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a b s t r a c t 

Fracture of heterogeneous materials has emerged as a critical issue in many engineering applications, ranging from subsurface energy 

to biomedical applications, and requires a rational framework that allows linking local fracture processes with global fracture de- 

scriptors such as the energy release rate, fracture energy and fracture toughness. This is achieved here by means of a local and a 

global potential-of-mean-force (PMF) inspired Lattice Element Method (LEM) approach. In the local approach, fracture-strength criteria 
derived from the effective interaction potentials between mass points are shown to ex- hibit a scaling commensurable with the 

energy dissipation of fracture processes. In the global PMF-approach, fracture is considered as a sequence of equilibrium states 

associated with minimum potential energy states analogous to Griffith’s approach. It is found that this global approach has much in 

common with a Grand Canonical Monte Carlo (GCMC) approach, in which mass points are randomly removed following a maximum 

dissipa- tion criterion until the energy release rate reaches the fracture energy. The duality of the two approaches is illustrated 

through the application of the PMF-inspired LEM for fracture propagation in a homogeneous linear elastic solid using different means 

of evaluating the energy release rate. Finally, by application of the method to a textbook example of frac- ture propagation in a 

heterogeneous material, it is shown that the proposed PMF-inspired LEM approach captures some well-known toughening 

mechanisms related to fracture en- ergy contrast, elasticity contrast and crack deflection in the considered two-phase layered

composite material.

 

 

 

 

1. Introduction

Fracture Mechanics deals with the fracture resistance of solids subject to load. In its continuum version, it either fol-

lows a global or a local approach using concepts of linear or non-linear elastic fracture mechanics. The global approach

was set in stone by Griffith (1921) as the irreversible dissipation of potential energy by means of fracture surface creation;

the second by Irwin’s stress concentration approach ( Irwin, 1958 ) that recognizes that stress singularities at the crack tip
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have some characteristic asymptotic patterns which permit prediction of fracture propagation. Both approaches have been

extended since the 1960s far into the regime of non-linear behavior of solids (starting with the works of Barenblatt, 1962;

Bažant, 1984; Dugdale, 1960; Hutchinson, 1968; Rice and Thomson, 1974 and many more). These methods, however, devel-

oped for homogeneous materials. It is well known that the microstructure of heterogeneous solids can contribute to their

toughness, that is the increase of their fracture resistance induced by their local micro-texture. These mechanisms were

notably observed in natural hierarchical composite materials such as nacre (see e.g. Kamat et al., 20 0 0 ) or bones (see e.g.

Launey et al., 2010 ) and several microstructure-based fracture mechanics models were derived. They include toughening

due to microcracks ( Shum and Hutchinson, 1990 ), crack bridging by uncracked stiff or tough inclusion ( Bower and Ortiz,

1991 ) or layers ( Shao et al., 2012 ), crack front roughening ( Gao and Rice, 1989 ) or crack deflection ( Faber and Evans, 1983;

He and Hutchinson, 1989 ). All these theoretical works were, however, applied to specific inhomogeneous morphologies and

spatial configurations. Recent developments in imaging techniques such as micro-computed tomography now give access to

the full microstucture of real materials but in order to assess their failure behavior, new numerical tools must be intro-

duced. Different methods have been used for the numerical study of heterogeneous solids. The weight-function theory of

Rice (1985) and Bueckner (1987) was used by e.g. Démery et al. (2014) . However, this approach is more suited to the study

of planar crack propagation. Direct application of the finite element method (FEM) to complex microtextures is possible in

theory but requires cumbersome remeshing techniques and may become too computationally demanding. More recent ex-

tended formulations of the FEM technique such as the XFEM are yet not well adapted to complex problems involving crack

nucleation or crack branching phenomena ( Sukumar et al., 2015 ). Such restrictions are absent from recent variational-based

approaches ( Bourdin et al., 2010 ). Phase-field models for fracture of brittle solids that emerged from this pioneering work

were promisingly applied to heterogeneous solids (see e.g. Hossain et al., 2014; Nguyen et al., 2015 ). A persistent question

yet remains as to the application of fracture mechanics methods to discrete material systems, despite the growing number

of applications ranging from molecular scale (for an overview on the topic see Brochard et al., 2015 and references cited

herein) to meso-scale of heterogeneous materials (for a recent review, see Bonamy and Bouchaud, 2011 ). 

The simplest discrete system in solid mechanics is a lattice-type discretization ( Hrennikoff, 1941 ), whose algorithmic im-

plementation was first coined by Topin et al. (2007) as the Lattice Element Method (LEM); which is why this paper will

focus on this method. The method emerged congruently in computational solid mechanics and statistical mechanics as a

truss-beam-type discretization of a solid for both 2-D and 3-D problems, including strength and fracture investigations of

random media using regular or irregular networks ( Herrmann and Roux, 1990 ), which were applied to a large range of het-

erogeneous materials ranging from particle composites and cemented aggregates to concrete, ceramics and interface cracks

in masonry composites ( Nayfeh and Hefzy, 1978; Hansen et al., 1989; van Mier, 1996; Schlangen and Garboczi, 1996; Chiaia

et al., 1997; Schlangen and Garboczi, 1997; Bolander Jr and Saito, 1998; van Mier et al., 2002; Lilliu and van Mier, 2003;

Topin et al., 2007; Affes et al., 2012; Mohammadipour and Willam, 2015; 2016 ). While these applications to a large range of

heterogeneous material systems evidence the suitability of LEM to investigate local rupture, fracture surface generation, frac-

ture coalescence, percolation, and crack deflection, most investigations employ local link-failure criteria based on strength

criteria that rest upon the assumption that link elements break at a given stress or force-moment strength criteria, indepen-

dent of the discretization. Such local strength-based approaches are expected to fail to capture size effects associated with

fracture that result from the intrinsic competition between bulk dissipation (related to strength) and surface dissipation that

defines fracture. 

With these limitations in mind, this paper proposes a framework that can tackle the duality of the global and the local

fracture mechanics approach in the context of discrete simulations of solids using LEM. The starting point of this approach

is the realization that LEM can be viewed as a potential-of-mean-force approach (PMF) akin to the one employed by the

soft-matter physics community: a number of mass points defined on a regular or irregular lattice interact via effective po-

tentials from which forces and moments derive. This PMF approach to LEM was recently proposed for elastic systems ( Laubie

et al., 2017a; 2017b ), showing that the elasticity in the PMF context is but an evaluation of the energy content of the sys-

tem around the equilibrium state defined by the lattice structure, for which most non-harmonic potentials degenerate to

harmonic potentials commensurable to the original truss-beam type formulation used in classical LEM approaches. On the

other hand, the PMF approach puts the LEM on the same footing as molecular approaches thus permitting to employ the

canon of statistical physics, such as thermodynamic ensemble definitions, to extend the LEM approach as a tool of solid me-

chanics to poromechanics ( Monfared et al., 2017 ). By considering the PMF-approach for fracture modeling of homogeneous

and heterogeneous systems, the purpose of this paper is to extend our earlier developments from a reversible solid behavior

to irreversible solid behavior. 

