an enriched model W = W ( ∇u , P, Curl P ) is small and vanishing considering an adapted choice of the constitutive parameters.

• When complementing the macro-inertia ρ u ,t 2 with a gradient micro-inertia η ∇u ,t 2 the speed of propagation of waves is not constant anymore, but it depends on the wavelength of the traveling waves. Nevertheless, only an acoustic branch can be described, independently of the more or less complicated (standard or enriched) kinematics.

• Complementing the macro-inertia ρ u ,t 2 with a free micro-inertia η P ,t 2 allows to disclose the full rich constitutive behavior provided by the fact of considering an enriched model, as studied in [START_REF] Madeo | First evidence of nonlocality in real band-gap metamaterials: determining parameters in the relaxed micromorphic model[END_REF][START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF][START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF][START_REF] Madeo | Wave propagation in relaxed micromorphic continua: modeling metamaterials with frequency band-gaps[END_REF][START_REF] Madeo | Reflection and transmission of elastic waves in non-local band-gap metamaterials: a comprehensive study via the relaxed micromorphic model[END_REF][START_REF] Neff | Real wave propagation in the isotropic relaxed micromorphic model[END_REF] and reproduced in Fig. 1. Two optic branches are observed, both for longitudinal and transverse waves, in addition to the acoustic ones already discussed in the previous case (see Fig. 1). The properties of such curves depend both on the constitutive parameters appearing in the expression of the energy (Eq. ( 1)) and on the free inertia parameter η. In this framework of inertia of the type ρ u ,t 2 + η P ,t

2

, the relaxed micromorphic model is the only non-local, enriched continuum model allowing for the presence of band-gaps [START_REF] Madeo | Complete band gaps including non-local effects occur only in the relaxed micromorphic model[END_REF].

5 Case of both non-vanishing free micro-inertia η and gradient microinertia η

In this section we will discuss the effect of a full inertia ρ u ,t 2 + η P ,t 2 on the dispersion curves of the relaxed micromorphic model. We will show that the complementation of the macro inertia with both the gradient and free micro-inertia allows for the description of a new feature of the relaxed micromorphic model, i.e. the onset of a second band-gap occurring at higher frequencies with respect to the first one.

Dispersion relations

Now, we show in Fig. 4 the results obtained for non-null micro-inertia η = 0 with the addition of gradient micro-inertia η = 0. Surprisingly, the combined effect of the traditional micro-inertia η with the gradient micro-inertiae can lead to the onset of a second longitudinal and transverse band-gap. Indeed, the existence of a horizontal asymptote for the first optic branches in Fig. 4 could be shown. Nevertheless, an explicit computation of such asymptotes becomes over-burdening. For this reason, we limit ourselves to remark that, for all the metamaterials that we tested up to now, it is always possible to find η 1 , η 2 and η 3 that are large enough to have horizontal asymptotes appearing in graphics considering k ranging from 0 (infinite wave-length) to values of k corresponding to wave-lengths smaller than the size of the unit cell. Moreover, it is possible to notice that the addition of gradient micro-inertiae η 1 , η 2 and η 3 has no effect on the cut-off frequencies, which only depend on the free micro-inertia η (and of course on the constitutive parameters). The uncoupled waves in the relaxed micromorphic model with generalized inertia behave as in the relaxed micromorphic model as it is possible to see analyzing the matrix:

A 4 (ω, k) =       -ω 2 + c 2 m k 2 + ω 2 s 0 0 0 -ω 2 + c 2 m k 2 + ω 2 r 0 0 0 -ω 2 + c 2 m k 2 + ω 2 s       . ( 19 
)
The resulting dispersion curves are the same to the ones obtained with the classical relaxed micromorphic model, see Fig. 1, right.

Cut-offs and asymptotic behavior

To study the asymptotic behavior of the dispersion curves for the relaxed micromorphic model with full inertia, let us introduce the following quantities:

ω v = (2 µ e + λ e ) + (2 µ micro + λ micro ) η , ω l = 2 µ micro + λ micro η , ω t = µ micro η , ω l = 2 µ e + λ e 2 η 1 +η 3 3 , ω t = 2 (µ c + µ e ) η 1 +η 2 2
.

