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Abstract. Internet of Things (IoT) applications are becoming increasingly crit-
ical and require rigorous formal verification. In this paper we target Contiki, a
widely used open-source OS for IoT, and present a verification case study of one
of its most critical modules: that of linked lists. Its API and list representation
differ from the classical linked list implementations, and are particularly chal-
lenging for deductive verification. The proposed verification technique relies on
a parallel view of a list through a companion ghost array. This approach makes it
possible to perform most proofs automatically using the Frama-C/WP tool, only
a small number of auxiliary lemmas being proved interactively in the Coq proof
assistant. We present an elegant segment-based reasoning over the companion ar-
ray developed for the proof. Finally, we validate the proposed specification by
proving a few functions manipulating lists.

Keywords: linked lists, deductive verification, operating system, internet of things,
Frama-C.

1 Introduction

Connected devices and services, also referred to as Internet of Things (IoT), are gain-
ing wider and wider adoption in many security critical domains. This raises important
security challenges, which can be addressed using formal verification.

This paper focuses on Contiki [10], a popular open-source operating system for IoT
devices providing full low-power IPv6 connectivity, including 6TiSCH, 6LoWPAN,
RPL, or CoAP standards. It is implemented in C with an emphasis on memory and
power optimization, and contains a kernel linked to platform-specific drivers at compile-
time. When Contiki was created in 2002, no particular attention was paid to security.
Later, communication security was integrated, but formal verification of code was not
performed until very recent case studies [19, 21].

The goal of this work is to perform deductive verification of the linked list module,
one of the most critical modules of Contiki. It is performed using the ACSL specification
language [4] and the deductive verification plugin WP of FRAMA-C [16]. Our approach
is based on a parallel view of a linked list via a companion ghost array. Such a “flat-
tened” view of the list avoids complex inductive predicates and allows for automatic



1 struct list {
2 struct list *next;
3 int k; // a data field
4 };
5 typedef struct list ** list_t;
6 //Initialize a list
7 void list_init(list_t pLst);
8 //Get the length of a list
9 int list_length(list_t pLst);

10 //Get the first element of a list
11 void * list_head(list_t pLst);
12 //Get the last element of a list
13 void * list_tail(list_t pLst);
14 //Remove the first element of a list
15 void * list_pop (list_t pLst);

16 //Add an item to the start of a list.
17 void list_push(list_t pLst, void *item);
18 //Remove the last element of a list.
19 void * list_chop(list_t pLst);
20 //Add an item at the end of a list.
21 void list_add(list_t pLst, void *item);
22 //Duplicate a list (copy head pointer)
23 void list_copy(list_t dest, list_t src);
24 //Remove element item from a list
25 void list_remove(list_t pLst, void *item);
26 //Insert newitem after previtem in a list
27 void list_insert(list_t pLst,
28 void *previtem, void *newitem);
29 //Get the element following item
30 void * list_item_next(void *item);

Fig. 1: API of the list module of Contiki (for lists with one integer data field)

proof of most properties, but requires to maintain a strong link between the companion
array and the list it models. All proofs have been checked for several list structures. A
few auxiliary lemmas have been proved in the Coq proof assistant [24], where a signif-
icant effort has been done to make their proofs robust and independent of the specific
list structure. Finally, we have validated the proposed specification by proving a few
functions manipulating lists.

The contributions of this work include

– formal specification of the list module4 of Contiki in the ACSL specification
language and its deductive verification using the WP plugin of FRAMA-C;

– a presentation of the underlying approach based on a companion ghost array;
– formal statement and proof of several lemmas useful for reasoning about this rep-

resentation;
– pointing out an (unintended?) inconsistency in precondition of one function;
– a preliminary validation of the proposed specification of the module via a successful

verification of a few annotated test functions dealing with lists.

Outline. The paper is organized as follows. Section 2 presents the specifics of the linked
list module. Section 3 describes our verification approach and results. Section 4 pro-
vides some related work, while Section 5 gives the conclusion and future work.

2 The List Module of Contiki

Required by 32 modules and invoked more than 250 times in the core of the OS, the
linked list module (list) is a crucial library in Contiki. It is used, for instance, to
implement the scheduler, where lists are used to manage timers and processes. Its veri-
fication is thus a key step for proving many other modules of the OS.

The API of the module is given in Figure 1. Technically, it differs from many com-
mon linked list implementations in several regards. First, in Contiki an existing list

4Complete annotated code available at http://allan-blanchard.fr/code/contiki-list-verified.zip



(illustrated by the lower part of Figure 3) is identified or modified through a dedicated
list handler – a variable supposed to refer to the first list element – called root in Fig-
ure 3. Copying one linked list into another is just copying such a list handler (cf. lines
22–23 in Figure 1) without duplicating list elements. In a function call, an existing list
is thus passed as a function parameter via a pointer referring to the handler (denoted
in this paper by pLst and having a double pointer type list_t), rather than just the
address of the first list element (i.e. a single pointer, contained in root) to make it
possible to modify the handler in the function.