The PMF-approach is first presented and then applied to some complex examples of inhomogeneous solids exhibiting

texture-related toughening. 

2. PMF–fracture approach for LEM

Consider a solid in its reference configuration discretized by N = n x n y n z mass points in the x, y and z directions on a

cubic lattice of unit cell size a 0 ( Fig. 1 ). Each mass point i (initial position 

�
 X i ) interacts with a fixed number of neighboring

points j (18 in this paper –so-called D3Q18 lattice– corresponding to a cut-off radius r cut = 

√ 

2 a 0 used for the neighbor-

list definition in PMF approaches) via the interaction potential as a function of the translational and rotational degrees of



Fig. 1. (a) Degrees of freedom of a bond element between points i and j , (b) D3Q18 unit cell, (c) simulation box, (d) harmonic (gray curves) and Morse

(black curves) interaction potentials and (e) associated gradient (i.e. force/moment).

 

 

 

 

 

 

 

 

 

 

freedom of the two mass points ( � δi = 

�
 x i − �

 X i , 
�
 δ j = 

�
 x j − �

 X j , 
�
 ϑ i , 

�
 ϑ j ) : 

U i j = U 

s 
i j + U 

b 
i j , (1) 

where U 

s 
i j 

= U 

s 
i j 

(
δn 

j 
− δn

i 

)
defines the two-body ‘stretch’ interactions in function of the change in distance between mass

points i and j ; with δn 
i 

= 

�
 δi · � e 

i j 
n and δn 

j 
= 

�
 δ j · � e 

i j 
n the displacement components in the bond direction 

�
 e 
i j 

n = 

�
 r i j /l 0 

i j 
[with 

�
 r i j =

�
 X j − �

 X i = l 0 
i j 
�
 e 
i j 

n the vector connecting node i to node j of rest-length l0 
i j 

= αa 0 ( α = 1 for bonds parallel to the cubic lattice

directions; and α = 

√ 

2 for diagonal bonds), oriented by unit vector � e 
i j 

n in a local orthonormal basis ( � e n , � e b , � e t ) 
i j ]; whereas

U 

b 
i j 

= U 

b 
i j 

(
�
 ϑ j − �

 ϑ i ; δb 
j 
− δb 

i
; δt 

j 
− δt

i

)
considers bending interaction terms associated with rotations, �

 ϑ j − �
 ϑ i , and transversal

displacements, δb 
j 
− δb 

i 
= ( � δ j − �

 δi ) · � e 
i j 

b 
and δt 

j 
− δt 

i 
= ( � δ j − �

 δi ) · � e 
i j 
t in a local right-handed orthonormal basis associated to

bond ij . With this parameterization, the interaction forces and moments between two mass points i and j that derive from

the effective potential U ij satisfy force and moment equilibrium, that is (for a detailed derivation, see Laubie et al., 2017b ): 

�
 F j 
i 

= −∂U i j 

∂ � δi 

; �
 F j 
i 

+ 

�
 F i j = 

�
 0 , (2) 

�
 M 

j 
i 

= −∂U i j 

∂ � ϑ i 

; �
 M 

j 
i 
+ 

�
 M 

i 
j + 

�
 r i j × �

 F i j = 

�
 0 . (3) 

After prescribing a mechanical load (force or displacement) to the lattice structure, the relaxed configuration is obtained

by minimizing the potential energy. For the purpose of this study, a non-linear conjugate gradient method was used for

the numerical energy minimization: the Fletcher–Reeves–Polak–Ribiere method. For such discrete system, the stresses are 

modeled using the virial expression; while neglecting the momentum term ( Christoffersen et al., 1981 ): 

σσσ i = 

1 

2 V i 

N b 
i ∑ 

j=1

�
 r i j �

�
 F j 
i 

, (4) 

with V i denoting the volume of the unit cell, and N 

b 
i 

representing the number of node i ’s neighboring mass points. The

stress in volume V composed of N mass points is simply the volume average of the local stresses; that is: 

〈 σσσ 〉 = 

1 

V 

N ∑ 

i =1

V i σσσ i . (5) 

All what it takes to implement the LEM approach is to choose appropriate expressions for the interaction potential rep-

resentative of the solid’s behavior. This has been illustrated by Laubie et al. (2017b ) for elastic isotropic and transversely



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

isotropic solids; and by Monfared et al. (2017) for linear poroelastic systems. The focus of the next sections is to extend the

PMF approach to fracture problems. 

2.1. Local approach to LEM fracture mechanics 

Classical approaches to fracture problems using LEM are generally based on strength criteria that restrict the admissible

values of the forces and moments ( � F 
j 

i 
, � M 

j 
i 
) to a threshold value beyond which the bond ij is considered as broken; hence: 

f 
(
�
 F j 
i 
, �

 M 

j 
i 

)
≤ 0 . (6)

In contrast, in fracture mechanics, an appropriate local fracture criterion should be based on an energy criterion. If one

considers that the energy dissipated when the bond breaks equals the energy stored in the bond between the equilibrium

state, r 0 = l 0 
i j 
, and the critical state, r c = l 0 

i j ( 1 + λc ) , an appropriate local fracture criterion is of the form: 

∀ i j ;

⎧⎨ 

⎩
�U i j = U i j 

(
r i j 

)
− U i j 

(
l 0 
i j 

)
≤ U i j ( r c ) − U i j ( r 0 ) = G b c d	i j 

d 	i j ≥ 0 (
�U i j − G b c d 	i j 

)
d 	i j = 0 

(7)

where G b c = 

(
U i j ( r c ) − U i j ( r 0 ) 

)
/d	i j can be considered as the bond’s fracture energy which is dissipated in the local fracture

surface creation d	i j = ( αa 0 ) 
2 situated in the plane defined by unit normal � e 

i j 
n .

2.1.1. Central–force PMF fracture approach 

To illustrate this fracture criterion, we first focus on central-force lattices, in which interactions are solely defined by the

stretch energy U i j = U 

s 
i j

(
δn 

j 
− δn 

i 
= λn 

i j 
l 0 
i j 

)
. In the isotropic elastic case, such central-force cubic lattices are well known to

restrict the domain of application to solids exhibiting a Poisson’s ratio ν = 1 / (D + 1) (with D the space dimension) (see e.g.,

Laubie et al., 2017b ). With a focus on linear and non-linear fracture mechanics, consider, for purpose of illustration of the

PMF-approach, the Morse potential ( Morse, 1929 ): 

U 

M 

i j = −ε0 
i j + 

εn 
i j 

2 β2 

{
1 − exp 

(
−βλn 

i j

)}2
, (8)

with β = 

√ 

εn 
i j 
/ (2 ε0 

i j 
) (to ensure that U 

M 

i j 
→ 0 for λn

i j
→ + ∞ ) and the associated bond force according to Eq. (2) :

F i,n 
j 

= 

εn 
i j 

β l 0 
i j 

exp 

(
−βλn

i j

){
exp 

(
−βλn 

i j

)
− 1 

}
, (9)

or equivalently, replacing the linear dilation (or stretch) in the bond direction λn 
i j

= 

(
δn 

j 
− δn

i 

)
/l 0 

i j 
by the Morse potential: 

