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Abstract: Designing strategies for temperature control requires an efficient model which
accurately describes building dynamics. The occurrence of different events in a room like
opening/closing the windows, the doors and the shades affects the dynamic evolution of the
indoor temperature. This makes state-of-the-art building models yield an incomplete description
of the temperature dynamics. Hence, we propose in this work the use of hybrid (switching)
models to characterize the thermal behavior of buildings based on the idea that, for every
new configuration, hence, for each discrete state, a different continuous model is estimated.
We present the motivation behind using hybrid models via a physical Resistor Capacitor (RC)
model of the building and show how the values of the resistance changes depending on the
considered configuration. We employ a PieceWise Autoregressive eXogeneous (PWARX) model
for a scenario we consider. A preliminary result is presented at the end of the document.
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1. INTRODUCTION

During the last decade, a lot of research has been done
in the area of building thermal modeling with the goal
of meeting the requirements for improving their energy
efficiency and reduce their environmental impact. Devel-
oping an accurate dynamic building thermal model is
beneficial in many ways: it gives a suitable description
of their energy performance, it helps identify the sources
of excessive energy consumption and therefore, establish
the most effective actions to be taken for improving their
efficiency; and last but not least, it allows to predict future
performance, but also control indoor climate and energy
consumption. Existing modeling approaches are divided
into “white box”, “black box” and “grey box”. “White
box” models are based on physics and are mostly used in
the preliminary design phase where a detailed description
of the building is available. However, for existing build-
ings, a detailed description is not always available, and
errors due to the aging of materials might lead to an
inappropriate model. In this case, “black box” models,
being constructed only from input-output data, seem more
suitable for describing the building heat dynamics, but no
physical explanation lies behind the model. “Black box”
models are known for their ease of implementation and low
computational cost. “Grey box” models take the advan-
tages of both techniques in a way to have a physics based
easy to implement model, without the need of a detailed
description of physical properties nor a big amount of data.

In this work, we propose the use of PWARX, a system
identification “black box” technique for modeling the ther-
mal dynamics of buildings. This technique is based on

hybrid models, namely models that combine both con-
tinuous and discrete dynamics. The motivation behind
using this type of modeling is that, in a building, dif-
ferent events like the opening/closing of windows, etc.
occur, thus leading to different dynamic behaviors. There-
fore, we propose a model consisting of several continuous
submodels, each corresponding to a different event, thus
generating a hybrid model describing the continuous and
discrete (event-based) dynamics of the building. Previous
knowledge about the number of submodels and informa-
tion about the configuration (opened windows or shutters
for example) is not necessary. The technique is based on
data classification, i.e. assigning data to a specific sub-
class, according to a similarity criterion. Each new data
is assigned to an existing class (submodel) or a new one
based only on the criterion value. The estimation of the
submodels parameters is done simultaneously with the
data classification as they are updated with every new data
attributed, thus leading to an online identification process.
This modeling technique can be further applied for con-
trol purposes as it predicts the indoor thermal behavior
changing from one dynamic to another. At this preliminary
stage of our work, we test the ability of switching models
to detect different configurations in a building.

The rest of the document is structured as follows: in
section 2, we present a short review of state-of-the-art
techniques for building thermal modeling. In section 3
we present the motivation behind using hybrid switching
models for modeling the thermal behavior of buildings and
the suggested model. Preliminary results are presented
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in section 4 while the last section is dedicated to the
conclusion and presentation of future work.

2. STATE OF THE ART

In this section, we present a non-exhaustive state-of-the-
art techniques for modeling buildings thermal behavior
(sections 2.1 to 2.3) and a short overview of system
identification approaches for hybrid systems (section 2.4).

2.1 “White box” models

“White box” models are based on physical equations de-
scribing the energy transfer between the building and its
environment. These equations are implemented in soft-
ware tools aimed at different applications. Building simu-
lation tools can be generally divided into three main cate-
gories. Approaches based on Computational Fluid Dynam-
ics (CFD)((Fluent, 2012), etc.) are considered the most
complete but also the most complicated to implement.
CFD is particularly adapted to the description of fluid flow
fields in buildings. The zonal approach(SPARK (2003)) is
a simplification of the CFD while the multi-zonal or nodal
approach EnergyPlus (2015), etc.) is the simplest one.