As stated in the previous section the cut-off frequencies are not modified by the insertion of a gradient micro-inertia term. Therefore, considering the longitudinal waves, we have one acoustic branch of the dispersion curve and two optic branches with cut-off frequencies:

ω s = 2 (µ e + µ micro ) η , ω p = (2 µ e + 3 λ e ) + (2 µ micro + 3 λ micro ) η , (20) 
On the other hand, the asymptotic behavior changes in a radical fashion from the classical relaxed micromorphic model. The horizontal asymptote of the acoustic curve changes and we have the onset of a new horizontal asymptote for one of the optic branches, which values are respectively:

ω l,acoustic = ω 2 l + ω 2 v -(ω 2 l + ω 2 v ) 2 -4 ω 2 l ω 2 l 2 , (21) 
ω l,optic = ω 2 l + ω 2 v + (ω 2 l + ω 2 v ) 2 -4 ω 2 l ω 2 l 2 .
No difference is found in the other optic branch that has an asymptote with slope c m as in the classical relaxed micromorphic model. Analogously, considering the transverse waves, we have one acoustic branch and two optic branches with cut-off frequencies:

ω s = 2 (µ e + µ micro ) η , ω r = 2 µ c η . ( 22 
)
Once again, the horizontal asymptote of the acoustic curve changes with respect to the classical relaxed case and we have an extra horizontal asymptote for one of the optic branches, which values are respectively:

ω t,acoustic = 1 2 ω 2 t + ω 2 s + ω 2 r -(ω 2 t + ω 2 s + ω 2 r ) 2 -4 ω 2 t ω 2 t , (23) 
ω t,optic = 1 2 ω 2 t + ω 2 s + ω 2 r + (ω 2 t + ω 2 s + ω 2 r ) 2 -4 ω 2 t ω 2 t .
No difference is found in the other optic branch that has an asymptote with slope c m as in the classical relaxed micromorphic model. Finally, no change whatsoever is present in the uncoupled waves that keep having cut-off frequencies ω s and ω r and oblique asymptote of slope c m .

6 Combined effect of the free and gradient micro-inertiae on more classical enriched models (Mindlin-Eringen and internal variable)

In this section, we discuss the effect on the Mindlin-Eringen and the internal variable model of the addition of the gradient micro-inertia η ∇u ,t 2 to the classical terms ρ u ,t 2 +η P ,t 2 . We will show that the previously discussed effect of the parameters η 2 and η 3 is maintained both for the Mindlin-Eringen and for the internal variable case. Recalling the results of [START_REF] Madeo | Band gaps in the relaxed linear micromorphic continuum[END_REF], we remark that when the gradient micro-inertia is vanishing (η 1 = η 2 = η 3 = 0) the Mindlin-Eringen model does not allow the description of band-gaps, due to the presence of a straight acoustic branch. On the other hand, when switching on the parameters η 2 and η 3 , the acoustic branches are flattened (they take a horizontal asymptote), so that the first band-gap can be described. The analogous case for the relaxed micromorphic model (Fig. 1) allowed instead for the description of 2 band-gaps. Fig. 6 shows the behavior of the addition of the gradient micro-inertia η ∇u ,t 2 on the internal variable model. We recall (see [START_REF] Neff | A unifying perspective: the relaxed linear micromorphic continuum[END_REF]) that the energy for the internal variable model does not include higher space derivatives of the micro-distortion tensor P and, in the isotropic case, takes the form: By direct observation of Fig. 6, we can notice that suitably choosing the relative position of ω r and ω p , the internal variable model allows to account for 3 band-gaps.

W = µ e sym ( ∇u -P ) 2 + λ e 2 
We thus have an extra band-gap with respect to the analogous case for the relaxed micromorphic model (see Fig. 1), but we are not able to consider non-local effects. The fact of excluding the possibility of describing non-local effects in metamaterials can be sometimes too restrictive. For example, flattening the curve which originates from ω r and which is associated with rotational modes of the microstructure is unphysical for the great majority of metamaterials.