F i,n 
j 

= 

εn 
i j 

β l 0 
i j 

⎧⎨
⎩ 

1 +
U 

M 

i j 

(
λn

i j

)
ε0 

i j 

+ sign ( λ)

(
1 + 

U 

M 

i j 

(
λn

i j

)
ε0 

i j 

) 1 / 2 
⎫⎬
⎭ 

. (10)

Herein, −ε0 
i j 

defines the well-depth at rest length r 0 = l 0 
i j 

; while β governs the elastic response. Furthermore, a Taylor expan-

sion of U 

M 

i j 
around the equilibrium position for λn 

i j 
� 1 shows that the Morse potential degenerates to a harmonic potential:

U 

M 

i j = U 

H,s 
i j 

(λi j ) + O 

((
λn

i j

)3
)

, (11)

with: 

U 

H 
i j (λi j ) = −ε0 

i j + 

εn 
i j 

2 

(
λn

i j

)2
. (12)

Such a harmonic potential expression is akin to classical truss theory employed in central-force LEM formulations in 2-D

( Hansen et al., 1989; Topin et al., 2007 ) and 3-D ( Affes et al., 2012; Kosteski et al., 2012; Nayfeh and Hefzy, 1978 ). In its

turn, the energy parameter εn 
i j 

which defines the linear elastic behavior around the equilibrium position is defined by the

elasticity of the solid; for instance for an isotropic material defined by Young’s modulus E and Poisson’s ratio ν: 

εn 
i j = Ea 3 0 F n ( ν) , (13)

where the dimensionless function F n ( ν) is defined for each bond direction, and takes into account the solid’s Poisson ratio,

ν , and the level of discretization n of the solid (for a detailed derivation, and extension to transverse isotropy, see Laubie

et al., 2017b ). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For the Morse potential thus defined, use of the critical energy criterion (7) in the force expression (10) provides a means

to determine the maximum admissible force in the form: 

∀ i j ;

⎧ ⎨ 

⎩ 

F i,n 
j 

(
λn 

i j 

)
≤ F i,n 

j ( λc ) 

d 	i j ≥ 0 (
F i,n 

j 

(
λn 

i j

)
− F i,n 

j ( λc ) 
)
d 	i j = 0 

, (14) 

with (noting that U 

M 

i j ( λc ) = G b c d	i j − ε0 
i j 

): 

F i,n 
j ( λc ) = a 0 

(
2 αβG b c + sign (λ) K c

√ 

a 0 
)

, (15) 

with: 

K c = K 

b 
Ic 

√
2 F n ( ν) . (16) 

By analogy with Linear Elastic Fracture Mechanics (LEFM) and Irwin’s formula ( Irwin, 1958 ), K 

b 
Ic

= 

√ 

G b c E can be viewed as

a local fracture toughness. In fact, an almost classical toughness criterion is recovered for the linear case, when considering

the harmonic expression of the interaction potential (12) ; that is, when noting G b c d	i j = U 

H 
i j ( λc ) + ε0 

i j 
= 

1 
2 ε

n 
i j 
λ2 

c , 

F j,n 
i 

(
λc = 

√
2 G b c d	i j 

εn 
i j 

)
= K c a 0 

√ 

a 0 . (17) 

Otherwise said, classical strength-based approaches of LEM can be employed provided that the local strength associated

with bond rupture considers the appropriate scaling with the lattice size according to Eqs. (17) and (15) for the LEFM case

and the non-linear fracture mechanics case, respectively. The difference between linear and non-linear fracture mechanics

using the PMF-inspired LEM-fracture approach is sketched in Fig. 1 (d) and (e). 

2.1.2. Consideration of bending interaction potentials 

Considering a bending interaction potential U 

b 
i j

–in addition to a stretch term U 

s 
i j 

– permits extending the realm of the

LEM method on cubic lattices, in the isotropic case, to lower Poisson’s ratios that the limit value defined by the central-

force method, ν ≤ νlim 

= 1 / (D + 1) ; and similar restrictions apply to transversely isotropic elastic materials (see Laubie et al.,

2017b ). Such limitations could be overcome by introducing a non-local term to these stretch and bending interactions ( Chen

et al., 2014 ). As far as local fracture criteria are concerned, the approach developed here above remains valid, when consid-

ering in the local fracture energy criterion (7) the bending term. To illustrate our purpose, we restrict ourselves to the hy-

pothetical case of pure three-point bending interactions, U i j = −ε0 
i j

+ U 

b
i j

(
�
 ϑ j − �

 ϑ i ; δb 
j 
− δb 

i
; δt 

j 
− δt

i

)
, with U 

b 
i j 

given –for small

rotations || � ϑ i || � 1 and neglecting torsional terms– by the harmonic expression:

U 

b 
i j = 

1 

2 

εt 
i j 

{ (
�b 

δ − ϑ 

t 
i 

)2 + 

(
�t 

δ + ϑ 

b
i 

)2

−
(
�b 

δ − ϑ 

t 
i 

)
�t 

ϑ +
(
�t 

δ + ϑ 

b 
i 

)
�b 

ϑ (18) 

+1 

3

((
�b 

ϑ 

)2 + 

(
�t 

ϑ

)2
)}

,

with �b,t 
ϑ 

= ϑ 

b,t 
j 

− ϑ 

b,t 
i 

and �b,t 
δ

= 

(
δb,t 

j 
− δb,t 

i 

)
/l 0 

i j 
. Herein, εt 

i j 
is the transverse energy parameter governing the three-body

interaction; analogous to beam bending terms employed in classical beam-type inspired LEM approaches (in the form εt 
i j

=
12 E b I/l 0 

i j 
with E b and I the beam’s Young’s modulus and second-order area moment, respectively, Bolander Jr and Saito, 1998;

Schlangen and Garboczi, 1996; 1997 ), which gives rise to shear forces and bending moments; namely: ⎧⎪ ⎪ ⎪ ⎪⎪⎪⎪⎨
⎪⎪ ⎪ ⎪ ⎪⎪⎪⎩

�
 F j 
i 

= − ∂U b 
i j 

∂ � δi 

= 

εt 
i j 

l 0 
i j 

(
�b 

δ − ϑ 

t 
i −

1 

2 

�t 
ϑ

)
︸ ︷︷ ︸

F j,b
i 

�
 e b + 

εt 
i j 

l 0 
i j 

(
�t 

δ + ϑ 

b
i + 1 

2 

�b 
ϑ 

)
︸ ︷︷ ︸

F j,t
i 

�
 e t 

�
 M 

j 
i 

= − ∂U b 
i j 

∂ � ϑ i 
= −

εt 
i j 

2 

(
�t 

δ + ϑ 

b
i + 1 

3
�b 

ϑ 

)
︸ ︷︷ ︸

M 

j,b
i 

�
 e b + 

εt 
i j 

2 

(
�b 

δ − ϑ 

t 
i −

1 

3 

�t 
ϑ

)
︸ ︷︷ ︸

M 

j,t
i 

�
 e t 

. (19) 

By inverting this linear system, and substituting the results into the bending energy expression (18) , one obtains after

some transformations with the help of (3) : 

U 

b 
i j = 

2

εt 
i j 

(∣∣∣∣ �
 M 

j 
i

∣∣∣∣2 +
∣∣∣∣ �

 M 

i 
j 

∣∣∣∣2 − �
 M j
i
· �

 M 

i
j

)
. (20)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, use of this expression in the local fracture energy criterion (7) –while noting that �U i j = U 

b 
i j

– provides a local-force-

moment strength criterion: {
4 

εn 
i j 

εt 
i j 

(∣∣∣∣ �
 M 

j 
i

∣∣∣∣2 +
∣∣∣∣ �

 M 

i 
j 

∣∣∣∣2 − �
 M 

j 
i 
· �

 M 

i
j

)}1 / 2

≤ K c a 0 
√ 

a 0 , (21)

where toughness K c is defined by (16) . 