Thermal networks are another type of modeling techniques
that offer a physics based simple approach with low
computational cost. The building is approximated by a
Resistance Capacitance (RC) network that represents an
analogue to an electric circuit. The electric resistances and
capacitances are equivalent to thermal ones, the electric
potential is the temperature gradient and the electric
current is the heat flux. This method is widely coupled
with data driven techniques as will be seen in section 2.3.

2.2 “Black box” models

A “black box” model is based on a mathematical equation
establishing the relationship between the inputs and out-
puts of a system, without any prior knowledge of its inter-
nal functioning. Data driven models are constructed using
system identification or machine learning techniques. Sys-
tem identification techniques applied to building thermal
modeling mainly include linear parametric models. (Parti
and Parti, 1980) were the first to propose a new method
for the prediction of energy consumption in buildings using
linear regression and many applications followed. Machine
learning techniques include, among others, Artificial Neu-
ral Networks (ANN), and are mainly applied to predicting
heating or cooling demand (Kalogirou and Bojic, 2000).

2.3 “Grey box” models

“Grey box” models are a mix of “white” and “black box”
models. They combine physics and statistics and need a
rough description of the building geometry and limited
number of data. Researchers tend to apply “grey box”
models on a building model described as a Resistance
Capacitance (RC) network. First, the model structure
is identified and afterwards, the parameter values are
identified from measurements or simulations. Numerous
applications employ this kind of modeling (Bacher and
Madsen, 2011), (Wang and Xu, 2006), etc.

2.4 Hybrid dynamical systems

A hybrid system is a system that combines simultane-
ously continuous dynamics and discrete events. This type
of systems can be represented by a model consisting of
continuous submodels. Several models exist to describe
hybrid systems (Vidal et al., 2002), (Doucet et al., 2001).
One of the most commonly used models are PieceWise
Affine (PWA) models (Sontag, 1981). PWA models are a
collection of affine models that share the same continuous
state variables and are related by switches that are deter-
mined by a polyhedral partition of the input+state group
(Paoletti et al., 2007). They are dedicated to the modeling
of non-linear systems with more than one functioning
mode, by linearizing them around operating points. Many
approaches exist in the literature for the identification of
PWA systems and they are classified according to the tech-
nique used for finding the partitions, (Ohlsson and Ljung,
2011). The approach we are using (Boukharouba, 2011) is
detailed in section 3.2: it simultaneously classifies the data
into a corresponding submodel and finds its parameter
vector, the number of submodels being initially unknown.

3. OUR CONTRIBUTION

This paper proposes to employ switching models for build-
ing thermal modeling in the context of system identifi-
cation from experimental data. To the authors’ knowl-
edge, the closest studies to our own were the studies in
which change point models or piecewise linear regression
models were employed to predict the energy consumption
in buildings (Paulus et al., 2015). Section 3.1 offers the
motivation from the physical point of view, while section
3.2 summarizes our algorithm of choice.

3.1 Why use switching models for buildings?

When modeling complex systems, employing a single
mathematical model might lead to a complex non-linear
structure which is hard to exploit in reality. Hybrid mod-
els are used for modeling complex systems by combining
continuous and discrete dynamics. They are represented
by several continuous differential equations.

In a building system, events like opening/closing doors,
windows and shades affect the dynamic evolution of the
zone temperature. Therefore, a single model is not capable
of describing these different configurations. In this context,
Fazenda et al. (2016) presented a context-based thermody-
namic modeling of building. The building was modeled by
a thermal RC network, and transitions between different
contexts and models are described by context-connecting
switches. Inspired by this way of representing the building
in different operating conditions, we will show why the
transition from one configuration to another leads to a
transition between different dynamical models.