Second, being implemented in C (that does not offer templates), Contiki uses a
generic mechanism to create a linked list for specific field datatypes using dedicated
macros. The preprocessor transforms such a macro into a new list datatype definition.
Lines 1–4 in Figure 1 show the resulting definition for a list with one integer field.
To be applicable for various types, the common list API treats list elements via either
void* pointers or pointers to a trivial linked list structure (having only lines 1,2,4),
and relies on (explicit and implicit) pointer casts. To make possible such a “blind”
list manipulation using casts, the first field in any list element structure must be the
pointer to the next list element (cf. line 2). That means that, for a user-defined type
struct some_list, when a cell of this type is transmitted to the list API, the im-
plementation first erases the type to void* and then casts it to struct list* to
perform list manipulations and modifications. Note that according to the C standard,
this implementation violates the strict-aliasing rule, since we modify a value of type
struct some_list through a pointer to a type struct list. So the compila-
tion of Contiki is configured to deactivate the assumption of strict-aliasing compliance.

Third, Contiki does not provide dynamic memory allocation, which is replaced by
attributing (or releasing) a block in a pre-allocated array [19]. In particular, the size of
a list is always bounded by the number of such blocks, and their manipulation does not
invoke dynamic memory allocation functions.

Fourth, adding an element at the start or the end of a list is allowed even if this
element is already in the list: in this case, it will first be removed from its previous
position. Finally, the API is very rich: it can handle a list as a FIFO or a stack (lines
14–21), and supports arbitrary removal/insertion and enumeration (lines 24–30).

For all these reasons, the list module of Contiki appears to be a necessary but chal-
lenging target for verification with FRAMA-C/WP.

3 The Verification Approach

This section presents our verification approach and results. Since the generic mecha-
nism of type manipulation lies beyond the border of undefined behavior in C (cf. Sec-
tion 2), formally speaking, a separate verification is necessary for any new list structure
datatype as for a different API. That is why in this verification case study we use a pre-
cise definition of list structure. In the presentation of this paper, we assume that the list
structure is defined by lines 1–4 of Figure 1 and use pointers to struct list in the
verified functions instead of generic void* pointers. To ensure that this choice of list
structure is not a limitation of the approach, we additionally check that our specification
and proof remain valid for other common list structures (where data fields are a pointer,



1 #define MAX_SIZE INT_MAX-1
2 /*@
3 requires \valid(pLst) ∧ \valid(item) ∧ \valid(cArr + (0 .. MAX_SIZE-1));
4 requires Linked: linked_n (*pLst, cArr, index, n, NULL);
5 requires 0 ≤ index ∧ 0 ≤ n < MAX_SIZE ;
6 requires EnoughSpace: index + n + 1 ≤ MAX_SIZE;
7 requires Unique: ∀ Z y, z;
8 index ≤ y < index + n ∧ index ≤ z < index + n ∧ y 6= z⇒ cArr[y] 6= cArr[z];
9 requires item_index == index_of(item, cArr, index, index+n) ;

10

11 assigns cArr[index .. index + n], cArr[item_index - 1]->next, item->next, *pLst;
12

13 behavior contains_item:
14 assumes ∃ Z i ; index ≤ i < index+n ∧ cArr[i] == item ;
15 ensures linked_n(*pLst, cArr, index, n, NULL);
16 ensures unchanged{Pre,Post}(cArr, item_index + 1, index+n);
17 ensures array_swipe_right{Pre, Post}(cArr, index + 1, item_index + 1);
18 ensures cArr[index] == item;
19 ensures Unique: ...; // no repetitions in the list (see lines 7-8)
20

21 behavior does_not_contain_item:
22 assumes ∀ Z i ; index ≤ i < index+n⇒ cArr[i] 6= item ;
23 ensures linked_n(*pLst, cArr, index, n+1, NULL);
24 ensures array_swipe_right{Pre, Post}(cArr, index + 1, index + n + 1);
25 ensures cArr[index] == item;
26 ensures Unique: ...; // no repetitions in the list (similar to lines 7-8)
27

28 complete behaviors;
29 disjoint behaviors;
30 */
31 void list_push(list_t pLst, struct list *item,
32 /* ghost: */ struct list **cArr, int index, int n, int item_index)
33 {
34 struct list *l;
35 //@ ghost int rem_n = item_index == index+n ? n : n-1 ;
36

37 list_remove(pLst, item, /* ghost: */ cArr, index, n, item_index);
38 //@ assert array_swipe_left{Pre,Here}(cArr, item_index, index + rem_n);
39 //@ assert unchanged{Pre,Here}(cArr, index, item_index);
40