Finally, if both stretch and bending terms are considered, a straightforward analogous development provides for the

harmonic case the local force–moment fracture criterion: 

sign 

(
F i,n 

j 

){(
F i,n 

j 

)2 + 4
εn 

i j 

εt 
i j 

(∣∣∣∣ �
 M 

j 
i

∣∣∣∣2 +
∣∣∣∣ �

 M 

i 
j 

∣∣∣∣2 − �
 M j
i
· �

 M 

i
j

)}1 / 2

≤ K c a 0 
√ 

a 0 , (22)

with sign 

(
F 

j,n 
i

)
accounting for the fact that fracture only occurs when bond elements are in tension. 

These local force criteria are readily implemented in existing LEM approaches that employ strength-based criteria for

bond removals (resulting in crack initiation and/or propagation) ( Affes et al., 2012; Bolander Jr and Saito, 1998; Chiaia et al.,

1997; Hansen et al., 1989; Lilliu and van Mier, 2003; van Mier, 1996; Mohammadipour and Willam, 2015; 2016; Schlangen

and Garboczi, 1996; 1997; Topin et al., 2007; van Mier et al., 2002 ). That is, for a given load, after energy minimization, all

bonds of forces and moments greater than the threshold value are removed. The sole difference with existing approaches is

the scaling of this force threshold value with K c a 0 
√ 

a 0 . 

2.2. Global approach to LEM fracture mechanics 

In contrast to the local approach, one could equally follow Griffith’s global approach ( Griffith, 1921 ). Under quasi-static

conditions, the approach consists of considering fracture as a sequence of relaxed equilibrium states at constant loading,

with the change in potential energy attributed to spontaneous energy changes related to dissipation by fracture surface

creation. Adopting the Griffith approach for the PMF-inspired LEM-approach, fracture is viewed as a release of the bond

energy at lattice sites, which is achieved by removing one mass point i among the N mass points of the system. The potential

energy of the system before and after mass point removal is considered to realize a minimum; that is, before fracture

propagation in a displacement-driven fracture test: 

δE N pot = U 

N − U 

N 
0 = min 

( � δk , 
�
 ϑ k ) 

1 

2 

N ∑ 

i =1

N b 
i ∑ 

j=1

(
U 

−
i j 

+ ε0
i j

)
, (23)

and after fracture propagation: 

δE N−1 
pot = U 

N−1 − U 

N−1 
0 = min 

( � δk , 
�
 ϑ k ) 

1 

2 

N−1 ∑ 

i =1

N b 
i ∑ 

j=1

(
U 

+ 
i j 

+ ε0
i j

)
, (24)

where U 

−
i j

and U 

+ 
i j

stand for the values of the relaxed local interaction potentials before and after mass point removal

at a fixed prescribed displacement. The fracture created by the removal of one mass point on a regular cubic lattice is

d 	( ζa 0 ) 
2 , where ζ = 1 if the mass point removed is connected to an existing fracture 1 , and ζ = 2 otherwise. Following

Griffith’s approach, the change of the potential energy due to fracture, �E pot = δE N−1 
pot − δE N pot , occurs spontaneously, that is,

at constant loading, when the energy release rate, G, reaches a threshold, the material’s fracture energy G c ; that is: 

G = − ∂E pot

∂	
� −�E pot 

d	
≤ G c . (25)

When G = G c , the fracture occurs and dissipates an energy dD : 

dD = Gd	
G= G c = G c ( ζa 0 ) 

2 ≥ 0 . (26)

Evoking the principle of non-economy of matter, we thus need to search for the mass point k max ∈ { 1 , . . . , N } , whose removal

entails the greatest energy dissipation; that is: 

k max = argmax k G ( k ) ≥ G c ; G ( k ) = 

(
δE Npot − δE N−1 

pot ( k ) 
)

( ζa 0 ) 
2 

, (27)

with δE N−1 
pot ( k ) the potential energy associated with the removal of the k th mass-point. The global fracture criterion reads

as: 

G ≤ G c ; d	 ≥ 0 ; ( G − G c ) d	 = 0 . (28)
1 In that case, all the bonds crossing the new crack plane are also removed.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, from Eq. (27) it is readily understood that the approach will favor mass point removal adjacent to existing cracks

( ζ = 1 ), which simplifies the algorithmic implementation of the global fracture criterion. If an initial crack exists, only nodes

surrounding the initial crack-tip are considered in (27) ), otherwise all the nodes need to be considered. In this case, failure

is expected to be triggered in regions of high local stress due to local defects or heterogeneities. In contrast to the local

approach, the drawback of the global approach is that it requires, for a given load, N k –energy minimization steps, with

N k the number of mass points to be removed to satisfy the global fracture criterion (28) . This makes the global approach

computationally less efficient than the local fracture-strength approach. 

On the other hand, from a PMF-perspective, the global fracture energy approach using LEM has much in common with

Grand Canonical ensemble ( μVT ) Monte Carlo (GCMC, with μ the chemical potential) simulation techniques that are avail-

able in many molecular simulation platforms, and which may speed up the search for the maximum energy dissipation

according to Eq. (27) . In GCMC (see Appendix for more details), the acceptance criteria show that if the energy difference

�U is such that �U > μ, there is a higher probability of accepting a mass point insertion, while for �U < −μ or −�U > μ
mass point deletion is favored. Thus, for a given value of �U associated with mass point insertion or deletion, one can search

for the value of the chemical potential, μ, that produces mass insertion or deletion. Applied to a displacement-controlled

fracture propagation, for which U = E pot , one evaluates the potential energy, at constant prescribed displacement ( u d ), be-

fore ( E N pot ) and after mass point insertion ( E N+1 
pot ) or deletion ( E N−1 

pot ). Hence, if −�U = 

(
E Npot − E N−1 

pot

)
u d

> μ, it is more likely

that the deletion move is accepted, whereas it is unlikely that �U = 

(
E N+1 

pot − E N pot

)
u d

> μ. That is, using a GCMC-approach,

it becomes possible to identify, for a given value of the chemical potential μ, the total number N tot � N of mass points that

need to be removed until −�U = −�E pot = μ. This ‘equilibrium’ condition 

2 corresponds precisely to the fracture criterion

(25) , and allows us to identify for this converged GCMC simulation:

μ = G N tot 
c k ( ζa 0 ) 

2 + �U 0 , (29) 

where G N tot 
c is the fracture energy released in the creation of the fracture surface k ( ζa 0 ) 

2 , whereas �U 0 = U 

N−k 
0 

− U 

N 
0 is the

ground state energy of the N tot deleted mass points: 

�U 0 = 

N tot ∑ 

i =1

N b 
i ∑ 

j=1

ε0 
i j ≥ 0 . (30) 

This comforts the idea that the global Griffith approach is but an analogous GCMC approach suitable for fracture propagation

simulations. In this approach, the mass point removal can be seen as a lattice erosion, with the number of removed mass

points that is much smaller than the total number of points in the simulation box. The total mass is thus conserved although

the removed mass is no more connected to the rest of the lattice. 