Let us consider the thermal network in Figure ??. It
should be noted that this is not a representation for a
specific building and it is only used for interpretation. For
this lumped model, all building envelopes are considered
in one resistance (RE) and one capacitance (CE). TE is
the envelope temperature considered equal to the mean
of all envelope surfaces temperatures. Rcext and Rcint
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are the convective resistances of external and internal
surfaces, respectively. Windows and doors resistances are
represented by Rw and Rd. Shades are represented by Rsh

with a switch indicating their state: if they are closed, their
resistance is added to the windows resistance. Switches are
also used to indicate the state of windows and doors. Ratw

and Ratd are the air transmission resistances for windows
and doors respectively when they are open with Ratd <<
Rd and Ratw << Rw . The heating system is modeled
by the heater surface temperature Th, its resistance and
capacitance (Rh and Ch) and a switch which indicates if
heating is on or off. Occupants are modeled in the same
way. Tbs is the temperature of the body surface, Rocc

is the resistance of the heat transfer between the body
and the surroundings and Cocc, its capacitance. A switch
indicates the presence of occupants or not. Solar effects are
considered as input currents with φs, the solar radiation
acting on the envelope, and φsw, the solar radiation going
inside the building through the windows. Cint is the
internal capacitance (indoor air, furniture, etc.). Text and
Tint are the exterior and indoor temperatures, respectively.

The differential equations governing the evolution of the
temperatures when heating is on, occupants are present
and windows and doors are closed are:

CE ṪE =
Text − TE
Rcext

+
Tint − TE
Rcint

+ φs

ChṪh =
Tint − Th

Rh
+ φh

CoccṪbs =
Tint − Tbs
Rocc

+ φocc

CintṪint =
Text − Tint

Req1

+
TE − Tint
Rcint

+

Th − Tint
Rh

+
Tbs − Tint
Rocc

+ φsw

(1)

These can be rewritten as state equations by defining the
state vector x = [TE Th Tbs Tint]

>:

 ṪE

Ṫh

Ṫbs

Ṫint


︸ ︷︷ ︸

ẋ(t)

=


−

1

CE

(
1

Rcext
+

1

Rcint

) 0 0
1

CERcint

0 −
1

ChRh

0
1

ChRh

0 0 −
1

CoccRocc

1

CoccRocc
1

CintRcint

1

CintRh

1

CintRocc
−

1

Cint

(
1

Req1

+
1

Rcint

+
1

Rh

+
1

Rocc
)


︸ ︷︷ ︸

A

 TE

Th

Tbs

Tint


︸ ︷︷ ︸

x(t)

+


1

RcextCE

1

CE

0 0 0

0 0
1

Ch

0 0

0 0 0
1

Cocc
0

1

Req1Cint

0 0 0
1

Cint


︸ ︷︷ ︸

B


Text

φs

φh

φocc

φsw


︸ ︷︷ ︸

u(t)

(2)

Fig. 1. Building thermal network

y(t) = [0 0 0 1]︸ ︷︷ ︸
C

 TEThTbs
Tint


︸ ︷︷ ︸

x(t)

(3)

is the output equation. For the case where the windows,
doors and shades are closed, Req1 is calculated as follows:

1

Req1

=
1

Rd
+

1

Rw +Rsh
+

1

RE
. (4)

Let us now consider the case for which the doors and win-
dows are opened. The new equivalent resistance becomes:

1

Req2

=
1

Ratd
+

1

Ratw
+

1

RE
. (5)

One can see that Req2 6= Req1 , which implies that the
parameters in the system matrix A change, hence, the
time constants (obtained from this matrix) change and
therefore, the dynamic model changes. In fact, opening
windows or doors will increase the air change between
zones in the building or between the building and its
environment. Moreover, the heat transfer by air change
is characterized by a rapid dynamic response, it directly
affects the indoor temperature and therefore, leads to a
change in its underlying dynamics. Similarly, if the shades
are opened when the windows are closed, a new value of
the equivalent resistance is obtained:

1

Req3

=
1

Rd
+

1

Rw
+

1

RE
. (6)
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Closing the shades will add an extra resistance to the heat
transfer through windows φsw, it will also reduce the effect
of solar radiation, thus changing temperature dynamics.