41 //@ ghost array_push(cArr, index, rem_n, list, *list, NULL);
42 //@ assert array_swipe_right{Pre,Here}(cArr, index + 1, item_index + 1);
43 //@ assert unchanged{Pre,Here}(cArr, item_index + 1, index + rem_n + 1);
44

45 //@ assert linked(*pLst, cArr, index + 1, rem_n, NULL);
46

47 item->next = *pLst;
48 //@ ghost cArr[index] = item ;
49

50 //@ assert linked_n(item, cArr, index, rem_n+1, NULL);
51 *pLst = item;
52 }

Fig. 2: Function list_push adds given element item to the start of the list

or a structure containing three coordinates of a point). All proofs remain successful for
the tested list structures.

3.1 Running Example

We will use the function list_push (see Figure 2) to illustrate the specification and
verification of the list module in the rest of this article. This function adds a given list
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Fig. 3: Parallel view of a list prefix using a companion array formally defined by the
linked_n predicate in Figure 4

element item at the beginning of the list whose list handler is referred to by pLst. As
the API must ensure that each list element appears at most once in the list, this function
first tries to remove item from the list (see line 37 of Figure 2). After this operation, it
is guaranteed that item is not in the list. Then the next field of item is set to point
to the (previous) first element of the list, that is, *pLst (line 47). Finally, the handler
*pLst is updated to point to the new first element item (line 51).

The annotated version of the function also takes some ghost parameters (given on
line 32) supposed to be ignored during compilation and execution. Note that we in-
clude here ghost parameters as regular parameters “considered-as-ghost” by preceding
them by a comment /* ghost: */ rather than syntactically writing them as ghost
parameters inside an annotation /*@ ghost: <type><param>; */. While be-
ing part of the ACSL specification language [4], ghost parameters are currently not yet
supported by the public releases of FRAMA-C/WP. It means that in order to verify
other modules of the OS using lists, we currently have to modify all list function calls
to add such “considered-as-ghost” parameters. To obtain the executable code from the
annotated code, only a slight modification of code is required for the moment: to re-
move these “considered-as-ghost” parameters clearly marked on a separate line (since
all other annotations are already seen as comments by a compiler). The support of ghost
parameters is in progress in the development version and should be available in the near
future. With this support, it will only be necessary to add ghost parameters in the mod-
ules under verification using lists without modifying the C API.

3.2 List Representation by a Companion Ghost Array

Our verification approach relies on a parallel view of the list via a companion ghost
array whose cells refer to the elements of the list (see Figure 3). Basically, it allows us
to transform most of the inductive properties required during the verification into simple
universally quantified formulas. Such formulas are easier to handle by SMT solvers, and
generally easier to write. The predicate linked_n (cf. Figure 4) inductively builds the
link between a list and a segment of the companion array that models it. We define a
few auxiliary lemmas that help to deal with this property without having to reason by
induction (this induction being hidden in the proofs of the lemmas, as we explain in
Section 3.5).



1 /*@
2 inductive linked_n{L}(struct list *root, struct list **cArr,
3 Z index, Z n, struct list *bound) {
4 case linked_n_bound{L}:
5 ∀ struct list **cArr, *bound, Z index;
6 0 ≤ index ≤ MAX_SIZE⇒ linked_n(bound, cArr, index, 0, bound);
7 case linked_n_cons{L}:
8 ∀ struct list *root, **cArr, *bound, Z index, n;
9 0 < n⇒ 0 ≤ index⇒ 0 ≤ index + n ≤ MAX_SIZE⇒

10 \valid(root)⇒ root == cArr[index]⇒
11 linked_n(root->next, cArr, index + 1, n - 1, bound)⇒
12 linked_n(root, cArr, index, n, bound);
13 }
14 */

Fig. 4: Inductive predicate linked_n creating a link between the list prefix of size
n of the linked list root and the segment of indices index..index+n-1 in the
companion array cArr, where the sublist boundary bound refers to the list element
immediately following this prefix. If the list is of size n, bound is NULL.

More precisely, the inductive predicate linked_n establishes a relation between
the prefix of length n of the list starting at root and the segment of size n in the
companion array cArr starting from index. The relation is established at label L,
which can be omitted being by default the current program point. The pointer bound
refers to the list element immediately following the represented sublist, that is, to the
(1+n)-th element in the list. We refer to it as the sublist boundary. For an empty list (cf.
lines 4–6), root and bound must be equal, and the list is considered to be linked with
the empty segment of the companion array starting at any index. If the segment size
(and the list length) n is greater than 0 (cf. lines 7–12), the first element root must
point to a valid list element and this element must be registered in cArr at index.
Moreover, the remaining part of the list prefix (starting at root->next) must in turn
be linked to the array segment of size n-1 starting at index+1with the same boundary
element bound. To verify that the list representation relation holds, we will have to
update the ghost array each time we modify the linked list. It is done through ghost
functions and instructions presented below.