Conclusions

In this paper we discuss the fundamental role of micro-inertia in enriched continuum models of the micromorphic type.

We show that if, on one hand, the free micro-inertia term η P ,t 2 is strictly necessary to disclose the full rich behavior of micromorphic media in the dynamic regime, on the other hand the gradient micro-inertia η ∇u ,t 2 has the macroscopic effect of flattening some of the dispersion curves so allowing for the description of extra band-gaps. In particular, we show that:

• In the case of the relaxed micromorphic model one band-gap can be described when introducing the free micro-inertia η P ,t 2 alone. When introducing a mixed micro-inertia η P ,t 2 +η ∇u ,t 2 two band-gaps can be accounted for by the same model.

• In the case of Mindlin-Eringen model no band-gaps are possible with the term η P ,t 2 alone, while the onset of a single band-gap can be granted by the addition of the extra term η ∇u ,t 2 .

• In the internal variable model two band-gaps are possible with the term η P ,t 2 alone, even if nonlocalities cannot be accounted for by such model. When adding the extra term η ∇u ,t 2 even three band-gaps become possible, but the behavior of the dispersion curves becomes fairly unrealistic for a huge class of real metamaterials.

In conclusion, the results presented in this paper confirm the preceding findings according to wich the relaxed micromorphic model is the most suitable enriched model for the simultaneous description of i) band-gaps and ii) non-localities in mechanical metamaterials. Future work will be devoted to the application of the results obtained in this paper for the fitting of the proposed model with enriched micro-inertia on real metamaterials exhibiting multiple band-gaps.

Figure 1 :

 1 Figure 1: Dispersion relations ω = ω(k) for the uncoupled (left), longitudinal (center) and transverse (right) waves of the relaxed micromorphic model with free micro-inertia η = 10 -2 kg/m.

Figure 2 :

 2 Figure 2: Dispersion relations ω = ω(k) for the longitudinal waves of the relaxed micromorphic model with gradient micro-inertia η 3 = (0, 3 × 10 -3 , 3 × 10 -2 ) kg/m and η = 0. Dotted in black the dispersion relations for a first gradient model with Lamé parameters µ macro and λ macro and the same inertiae ρ and η 3 (left). The same picture obtained imposing λ micro = 0 (right): a very slight variation with respect to the 1 st gradient case can be detected.

Figure 3 :

 3 Figure 3: Dispersion relations ω = ω(k) for the transverse waves of the relaxed micromorphic model with gradient micro-inertia η 2 = (0, 2×10 -3 , 2×10 -2 ) kg/m and η = 0 and dotted in black the dispersion relations for a first gradient model with Lamé parameters µ macro and λ macro and the same inertiae ρ and η t .

Figure 4 :

 4 Figure 4: Dispersion relations ω = ω(k) of the relaxed micromorphic model for the longitudinal waves with free micro-inertia η = 10 -3 and gradient micro-inertia η 3 = (3 × 10 -4 , 3 × 10 -3 , 3 × 10 -2 ) kg/m (left) and transverse waves with micro-inertia η = 10 -3 and gradient micro-inertia η 2 = (2 × 10 -4 , 2 × 10 -3 , 2 × 10 -2 ) kg/m (right).

Fig. 5 Figure 5 :

 55 Figure 5: Dispersion relations ω = ω(k) of the standard Mindlin-Eringen model for the longitudinal waves with free micro-inertia η = 10 -3 and gradient micro-inertia η 3 = (3×10 -4 , 3×10 -3 , 3×10 -2 ) kg/m (left) and transverse waves with micro-inertia η = 10 -3 and gradient micro-inertia η 2 = (2 × 10 -4 , 2 × 10 -3 , 2 × 10 -2 ) kg/m (right).