Given the above observations, we propose to use a hybrid
switching model to describe these different configurations
in a building. This model will join the discrete aspect of
the system related to the transition between different con-
figurations, and the continuous aspect of the temperature
evolution that lies behind each configuration.

3.2 PWARX

Considering the fact that different dynamic behaviors oc-
cur in a building system, the approach here aims to model
these different configurations given the input-output data
of the system, using a Piece Wise AutoRegressive eX-
ogeneous (PWARX) model. This model is based on in-
put output observations in discrete-time, since this is the
typical data-acquisition mode, we, thus, assume outputs
to be observed at the sampling instants. The PWARX
algorithm we are using for modeling the thermal behavior
was introduced by Boukharouba (2011). It simultaneously
treats classification of data and parameter estimation. The
classification of data uses a novel method based on the
euclidean distance between data in the regression vector,
on one hand, and the error between the output of each
submodel and the true output of the system, on the
other hand. The parameter estimation is done using least
squares. The model of interest is defined by

y(t) = f(ϕ(t)) + e(t), (7)

where e(t) refers to zero-mean noise samples and ϕ(t) ∈ Rn

is the regression vector defined as

ϕ(t) =
[
y(t− 1)...y(t− na) u(t)>...u(t− nb)>

]>
, (8)

where u(t) ∈ Rm and y(t) ∈ R are the input vector (for a
MISO model) and the measured output of the system at
time t ∈ Z respectively. The parameters na and nb are the
model orders (maximum relevant past terms). In (7), f is
a PieceWise Affine map of the form

f(x) =


θ>1 ϕ̄, if ϕ ∈ <1

...
θ>s ϕ̄, if ϕ ∈ <s

(9)

where ϕ̄ = [ϕ> 1]> is the extended regression vector, s is
the number of submodels and {θi}si=1 are the parameter
vectors containing polynomial coefficients defining each of
the submodels of (7). One can notice that each submodel
is no other than an ARX model, a linear parametric model
that is frequently used in building modeling (section 2.2).
However, instead of using one single ARX model to repre-
sent the heat dynamics of the building, we propose a set of
ARX models, each describing a different configuration. In
other words, each new configuration physically interpreted
in section 3 will be modeled by an ARX model. The sets
{<i}si=1 in (9) form a complete partition of the regression
space < ⊆ Rn, with n = na + mnb. Each region <i is a
convex polyhedron (see figure 2) with <i = {ϕ̄ ∈ Rn+1 :
Hiϕ̄ ≤ 0}, with Hi, a matrix of appropriate dimensions
and 0, the null vector. For example, in figure 2, the re-
gression data is distributed between three regions <i=1,2,3

and a parameter vector is associated to each region. Data
belonging to region <1 follows the model defined by the
parameter vector θ1, and so on.

Fig. 2. Repartition of a PWARX system with 3 submodels
(Boukharouba, 2011)

The algorithm treats simultaneously the problem of data
clustering and parameter estimation. GivenN data vectors
X(i) = [ϕ(i)>, y(i)]>; i = 1, ..., N from our system, the
approach consists of three steps: initialization, data re-
affectation and convergence test.
We set initially the number of submodels to s̄ = N ,
i.e. each data point is a submodel. We obtain N clusters
C = {C1, ..., CN}, where Ci = {X(i)}. To these N clusters

we assign the initial parameter vectors Θ(0) = [θ
(0)
1 , ..., θ

(0)
N ]

where θ
(0)
i is calculated by considering the data X(i) of the

submodel Ci and its c nearest neighbors, denoted as cNN ,
and by using the least squares technique on these c+1 data.