3. Verification: fracture propagation in homogeneous media

The two approaches, local vs. global, thus suggested differ fundamentally in their theoretical basis and algorithmic imple-

mentation. Their coexistence thus requires to show the duality of the two approaches. This is the focus of this verification

section which applies both approaches to fracture propagation in homogeneous media. 

As reference problem, consider a 2-D plane-stress square plate of size L = L x = L z = (n − 1) a 0 ( n x = n z = n ) and thickness

a 0 ( n y = 2 ), with an edge crack of length l 0 = L/ 5 ( Fig. 2 ). The system is subject to a pure Mode I displacement loading in

form of a triangular displacement at the top and bottom surfaces of the sample, with a maximum displacement δ/2 applied

at the edges above and below the notch. The toughness of the different brittle solids investigated was chosen such that the

lattice deformations remain small throughout the loading process. 

3.1. Calibration 

Considering a discretization by n mass points of unit cell-size a 0 on a regular 2-D cubic lattice, the parameterization of

the energy parameters for isotropic solids by ( Laubie et al., 2017b , Table 2) is employed; that is, for bonds parallel to the

box boundaries (rest-length l 0 
i j

= a 0 ), and for diagonal bonds (rest-length l 0 
i j

= 

√ 

2 a 0 ) of the D3Q18–lattice: ⎧⎪⎨
⎪⎩

εn 
i j 

(
l 0 
i j 

= a 0 
)

= 

n ( 2 −3 ν) −2 ( 1 −ν) 

4 n ( 1 −ν2 ) 
Ea 3 0 

εn 
i j 

(
l 0 
i j 

= 

√ 

2 a 0 
)

= 

ν

( 1 −ν2 ) 
Ea 3 0 

εt 
i j 

(
l 0 
i j 

= a 0 
)

= 

( n −1 ) ( 1 −3 ν) 

2 n ( 1 −ν2 ) 
Ea 3 0 

, (31) 

where E is the solid’s Young’s modulus, and ν the Poisson’s ratio situated within the limits, 0 ≤ ν ≤ 1/3 for the 2-D system

considered. For purpose of comparison of the local and global approach, we consider ν = 1 / 3 , so that bending interactions
2 It should be noted that the equilibrium condition, −�U = −�E pot = μ, in the GCMC-approach is an ensemble average, as the simulations will exhibit 

fluctuations between insertion and deletion of a mass point.



Fig. 2. (a) Mode I loading of a quasi-2D square plate, (b) simulation box after crack propagation with the region where bonds were broken highlighted

and (c) left axis (black curves): stress-strain curves obtained using the global approach in LEM (dashed line) and the local approach (solid line) ( n = 51 ), 

right axis (gray curves): evolution of the crack length extension �l / L using the global approach (dashed line) and the local approach (solid line). The stress

is normalized by 
√ 

G c E/ L with L ∼ l 0 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

are neglected ( εt 
i j 

= 0 ). Considering in addition harmonic potentials, the local fracture criterion is given by Eq. (14) with the

force threshold defined by Eqs. (16) and (17) : 

F j,n 
i 

≤ f c = K c 

(
l 0 i j 

)
a 3 / 2 

0 
= K 

b 
Ic a 

3 / 2 
0 

⎧⎪ ⎨ 

⎪⎩
3
4

√
1 
n 

(
n − 4 

3 

)
if: l 0 

i j 
= a 0 √

3
4

if: l 0 
i j 

= 

√ 

2 a 0 

, (32)

where K 

b 
Ic 

= 

√ 

G b c E is the bond’s fracture toughness. It was found after a post-mortem analysis of the simulation boxes that

on average 10 bonds break for one crack advance, resulting in G c = κG b c with κ � 10 and G c the material’s fracture energy.

The bond’s fracture toughness K 

b 
Ic 

can thus be calibrated against the solid’s fracture energy: K 

b 
Ic

= 

√ 

κG c E or the solid’s

fracture toughness, K Ic : K 

b 
Ic

= 

√ 

κK Ic . This value of κ depends on the geometry of the background lattice. The value given

here reflects the connectivity of the D3Q18 lattice only. 

3.2. Stress–strain response and scaling 

The focus of the validation is to show that the local and the global LEM-fracture approaches are consistent with linear

elastic fracture mechanics theory. This is achieved here by inspecting the average stress-strain response (stress 〈 σzz 〉 = 

�
 e z ·

〈 σσσ 〉 · � e z vs. δ/ L ) in the direction of load application for different discretization levels ( n = 1 + L/a 0 = 25 , 51 and 101) for both

the global and the local approach, as displayed in Fig. 3 (a) and (b), respectively. The results indicate (1) an identical stress-

strain response for different levels of discretization n , when ( E, G c ) in the global approach, and ( E, K Ic ) in the local approach

are maintained constant; (2) a linear scaling of the average peak-stress σ c with 

√ 

G c E in the global approach when varying

G c and E ; (3) a linear scaling of the average peak-stress with K Ic in the local approach, independently of the stiffness E .

These stress-strain responses confirm the relevant feature of LEFM: σ c ∼ K Ic 

√ 

l 0 (see e.g. Sun and Jin, 2012 ) predicted by the

PMF-inspired global and local fracture approach with harmonic potentials. The good comparison of the two approaches also

evidences the duality of the local and global approach ( Fig. 2 (c)). 

3.3. Duality of local and global approaches 

Further evidence of the duality of the two approaches is provided here by comparing the energy release rates predicted

respectively by the global and the local approach. To this end, the energy release rate is evaluated using the J−integral or

Rice-integral ( Rice, 1968 ): 

G = J = 

∫ 
C

(
ψ ( � e 1 · �

 n ) − ∂ �u

∂x 1 
· �

 T 

)
ds , (33)

where ψ is the free energy volume density, � u the displacement, � T ( � n ) the stress vector along the closed contour C (of unit

normal vector � n ) which includes the crack oriented in the � e 1 direction. For the problem at hand, the sole contribution to

the J -integral comes from the top and bottom boundaries oriented by � n = ±�
 e z , for which ∂ � u /∂x 1 = ∓δ/ ( 2 L ) � e z , and hence:

G = J = 

δ

L 

∫ L

σzz dx = δ〈 σzz 〉 , (34)

x =0



Fig. 3. (a) and (b) Stress-load curves obtained using the global approach and the local approach, respectively (stress normalized by
√ 

G c E/ L or K Ic / 
√ 

L with 

L ∼ l 0 ). (c) and (d) Dimensionless J -integral as function of the dimensionless crack length extension �l / L using the global approach and the local approach, 

respectively. (e) and (f) Dimensionless potential energy as function of the dimensionless crack length extension �l / L using the global approach and the

local approach, respectively. LEM simulations for different discretizations ( n ), stiffnesses ( E ) and fracture energies G c or toughnesses K Ic , legend on (c) (and, 

(d)) holds for (a) and (e)(and, (b) and (f)).