Notice that the ACSL annotations in this paper are slightly pretty-printed: Z denotes
the type integer of mathematical integers in ACSL, while universal and existential
quantifiers are replaced by ∀ and ∃, respectively.

3.3 Formal Specification

To perform deductive verification of the list module in FRAMA-C/WP, we first provide
a formal specification of the list API in the ACSL specification language [4]. Let
us illustrate the formal specification for the function list_push, whose (simplified)
contract is given in Figure 2. The parameters on line 32 are considered to be ghost
parameters.

The precondition is given by requires clauses on lines 3–9 in Figure 2. First (cf.
line 3), both the pointer pLst to the list handler and the list element item must be
pointers to valid memory locations. The companion array is assumed to be valid for a



1 /*@
2 //Range down..up-1 in cArr and the contents of the corresponding list elements
3 //are the same at labels L1 and L2
4 predicate unchanged{L1,L2}(struct list **cArr, Z down, Z up) =
5 ∀ Z i; down ≤ i < up⇒
6 \at(cArr[i], L1) == \at(cArr[i], L2) ∧
7 (\valid{L1}(\at(cArr[i],K))⇒ \valid{L2}(\at(cArr[i],L2))) ∧
8 \at(*(cArr[i]), L1) == \at(*(cArr[i]), L2);
9 */

10 /*@
11 //Range down..up-1 at label L2 is a right shift of down-1..up-2 at label L1
12 predicate array_swipe_right{L1, L2}(struct list **cArr, Z down, Z up) =
13 ∀ Z i; down ≤ i < up ⇒
14 \at(cArr[i], L2) == \at(cArr[i-1], L1);
15 */

Fig. 5: Predicates relating the contents of a list between two program points L1 and L2,
expressed in terms of the companion array cArr

large range of indices as well. The representation of list pLst by the companion array
cArr is assumed on line 4. The segment of size n starting at index represents here
the whole list (since the list boundary is equal to NULL). Lines 5–6 assume necessary
domain constraints for n and index, in particular, the possibility to add one more
element at the end of the segment in cArr. Lines 7–8 assume that any list element
appears in the list at most once. Line 9 assumes that the ghost parameter item_index
records the position of item in cArr (and thus in the list). It is computed by the
logic function index_of whose definition is straightforward and not presented here.
This function returns the position of item in cArr if it can be found in the segment
of indices index..(index+n-1), or one past the last segment index (index+n)
otherwise. Notice that the last two properties of the list are conveniently expressed in
terms of the companion array.

The assigns clause on line 11 specifies the variables that the function is allowed
to modify. For other postconditions, we distinguish two cases (defined in ACSL by
behaviors, cf. lines 13 and 22): either item is already present in the list or not. An
assumes clause defines the domain of application of each behavior. In both cases, the
resulting list must be represented by the companion array. However, in the first case
(behavior contains_item, lines 13–19), it must have the same size as before (cf.
line 15), since we first remove the element and then add it again at the start of the list,
whereas in the second case (behavior does_not_contain_item, lines 21–26), the
resulting list will grow (cf. line 23). In both cases, item is added at the start of the list
(cf. lines 18, 25). To express the conditions on other elements, we need two additional
predicates given in Figure 5.

The predicate unchanged in Figure 5 states that, between two programs points
at labels L1 and L2, in the range down..up-1 both the elements of the compan-
ion array and the contents of the corresponding list elements are the same, and the
validity of the list elements has been preserved between L1 and L2. The predicate
array_swipe_right states that the cells in the range down-1..up-2 at label L1
are shifted to the right to become the range down..up-1 at label L2.



Thanks to these predicates, we can specify the remaining parts of the contract. In
the behavior does_not_contain_item, where item is originally not in the list,
item is simply placed at the beginning of the list. In terms of the companion array, it is
expressed as a shift of the corresponding segment to the right (cf. line 24). In the behav-
ior contains_item, item is removed at its previous position item_index and
added at the start of the list. In terms of the companion array, the segment of indices
item_index+1..index+n-1 remains unchanged between the Pre state (before
the call) and the Post state (after the call, cf. line 16). However, the segment of in-
dices index..item_index-1 at Pre is shifted to the right to the range of indices
index+1..item_index at Post (cf. line 17). This precisely describes the desired
postconditions for the list.

The postconditions on lines 19 and 26 state that the uniqueness of list elements
(lines 7–8) is preserved by the function in both cases for the new companion array seg-
ment representing the list (in the second case, the new segment is one element longer).