The initialization being done, the aim now is to reduce
the number of clusters by reclassifying each data. Data will
migrate towards the most representative clusters according
to a specific decision rule. The less representative clusters
become empty and thus are eliminated. Let Γc(X(i)) be
the set of the cNN of X(i) and let X(j) ∈ Γc(X(i)), j =
1, ..., c, be one of its neighbors that belongs to Cp, p ∈
{1, ..., s̄}. We introduce the measure

φij = exp(−αp(dij)
2 − βp(y(i)− θ>p ϕ̄(i))2), (10)

where dij = [(X(i) − X(j))>(X(i) − X(j))]
1
2 is the Eu-

clidean distance between X(i) and the neighbor X(j) and
θp is the parameter vector associated to cluster Cp. βp and
αp are positive parameters associated to each cluster Cp

and are computed by

αp = 1/d2
p, βp = 1/e2

p, (11)

where dp is the average distance between data belonging
to cluster Cp and ep is the average error between the
measured and the submodel output. We define now the
probability for which data point X(i) belongs to Cp

P (X(i) ∈ Cp) =

∑
j/X(j)∈{Γc(X(i)∩Cp}

φij

c∑
j=1

φij

, p ∈ {1, ..., s̄}.

(12)
This probability is equal to 1, if all the cNN of X(i) belong
to the cluster Cp and it is equal to 0 if none of them
belongs to Cp. The decision is made by assigning the data
X(i) to the cluster Cret, ret ∈ {1, ..., s̄}, that achieves the
maximum of P . The procedure ends when the stopping
criterion ‖ Θ(r+1) − Θ(r) ‖≤ η is achieved, r being the
iteration index and η is a threshold set by the user.
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4. TEST CASE

We consider a room located in Douai, France. Data gen-
erated by the numerical model of the room created with
Dymola (Wetter et al., 2015) is used for this application
example. To study the ability of PWA models to describe
the thermal behavior of the room, we tested a scenario
in which the air change rate switches between 0.2 vol/h
and 20 vol/h every 6 days and is assumed unknown. This
scenario is equivalent to the transition between a config-
uration with closed windows and another one where they
are open, i.e, changing the position of the windows switch
(see 3.1). The room temperature is the output variable,
the exterior influence (temperature, wind velocity, relative
humidity, solar radiation) and the heating power are input
parameters. The heat flow changes randomly every 15
min between 0 and 3000 W and is assumed known. The
simulation is run for 36 days, the sample interval is 15 min.

The model’s accuracy is computed by means of the Fit
that should be close to 100% for a good match.

Fit = 100

(
1− norm(y − ŷ)

norm(y − ȳ)

)
, (13)

where y is the measured output (temperature), ȳ its mean
and ŷ the simulated temperature.

Fig. 3. (a) True output of the system (blue), estimated
output of PWA models (red) for the entire data
set; (b) discrete states of the system = number of
submodels = number of clusters; (c) air change rate

Fig. 3 shows that PWA models are able to identify two
functioning modes corresponding to the two values of the
air change rate and the estimated temperature follows
the output with a fit of 64%. Several orders were tested
and the previous result was obtained for na = nb = 1
and c = 1500. This same figure shows that the clusters
identified correspond to the regions where the air change
rate switches values. A third class is related to the heating
power when it is at its maximal value. This preliminary
result shows that using the PWARX we are able to identify
different functionning modes that correspond to various
configurations in a building system.

5. CONCLUSION AND FUTURE WORK

In this work, we presented a new technique for the thermal
modeling of buildings based on the fact that different

configurations might occur inside of the building. It was
shown that for each new configuration a new dynamic
model can be used to describe the behavior. The sug-
gested technique allows switching between different linear
regression models based on some criteria calculated from
input data. The estimated model can be further used for
temperature control.
For future work, we will continue investigating the capabil-
ity of PWARX for describing the thermal behavior inside
a building with physical interpretation of the switching
using thermal networks identified for the case study.

REFERENCES

Bacher, P. and Madsen, H. (2011). Identifying suitable
models for the heat dynamics of buildings. Energy and
Buildings, 43(7), 1511 – 1522.

Boukharouba, K. (2011). Modélisation et classification
de comportements dynamiques des systemes hybrides.
Ph.D. thesis, Université Lille 1.
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