 

 

 

 

 

 

 

 

 

with 〈 σ zz 〉 evaluated from the virial stress expression, 〈 σzz 〉 = 

�
 e z · 〈 σσσ 〉 · � e z . Fig. 3 (c) and (d) show the evolution of the energy

release rate ( G = J ) vs. the crack length extension ( �l = l − l 0 ) in a normalized plot. After the elastic loading phase (no crack

propagation), the dimensionless energy release rate ( J/ G c in the global approach, and JE/K 

2 
c in the local approach) rapidly

converges to 1; independent of the discretization ( n ), the stiffness ( E ) and the value of the fracture energy or fracture

toughness, related by Irwin’s formula K Ic = 

√ 

EG c . While a finer discretization (i.e. an increase in the number of mass points

per side corresponding to a decrease in a 0 ) smooths the J vs �l / L curves, the (almost) perfect agreement between the local

and the global approach confirms the duality of the two approaches. 

One could argue that the J−integral evaluation of the energy release rate G is biased by the use of an averaged stress

quantity, and not by a direct measurement of the (spontaneous) change in potential energy due to fracture. To address this

question we calculate the actual potential energy obtained for each load step. In order for the energy release to be constant

and equal to the fracture energy, G = G c , in this displacement controlled fracture test, the potential energy, according to its

continuum definition, G = −∂ E pot /∂ 	, should decrease linearly with the crack length, and hence, 

E pot ∼ −G c d	 = −G c �l 
(
a 0 / 
√

n y 

)
, (35)



Fig. 4. (a) Geometry and parameters definition. (b) Simulation box after crack propagation (regions where bonds were broken are highlighted). Dimension- 

less J -integral J / G c 1 (c) and potential energy E pot 

√ 

2 / (a 0 L x G 
′ 
c1 ) (d) as function of the dimensionless crack length extension ( �l / L x ) for E 1 = E 2 and G c2 = G c1 

(black line), G c2 = 1 . 21 G c1 (gray line), G c2 = 1 . 44 G c1 (dashed black line) or G c2 = 1 . 69 G c1 (dashed gray line). (e) Dimensionless homogenized fracture energy 

J max /G c1 as function of the stiffness ratio ( E (2) / E (1) , black symbols) or toughness ratio ( G (2) = G (1) , gray symbols). Black and gray lines correspond to Eqs. 

(41) and (39) , respectively.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

or in a dimensionless form: 

E pot 
√ 

n y 

G c a 0 L 
∼ −�l

L
, (36)

where the factor 
√ 

n y corrects for the crack extension in the in-plane direction, when E pot is numerically evaluated in 3-D

for an in-plane discretization, n y = 2 , representative of the 2-D fracture propagation problem. Fig. 3 (e) and (f) display the

dimensionless potential energy expression, Eq. (36) , in function of the dimensionless crack length extension �l / L . After an

elastic loading phase (potential energy built-up without crack propagation), the potential energy decreases indeed linearly

with the crack-extension length, independently of discretization, stiffness, fracture energy ( G c in the global approach) or

toughness ( K Ic in the local approach). This proves that the two approaches, global and local, are strictly equivalent, much

akin to the duality of the local and global approach in continuum LEFM; though achieved by completely different means:

namely by considering a GCMC-type mass-point removal algorithm in the global PMF-fracture approach; and by a proper

scaling of the local fracture strength with f c ∼ a 3 / 2 
0 

in the local PMF-fracture approach. The advantage of the discrete ap-

proach over the continuum approach is that it permits studying fracture propagation in heterogeneous materials, as shown

here below. 

4. Toughening mechanisms in inhomogeneous media

For purpose of application, the PMF-fracture approach is employed for the investigation of toughening mechanisms in

layered material systems, relevant in many applications ranging from stimulation techniques employed in oil- and gas-well

applications (see e.g. Laubie and Ulm, 2014a; 2014b ), to fracture resistance of hard tissues in bio-medical applications (see

e.g. Ballarini et al., 2005 ).

Compared to the complexity of real-life systems, the example here considered is an idealized textbook example of a

two-phase layered material of different mechanical properties, stiffness ( E (1) , E (2) ) and fracture energy 

(
G ( 1 ) c , G ( 2 )c 

)
, whose

behavior is assumed to be well described by harmonic potentials. The geometric lay-out is identical with the layered system

studied by Hossain et al. (2014) using a variational fracture field approach ( Bourdin et al., 2010 ) . Investigating toughening

mechanisms due to elastic and toughness heterogeneity and toughening due to crack tortuosity, the results of Hossain et al.

(2014) provide a benchmark for our LEM-fracture results, and a formidable example of the possibility of the PMF-inspired

LEM-approach for investigation of fracture propagation in heterogeneous materials. 

4.1. Materials and methods 

As simulation sample, consider a 2-D plane-stress square plate of size L x = 180 a 0 , L z = 60 a 0 and L y = a 0 , made of suc-

cessive layers of width w = 10 a 0 , of different elastic and fracture properties, and a pre-existing crack of length l 0 = L x / 9

( Fig. 4 (a)). The simulation sample is subjected to the same triangular displacement boundary condition as in the homoge-

neous case ( Fig. 2 ). The energy parameters of the bonds of each layer are calibrated using Eq. (31) for materials exhibiting

the same solid Poisson’s ratio ν1 = ν2 = 1 / 3 (i.e. εt(1) 
i j 

= εt(2) 
i j 

= 0 ), and a discretization level n defined by the number of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

mass points used to discretize the system. At the interface between the materials, the interaction energy is determined fol-

lowing the PMF-compliance-rule –consistently with the Hertz contact problem– which implies (see Masoero et al., 2014 for

derivation): 

2 

εn (int) 
i j 

= 

1

εn (1) 
i j 

+ 1

εn (2) 
i j 

. (37) 

Similarly, using the local fracture approach, the calibration of the local fracture strength for each layer is given by Eq. (32) ,

for different values of fracture toughness ( K 

( m ) 
Ic 

= 

√ 

G ( m ) 
c E ( m ) ; m = 1 , 2 ). Strong bonding is enforced in the form: 

f ( 
int ) 

c = max 
(

f ( 
1 ) 

c , f ( 
2 ) 

c 

)
. (38) 

It should, however, be noted that this fracture-strength interface condition has little impact on the overall results in the

example, as a weak bonding, f ( 
int ) 

c = min 

(
f ( 

1 ) 
c , f ( 

2 )
c 

)
. The different materials parameters were chosen in order to discard

in the simulations fracture propagation along the interface between two layers that can become energetically favorable ( He

and Hutchinson, 1989 ). 