Lines 28–29 indicate that the given behaviors are complete and disjoint: they cover
all possible cases and cannot apply at the same time. Thanks to these annotations, the
completeness and disjointness of behaviors are checked by FRAMA-C/WP.

A quite important part of the contract that we have removed in this simplified ver-
sion is separation conditions. The ACSL language and the FRAMA-C/WP tool support
such separation properties. Each element of the list must be spatially separated from any
other to guarantee that the list is well formed. In ACSL, this property can be expressed
as follows:

1 ∀ Z y, z; index ≤ y < index + n ∧ index ≤ z < index + n ∧ y 6= z⇒
2 \separated( *(array + y), *(array + z) );

Furthermore, the list elements must be separated from the companion ghost array to
guarantee that any operation on the companion array does not impact the linked list
itself and vice versa. It can be expressed as follows:

1 ∀ Z y ; index ≤ y < index + n⇒
2 \separated( *(array + y), array + (0 .. MAX_SIZE -1 ) );

These properties5 are systematically included as preconditions and postconditions in
each function contract of the API. In the precondition of list_push, we also need
to state that list elements and companion array cells are separated from the list handler
referred to by pLst and the element item to be added. The complete version of the
contracts is available online.

3.4 Ghost Functions

To maintain the list representation by the companion array, we have to update the array
each time the linked list is modified. It is done through ghost functions and instructions.
Let us illustrate it for the list_push function. First, item is removed if needed (line
37 in Figure 2). Line 35 defines the length rem_n of the resulting list (and companion
array segment) after this operation: n if item was not present, and n-1 otherwise.

5some of which will be no longer necessary when ghost parameters will be fully supported
in FRAMA-C.



1 /*@
2 requires \valid(pLst) ∧ \valid(cArr + (0 .. MAX_SIZE - 1));
3 requires EnoughSpace: index + n + 1 ≤ MAX_SIZE;
4 requires Linked: linked_n (root, cArr, index, n, bound);
5 requires Unique: ...; // no repetitions in the list
6

7 assigns cArr[index .. index + n];
8

9 ensures Unique: ...; // no repetitions in the list
10 ensures SwipeR: array_swipe_right{Pre, Post}(cArr, index + 1, index + n + 1);
11 ensures Linked: linked_n(root, cArr, index + 1, n, bound);
12 */
13 void array_push(struct list **cArr, int index, int n,
14 list_t pLst, struct list *root, struct list *bound)
15 {
16 int i = index + n; // next index to assign in cArr
17 struct list *le = bound; // current boundary between left and right segments
18 /*@
19 loop invariant IInBounds: index ≤ i ≤ index + n ;
20 loop invariant UnchangedLeft: unchanged{Pre, Here}(cArr, index, i);
21 loop invariant ISwipeR: array_swipe_right{Pre, Here}(cArr, i + 1, index+n+1);
22 loop invariant LeftLinked: linked_n(root, cArr, index, i - index, le);
23 loop invariant RightLinked: linked_n(le, cArr, i + 1, n - (i - index), bound);
24 loop assigns i, le, cArr[index+1 .. index + n];
25 loop variant i - index;
26 */
27 while (i > index){
28 cArr[i] = cArr[i-1]; // shift next cArr element
29 i--;
30

31 // compute new boundary
32 if( i == index ) le = root;
33 else le = cArr[i];
34 }
35 }

Fig. 6: Ghost function array_push shifts ghost array cArr to the right

Lines 38–39 provide two assertions on the two segments around the deleted element: the
left segment up to the initial position item_index of item is unchanged (line 39),
while the right segment – non empty only if itemwas present in the list – is obtained as
a left shift of a segment at state Pre. (The definition of a left shift is similar to the right
shift and is omitted here.) These properties come from the contract of list_remove.

Next, item has to be added at the beginning of the list. We make the choice to keep
the same starting position index for the segments that model the list in the precondi-
tion and in the postcondition (cf. lines 4, 15 and 23). To create some place for a new
first element in the beginning of the segment, we use the ghost function array_push
(cf. line 41 in Figure 2).

The array_push function (see Figure 6) shifts the segment of the companion ar-
ray one cell to the right. Starting from the end of the segment (at position i=index+n
in the array), it moves the element at position i-1 to position i (cf. lines 27–34). The
boundary between the shifted and not-yet-shifted segments is maintained in variable
le. The function contact specifies the shift (cf. line 10) and preserves the link of the list
with the shifted segment (cf. lines 4, 11). Line 7 indicates the segment of the companion
array that is modified. Uniqueness properties (lines 5, 9) and separation properties (not



1 /*@
2 lemma stay_linked{L1, L2}:
3 ∀ struct list *root, **cArr, *bound, Z i, n ;
4 linked_n{L1} (root, cArr, i, n, bound)⇒
5 unchanged{L1, L2}(cArr, i, i+n)⇒
6 linked_n{L2} (root, cArr, i, n, bound);
7 */
8 /*@
9 lemma linked_split_segment:

10 ∀ struct list *root, **cArr, *bound, *b0, Z i, n, k;
11 n > 0⇒ k ≥ 0⇒
12 b0 == cArr[i + n - 1]->next⇒
13 linked_n(root, cArr, i, n + k, bound)⇒
14 (linked_n(root, cArr, i, n, b0) ∧ linked_n(b0, cArr, i + n, k, bound));
15 */
16 /*@
17 lemma linked_merge_segment:
18 ∀ struct list *root, **cArr, *bound, *b0, Z i, n, k;
19 n ≥ 0⇒ k ≥ 0⇒
20 (linked_n(root, cArr, i, n, b0) ∧ linked_n(b0, cArr, i + n, k, bound))⇒
21 linked_n(root, cArr, i, n + k, bound);
22 */

Fig. 7: Examples of lemmas about the linked_n predicate

presented in the simplified version given in Figure 6) should also be included in the
contract (as explained in Section 3.3). The loop contract (lines 18–26) is necessary to
reason about segment manipulation as we will explain in Section 3.5.

After the call of array_push in the ghost code on line 41 in Figure 2, the cell
at position index in the companion array is not used. Combining the partial left shift
due to a list element removal by the call to list_remove and the complete right shift
by the call to array_push, we obtain the properties of the assertions on lines 42–43
in Figure 2. The interested reader will easily check them by considering separately the
case of each behavior. Moreover, we have the representation property on line 45 for the
shifted segment.

Thanks to these properties, after connecting the list element item to the original
list (line 47) and recording item in the companion array at position index in a ghost
assignment (line 48), we obtained the representation of the list started with item by
the segment of the companion array from position index with rem_n+1 elements
and with a boundary NULL. After the assignment of the list handler *pLst on line 51,
the required representation of the resulting list by the companion array is reconstructed
(cf. lines 15, 23).

These examples illustrate a benefit of the companion array for this specification –
and more precisely for expressing predicates like unchanged, array_swipe_left
and array_swipe_right, and separation properties. All these properties can be di-
rectly expressed using the companion array. It means that we do not need induction any
more to reason about them.

3.5 Auxiliary Lemmas and Proofs

Inductive properties are generally not well handled by SMT solvers since most of the
time, a proof that involves inductive properties requires reasoning by induction. On



the contrary, SMT solvers are efficient when they just have to instantiate lemmas that
directly state implications between known properties. Thus, providing lemmas about
inductive properties can significantly improve the treatment of inductive properties in a
proof by requiring reasoning by induction only in the proofs of the lemmas. We already
successfully experimented a similar approach to count values within a range of indices
in an array [6].

For example, a very simple property (illustrated by Figure 7, lines 2–6) currently
not handled by SMT solvers in our verification is the fact that if a list root is linked to
a companion array cArr at a given program point L1 (line 4), and if the list represen-
tation (i.e. the corresponding companion array segment and pointed list elements) has
not changed between L1 and another program point L2 (line 5), then the list root is
still linked to cArr at program point L2 (line 6). For example, when we modify some
element in the array, this lemma is useful to ensure that a linked_n relation still holds
for other, unmodified segments before and after this element.

Two more subtle properties are the facts that we can split the linked_n property
at a given valid index into two segments, or conversely merge two consecutive segments
into a longer one. The linked_split_segment lemma (cf. Figure 7) states that if
a list starting from root is linked to the segment in cArr at index i with size n+k
and reaches a given boundary bound, we can split it into two relations: the first one
linking root to the segment at position i with n elements and reaching boundary
b0, and the second linking b0 to the segment at position i+n with k elements and
reaching boundary bound, where the intermediary boundary b0 is defined by line 12.
Conversely, if we have two consecutive linked segments in the same companion array,
where the boundary of the first segment refers to the first list element of the second list,
we can deduce the linked_n relation for a longer segment that combines them (cf.
lemma linked_merge_segment in Figure 7).

This kind of property is, for example, useful for the verification of the array_push
function. Indeed, in the loop, when the assignment cArr[i] = cArr[i-1] at line
28 (of Figure 6) overwrites the cell at position i, we have to maintain the representation
of the list prefix before this position (line 22 of the invariant), and the split lemma al-
lows this because we can detach the end using it. At the same time, this assignment puts
a new element just before the beginning of the segment specified by the invariant of
line 23, that gives a new linked_n predicate, progressively built by the function. As
we know that this list element is linked to the first cell of this range, the lemma merge
allows to combine them into a longer segment.