Figure 6 :

 6 Figure 6: Dispersion relations ω = ω(k) of the internal variable model for the longitudinal waves with free micro-inertia η = 10 -3 and gradient micro-inertia η 3 = (3 × 10 -4 , 3 × 10 -3 , 3 × 10 -2 ) kg/m (left) and transverse waves with micro-inertia η = 10 -3 and gradient micro-inertia η 2 = (2 × 10 -4 , 2 × 10 -3 , 2 × 10 -2 ) kg/m (right).

  11 new augmented terms = (2 µ e + λ e ) u 1,11 -2µ e P D ,1 -(2µ e + 3λ e ) P S

									,1 ,
	η P D =	4 3	µ e u 1,1 +	1 3	µ e L 2 c P D ,11 -	2 3	µ e L 2 c P S ,11 -2 (µ e + µ micro ) P D ,	(6)
	η P S =	2 µ e + 3 λ e 3	u 1,1 -	1 3	µ e L 2 c P D ,11 +	2 3	µ e L 2 c P S ,11

Table 1 :

 1 Table 1 if not differently specified. Values of the parameters used in the numerical simulations (left) and corresponding values of the Lamé parameters and of the Young modulus and Poisson ratio (right)

	Parameter Value	Unit	
	µ e λ e = 2µ e µ c = 5µ e µ micro λ micro L c	200 400 1000 100 100 1	MPa MPa MPa MPa MPa mm	Parameter Value Unit λ macro 82.5 MPa µ macro 66.7 MPa E macro 170 MPa ν macro 0.28 -
	ρ	2000 kg/m 3	

In order to clarify the nomenclature used in this paper, we call "classical continua" the classical continua of Cauchy for which the strain energy density depends on the first gradient of the displacement u. When we talk about "enriched continua", we are referring to continua with enriched kinematics, i.e. continua whose motion is defined by the displacement "u" and the micro-distortion P . Different sub-classes of enriched continua can be introduced depending on the constitutive choice of the strain energy density. For example, we talk about "classical micromorphic" media when the strain energy depends on ∇u , P and ∇P , while we call "relaxed micromorphic media" those for which the strain energy density is a function of ∇u , P and CurlP .

The dislocation tensor is defined as α ij = -( CurlP ) ij = -P ih,k jkh , where is the Levi-Civita tensor and Einstein notation of sum over repeated indices is used.

The Cauchy inertia and free micro-inertia terms appearing in Eq. (2) are classical and already introduced by Mindlin and Eringen[START_REF] Cemal Eringen | Nonlinear theory of simple micro-elastic solids -I[END_REF][START_REF] David | Micro-structure in linear elasticity[END_REF], while the gradient micro-inertia terms are introduced here for the first time in a micromorphic framework. Indeed, Mindlin[START_REF] David | Micro-structure in linear elasticity[END_REF] recognized inertia terms which are similar to our gradient micro-inertia terms when considering the particular case of the long-wavelength limit of his micromorphic model. The expression (2) of the energy that we propose here is more general (i.e. not restricted to large wavelengths) and indeed the gradient micro-inertia will show its higher effect for relatively small wavelengths (high wavenumbers).

Here, we understand that having found the (in general, complex) solutions of[START_REF] Florescu | Designer disordered materials with large, complete photonic band gaps[END_REF] only the real or imaginary parts separately constitute actual wave solutions which can be observed in reality.

We can notice from the form of A 1 (ω, k) that considering an additional micro-inertia η is equivalent to defining an average macroscopic density depending on the wavelength as ρ * (k) = ρ + k 2 η. The same can be found for the transverse waves.

It can be checked that, when considering elastic parameters which guarantee positive definiteness of the elastic energy the solution ω = ω(k) of the characteristic polynomials are always real[START_REF] Neff | Real wave propagation in the isotropic relaxed micromorphic model[END_REF].

Here and in the sequel, we will always set η 1 = 0, since we could not isolate a characteristic effect of such parameters on the dispersion curves.

• When considering a macro-inertia term ρ u ,t 2 alone, only one acoustic branch is present and has an almost constant speed of propagation. Such behavior is strongly dictated by the macro-inertia term since the difference on the associated dispersion curves between a simple Cauchy energy W ( ∇u ) and
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