To investigate the impact of heterogeneity on the effective fracture properties of the composite material, the energy

release due to fracture at the composite scale is probed in two ways previously introduced for the homogeneous case;

namely via (1) the J−integral expression (34) , and (2) the actual potential energy variation in function of the fracture length,

i.e. Eq. (36) . Both expressions should provide a means of evaluating the ‘effective’ macroscopic energy release rate. Indeed,

the J−integral assumes a co-linear fracture propagation defined by the initial fracture orientation 

�
 e x , and thus ignores local

crack deflection and other deviations of the fracture path from its original orientation. Hence, the J−integral expression

(34) is employed here as a means to evaluate the ‘effective’ energy release rate of the fracture propagation in an equivalent

continuum composite with a straight crack. In contrast, the evaluation of the actual change of the potential energy from

the local interaction energies through Eq. (36) provides a more realistic evaluation of the actual amount of energy that

is dissipated by fracture generation. The comparison of the two quantities is expected to shed light on the toughening

mechanisms induced by material inhomogeneity in the layered system.

4.2. Results 

4.2.1. Toughening due to fracture energy heterogeneity 

The impact of a heterogeneous distribution of fracture properties is investigated by considering that the two phases

have the same stiffness ( E ( 1 ) = E ( 2 ) ) but different fracture energies ( G ( 2 ) c > G ( 1 ) c ), and thus a different fracture toughness,

K 

( 2 ) 
c /K 

( 1 )
c = f ( 

2 ) 
c / f ( 

1 ) 
c = 

√ 

G ( 2 ) c / G ( 1 )c > 1 ). Fig. 4 (c) displays the effective normalized energy release rate evaluated from

the J−integral, J/ G ( 1 ) c , in function of the normalized crack extension �l / L x , for different fracture energy contrast values

γ = G ( 2 ) c / G ( 1 ) c = 1 , 1.21, 1.44, 1.69 (obtained by imposing in the local fracture strength criteria (32) , at constant stiffness,

toughness values of K 

( 2 ) 
Ic 

/K 

( 1 ) 
Ic 

= 1 , 1.1, 1.2, 1.3). Compared to the response of the homogeneous system obtained for γ = 1 ,

the response exhibits a sequence of discrete jumps, reminiscent of a stick-slip–type propagation, with peak values that cor-

respond exactly to J max = G ( 2 ) c (or J max / G ( 1 ) c = γ ). A closer inspection of the crack path shows that the crack remains straight

( Fig. 4 (b)) for different values of γ , meaning that the jumps in J/ G ( 1 ) c cannot be explained by crack deflection at interfaces.

Instead, as noted by Hossain et al. (2014) , the crack propagates through the low-fracture phase (1) and is then arrested

at the interface with the tough material, until further loading induces enough elastic energy for the fracture to propagate

through the tougher layer (2). This crack trapping at the tough interface entails an effective fracture energy, G e f f 
c , of the

composite system that is equal to the one of the tougher material: 

G e f f 
c = max 

(
G ( 1 ) c , G ( 2 ) c 

)
. (39) 

That is, G e f f 
c can be considered as the homogenized fracture energy of the layered system, in the sense that it is the fracture

energy that would be sensed at the macroscopic scale of the composite for collinear fracture propagation. The dimensionless

potential energy evolution with the fracture length displayed in Fig. 4 (d) supports this finding showing the seesaw pattern

with slopes equal to −γ ; that is in terms of Eq. (36) : 

E pot 
√ 

n y 

G ( 1 ) c a 0 L x 
∼ −γ

�l 

L x 
. (40) 

Hence, despite an almost straight crack, heterogeneity in the fracture energy (at constant stiffness) itself can be considered

as a toughening mechanism. A similar behavior was observed on a grid with twice as many mass points in the x and z

directions. 

Finally, it is noteworthy that in contrast to Hossain et al. (2014) who showed that the J -integral value oscillates between

the low and the high fracture energy, the drop in J is less significant in our simulation results. This may be due to the

difference in stability of the fracture process between the continuum approach employed by Hossain et al. (2014) and our



Fig. 5. (a) Geometry definition. (b)–(d) Simulation box after crack propagation. (e)–(g) Dimensionless J -integral J / G c 1 for h/w = 0 , 2/5 and 3/5, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

discrete approach in which finite steps of energy release stabilize the fracture process in terms of potential energy minima

in the quasi-static crack propagation process. This difference may also be attributed to the triangular boundary conditions

used in this study as opposed to the smoother surfing boundary conditions used in Hossain et al. (2014) . 

4.2.2. Toughening due to elastic heterogeneity 

The second toughening mechanism considered here is the toughening due to elastic heterogeneity ( E (2) > E (1) ) at same

fracture energy ( γ = G ( 2 ) c / G ( 1 ) c = 1 ). Since K 

( m ) 
Ic 

= 

√ 

G c E ( m ) , elastic heterogeneity is readily understood to affect the local frac-

ture strength criterion (32) , that is, f ( 
2 ) 

c / f ( 
1 ) 

c = 

√ 

E ( 2 ) /E ( 1 ) > 1 . It is thus not surprising that the J -integral and the potential

energy exhibit similar features as in the case of a fracture energy contrast, even if the fracture energy here is the same in

both phases. In the range of stiffness contrast investigated here ( E (2) / E (1) ∈ [1, 2]), the crack propagates along a straight path

and gets momentarily arrested at the interface with the stiff phase before continuing its propagation. This gives rise to a

toughening mechanism induced by elastic heterogeneity, that scales roughly as ( Fig. 4 (e)): 

G ( 2 ) c / G ( 1 ) c = 1 ; G e f f 
c

G ( 1 ) c

= 

J max 

G ( 1 ) c

� 

(
E ( 2 ) 

E ( 1 ) 

)1 / 2

. (41)

The results are consistent with Hossain et al. (2014) findings, who suggested that toughening due to elastic heterogeneity

originates from the redistribution of strain energy in the heterogeneous material. Specifically, as a crack approaches the stiff

region from the compliant region, the energy that is incrementally supplied from the outside is consumed in the elastic

deformation of the stiff region, before the crack continues to propagate when this energy reaches the threshold defined by

the fracture energy. 

4.2.3. Toughening due to crack deflection 

The last toughening mechanism herein investigated relates to crack front roughening, crack deflection and crack tortu-

osity, that have been highlighted by several quasi-continuum approaches as a possible source of overall fracture toughening

of composite materials ( Faber and Evans, 1983; Gao and Rice, 1989; He and Hutchinson, 1989 ). Following Hossain et al.