In the current formalization, these lemmas have been proved using the Coq proof as-
sistant [5,24]. Most of the lemmas related to the predicate linked_n have been proved
by induction on the predicate itself or on the size n of the list. The induction principle
used is an induction principle similar to the basic induction principle on Peano natural
numbers but applied on the positive subset of relative numbers. The axiomatic function
index_of is defined on a lower and an upper bound. It was therefore necessary to
reason by induction on their difference. One challenge for these proof scripts was to
make them very robust so they can be valid for various versions of the list structure. In
particular the unchanged predicate does not take the same number of arguments for
different versions of the list structure.



In addition to these lemmas, four assertions are not proved directly by the SMT
solvers. Two are proved in Coq: they are basically applications of lemmas, under some
conditions. Two are proved by the recently introduced Interactive Proof Editor (TIP)
of the WP plugin. It offers a new panel that focuses on one goal generated by WP,
and allows the user to visualize the goal to be proved. The user can then interactively
decompose a complex proof into smaller pieces by applying tactics, and the pieces are
proved by SMT solvers. In our case two assertions were proved inside each branch of
a conditional but were not automatically proved just after the conditional. The proof
using TIP was straightforward.

3.6 Results of the Verification

In this work, we have annotated and verified all functions of the list module, except
list_insert (as detailed below). In total, for about 176 lines of C code in the mod-
ule (excluding macros), we wrote 46 lines for ghost functions, and about 1400 lines of
annotations, including about 500 lines for contracts and 240 lines for logic definitions
and lemmas. We did not specifically try to minimize the number of intermediate as-
sertions: they were added to explicitly state the expected local properties and to help
the automatic proof, and some of them could probably be removed. For this annotated
version of the module, the verification using FRAMA-C/WP generates 798 goals. This
number includes 108 goals for the verification of absence of runtime errors that are
often responsible for security vulnerabilities and have also been carefully checked by
FRAMA-C/WP. It also includes 24 auxiliary lemmas (that is, in total only about 3.3%
of properties). The 24 lemmas are proved using Coq v.8.6.1. Out of the 774 remaining
goals, almost all are automatically discharged by SMT solvers, except for 4 goals that
are proved interactively (as mentioned in Section 3.5). In this work, we used FRAMA-C
v.16 Sulfur and the solvers Alt-Ergo v.1.30 (with direct translation from WP and via
Why3), as well as Z3 v.4.5 and CVC3 v.2.4.1 (via Why3).

The verification helped to identify an inconsistency for the remaining function,
list_insert (cf. lines 26–28 in Figure 1), with respect to the assumptions of other
functions (and, in a sense, to itself). This function adds an element new_item into a
list just after a given element prev_item. If the element prev_item is NULL, the
function directly calls list_push, meaning that if the element is already there, it is
removed and then added to the start. However, if prev_item is present in the list,
the function directly adds new_item after prev_item without removing a previous
instance of new_item from the list (if any). It shows that the uniqueness property is
in general not preserved by the function, but in some cases it is. Thus this function does
not respect a contract consistent with the other functions. We decided to ask the authors
of Contiki to clarify this potentially dangerous behavior, that could for example allow
to break the integrity of the list6. Moreover, in the entire code of Contiki, we have found
only one call to list_insert, and not a single one in the core part of the system.

Unit tests could have permitted to identify such a bug. However, one difficulty with
tests (that is also the cause of many security bugs) is the fact that we tend to test valid
scenarios rather than invalid ones.

6the issue can be found at: https://github.com/contiki-ng/contiki-ng/issues/254



3.7 Validation of Specification

To get confidence in the proposed specification, we have implemented 15 simple valid
test functions7 manipulating lists, and tried to prove simple properties on lists in them
using the proposed contracts of the list module functions. The results show that in all
tests, the correct properties were successfully proved by WP.

We have also implemented 15 invalid tests. Each invalid function is a variant of a
valid one where we have altered the contract (including such dangerous cases as viola-
tions of separation, or validity, or uniqueness), the ghost values or the code itself. For
those functions, the verification leads, as expected, to proof failure.

This gives us further confidence that the proposed contracts can be successfully used
for a larger deductive verification of Contiki. This step has also allowed us to detect and
fix some minor deficiencies in the contracts at the latest phases of the work and can be
recommended to be systematically performed for all similar verification projects.

4 Related Work

To our knowledge, there is no other specification of a linked list API using ghost ar-
rays. This approach has two main advantages. First such specifications may be more
readable to developers not used to formal specifications written in a more functional
style using inductive type definitions. Secondly, it makes these specifications close to
be usable in a context of dynamic verification [8], in particular using the E-ACSL plugin
of FRAMA-C [17]. One drawback is that the support of ghost function parameters is not
yet available, and another more important one, is that the specifications should contain
assertions stating the separation of the actual memory cells and the ghost array.