(2014) , elastic heterogeneity ( E ( 2 ) = 2 E ( 1 ) , γ = G ( 2 ) c / G ( 1 ) c = 1 ) is paired with broken strips where the stripe of the stiff ma-

terial (phase 2) has a gap through which the compliant material percolates. A misalignment ( h / w ) is introduced such that

h/w = 0 for the aligned system, whereas h / w > 0 for gap misalignment where w stands for the strip width ( w = 10 a 0 in the

simulations); see Fig. 5 (a). Given the elastic heterogeneity of the system, and the percolated compliant phase exhibiting a

lower fracture toughness, K 

( 1 ) 
Ic 

= K 

( 2 ) 
Ic 

/
√ 

2 , one would expect that the fracture would propagate along the shortest path in

the compliant phase. This is indeed true for the aligned system ( Fig. 5 (b); h/w = 0 ), exhibiting a straight fracture propa-

gation associated with some small toughening, J/ G ( 1 ) c > 1 , which can be attributed, for small gaps width to stress shielding

by the stiffer, yet broken strips. This still holds true for moderate misalignment values ( Fig. 5 (c) ; h/w = 2 / 5 ), for which

the fracture follows indeed the shortest path through the compliant phase, up to a maximum value beyond which the crack

does not deflect to remain in the soft phase, but penetrates into the stiff phase ( Fig. 5 (d); h/w = 3 / 5 ). Misalignment thus

entails a significant increase in the effective fracture energy ( Fig. 5 (f) and (g)), oscillating between an upper bound defined

by the elastic toughening mechanism ( Eq. (41) ), and a lower bound associated with crack deflection and defined by the



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increase of the fracture length due to fracture tortuosity: 

1 + 

h 

w 

≤ G e f f 
c

G c 
= 

J max 

G c 
�
(

E ( 2 ) 

E ( 1 ) 

)1 / 2

. (42) 

Otherwise said, misalignment leads to the completion of two energetically competing phenomena. As long as the crack

deflection entails a higher energy dissipation than the energy release associated with propagation through the stiffer phase,

misalignment will lead to toughening due to crack deflection ( Fig. 5 (c)). In return, when the release of energy stored into

the stiffer phase during crack arrest is greater, the crack will propagate through the stiffer phase irrespective of the gap

( Fig. 5 (d)). 

5. Conclusion

Fracture of heterogeneous materials is an open issue that requires a rational framework allowing for the quantification

of local fracture processes with global fracture descriptors such as the energy release rate. This was the focus of the herein

proposed PMF approach to discrete modeling of fracture processes using LEM: 

1. Local Fracture-Strength Approach: With a focus on accounting for the actual physics interaction, the PMF-inspired LEM

approach is based on effective potentials which capture the energy interaction between mass points, and from which

forces and moments derive. This energy definition of interaction lends itself readily for the modeling of the rupture of

bonds at a material scale, using classical fracture materials descriptors such as fracture energy and fracture toughness. It

is on this basis that local fracture-strength criteria are derived, which consider the appropriate scaling commensurable

with the energy dissipation of fracture processes, and according to which bonds are removed until all interaction forces

and moments satisfy the local fracture-strength criterion.

2. Global Energy-Release Approach: Alternatively, the PMF-approach permits the definition of a global energy approach, by

analogy with Griffith’s energy release rate criterion. Considering fracture as a sequence of equilibrium states associated

with minimum potential energy states, the Griffith approach can be recast as a Grand Canonical Monte Carlo (GCMC) ap-

proach, in which mass points are randomly removed following a maximum dissipation criterion until the energy release

rate reaches the fracture energy.

3. Duality of Local and Global Approaches: The duality of the two approaches was illustrated through the application of

the PMF-inspired LEM method for fracture propagation in a homogeneous linear elastic solid using different means of

evaluating the energy release rate. It should, however, be noted that a definite proof of the duality between the two

approaches remains to be developed. It can be speculated that such a proof could be established by analogy with the

ergodicity hypothesis of thermodynamics, according to which the average of a process parameter over time (i.e. frac-

ture surface established by removing bonds, in the local approach, in quasi-static evolutions corresponding to long time

scales) and the average over the statistical ensemble (i.e. fracture surface generated, in the global approach, by random

mass point removals in a grand canonical ensemble) are the same. A first evidence of this duality has been herein sug-

gested from a comparison of the energy release rates evaluated respectively from the J -integral and from the potential

energy variation.

4. Computational Efficiency: From an implementation point of view, it can be argued that the local fracture-strength ap-

proach is computationally more efficient than the global approach as it requires a smaller amount of energy minimiza-

tion steps of the system than the GCMC-type global approach which probes a large number of possible energy minima

as criterion for mass point removal. While this may hold true for homogeneous and inhomogeneous systems with well-

defined microtextures, one could conjecture that the GCMC-approach when properly implemented could turn out more

efficient for highly disordered systems exhibiting highly heterogeneous microtextures.

5. Application to Heterogeneous Materials: Considering a textbook example of fracture propagation in an inhomogeneous

layered material system, the proposed PMF-inspired LEM approach permits investigating effective fracture properties

of heterogeneous materials. Specifically, by benchmarking our LEM results against earlier results ( Hossain et al., 2014 )

obtained by a variational fracture field approach, we confirm that for two-phase layered materials undergo significant

toughening mechanisms due to fracture energy contrast, elastic heterogeneity and crack deflection.

With a rational simulation framework thus in place, it is expected that the proposed PMF-inspired fracture LEM approach

will be of some help enabling the investigation of ‘real’-life highly heterogeneous and multiphase materials as obtained by

e.g. X-Ray micro-Computed Tomography such as geological materials ( Desrues et al., 2006; Hubler et al., 2017 ). To this end,

the required inputs could be obtained by small-scale characterization techniques such as the scratch test ( Akono and Ulm,

2014 ). This is the focus of forthcoming developments. This method could also be extended for the simulation of dynamic

fracturing ( Zhao et al., 2011 ).
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Appendix A. Comment on the GCMC method 

In fact, in the μVT ensemble, where μ is a prescribed chemical potential, V the constant volume of the structure, and T

the absolute temperature, the rules of Grand Canonical probability density for mass point addition read: 

acc ( N → N + 1 ) = min 

(
1 , 

V λ−3 

N + 1 

exp ( −β( �U − μ) ) 

)
, (A.1)

and for mass point deletion: 

acc ( N → N − 1 ) = min 

(
1 , 

N 

V λ−3 
exp ( −β( �U + μ) ) 

)
, (A.2)

where β = 1 / ( k B T ) is the Boltzmann factor ( k B is the Boltzmann constant) which amplifies, in function of the absolute

temperature T , the difference between the change in energy �U = U 

J − U 

I between an initial state I and the attempted state

J and the chemical potential μ (negative in insertion, positive in deletion). In the classical sense of molecular simulations,

λ = h 
√ 

β/ ( 2 πm ) stands for the de Broglie wavelength (with h the Planck constant, and m = ρa 3 
0 

the particle mass), which is

required not only for dimensional consistency, but also to anchor the problem within the framework of classical mechanics

(in contrast to quantum mechanics), for which λ/ a 0 � 1, which is equivalent to restricting the lattice size in the LEM

simulations to: 

a 0 �
(

h 

2 

2 πρk B T 

)1 / 5

. (A.3)

While generally satisfied for the typical temperature range considered in LEM, choosing a � = λ/a 0 � 1 value for the GCMC

simulations, is equivalent to fixing, for a given mass, an equivalent temperature for the simulations, or vice versa fixing the

particle mass for a given temperature, that is: 

T = 

h 

2 

2 πk B m �2 a 2 
0 

; m = 

h 

2 

2 πk B T �2 a 2 
0 

. (A.4)

This temperature–mass scaling has thus an impact on the GCMC simulations via the Boltzmann factor β = 1 / ( k B T ) in the

acceptance criteria (A.1) and (A.2) . 
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