Dross et al [9] present the proof of an implementation of red-black trees in SPARK
that involves underlying arrays. They also rely on ghost code for the proof, the main
difference in our work is that the array we use for representation is only part of the
specification and thus the cells can be allocated independently of this array using an-
other policy, while they use arrays as the actual implementation of the trees. On the
proof side, the main difference is that we rely on Coq to prove simple lemmas that
can be used automatically by SMT solvers, while they use the so-called auto-active
proof [18] to avoid the use of an interactive proof assistant.

In this context, separation logic [23] is more suitable than the Hoare logic on which
the WP plugin of FRAMA-C is based. Tools based on such a kind of logic may there-
fore be more suitable for the verification of a linked list API, for example VeriFast [15]
or the Verified Software Toolchain [1, 3]. The former has been used in several indus-
trial case studies [22] while the latter has been mainly used to verify crytography related
software [2,26] but also a message passing system [20]. We are not aware of efforts ded-
icated to the verification of linked list functions, but the example gallery of VeriFast 8

and the VST case studies do include linked list function specifications and verification.
They are based on a logic list data structure and an inductive predicate relating the
memory and such a logical data structure, as initially done by Reynolds [23]. Reynolds

7included in the online archive with the annotated code.
8https://people.cs.kuleuven.be/ bart.jacobs/verifast/examples/



reasoned on sequences of instructions rather than functions. He thus mostly expressed
loop invariants. This has an impact on the style of the specifications. In this case, an
existential quantification of logical data structures is convenient. VeriFast has the con-
cept of patterns, that are kind of free variables in preconditions, that are bound to values
during symbolic execution, and that can be used in postconditions. Reynolds’ style of
specification is therefore possible in VeriFast. In the case of ACSL and JML, when spec-
ifying functions or methods, an existential quantification in the precondition only binds
a variable in the precondition: the scope does not extend to the postcondition. Using
Reynolds’ style of specification is therefore not possible. In the case of JML, to specify
Java methods on a linked list data structure, Gladisch and Tyszberowicz [12] used a
pure observer method that takes a list object and an index, and returns the object at that
index in the list. The methods they consider are simpler than the list API of Contiki, but
essentially our ghost arrays can be seen as observations of the linked lists.

VeriFast and VST are based on concurrent separation logic [7, 14]. It is difficult to
compare the specifications because most VeriFast case studies take into account concur-
rency. For some of the examples related to linked lists, being based on separation logic
does not seem to have a significant impact on the size of specifications with respect to
the specifications we have.

For the verification, FRAMA-C is the most automated. Moreover, in addition to the
automated and interactive provers it natively supports, it can output verification con-
ditions to many different provers using Why3ML [11] as an intermediate verification
language. This eases the verification, and makes it more trustworthy. VeriFast is based
on its embedded SMT solver Redux and can also use Z3. VST is a framework for Coq.
The specifications can be written in the Gallina language of Coq, making them very
expressive. However, even with the dedicated tactics, proofs are less automated in VST
than in FRAMA-C or VeriFast.

One strong point of VST is that its logic is fully formalized in Coq and its soundness
has been proved in Coq. It makes it the safer framework. Both for the WP Plugin and
VeriFast, there exist some results about the correctness of subsets of the tools [13, 25].

5 Conclusion and Future Work

The expansion of devices connected to the Internet raises many security risks. One
promising way to tackle this challenge is to use formal methods, which is one of the
goals of the EU H2020 VESSEDIA project. This paper reports on verification of the list
module of Contiki, which is one of the most critical modules of the operating system. It
requires, in the context of C language, to deal with linked data structures and memory
separation that are still hard to handle automatically.

Our verification approach relies on a companion ghost array and some ghost code.
Although the idea of using ghost code is not new, it appears to be highly beneficial in
this context, allowing for an elegant reasoning over the companion array and for an au-
tomatic proof of the great majority of goals: more than 96% of goals in this case study
have been proved automatically. Imposing a limit on the size of the companion array
(and therefore, the lists it models) is not a limitation since list sizes in Contiki are al-
ways bounded. The verification of the list module, intensively used by other modules of



Contiki, opens the way to formal verification of higher-level modules depending on it.
All proofs of this case study have been checked for several list structures. Moreover, we
have implemented several test functions working with lists, and validated the proposed
specification by obtaining a successful proof for correct properties, and a proof failure
in the erroneous cases.

In future work, we plan to start the verification of higher-level modules of Con-
tiki. This verification is planned to be done using both the deductive verification tool
FRAMA-C/WP and the value analysis tool FRAMA-C/EVA. The latter can handle linked
data-structures slightly better than the former, but again, it is more suitable to reason
about arrays. While it would have been impossible to prove the equivalence between
our array representation and the lists using EVA (that is not really meant to treat func-
tional properties), it can still benefit of this verification since we can now directly reason
about arrays. Note however that it still requires to instrument user code, and to verify
that lists are only modified through the API.
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