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Abstract Based on a discrete element method (DEM), this
paper investigates the basic mechanisms and the associated
scales related to grain detachment and grain transport pro-
cesses at stake in widely graded poly-disperse assemblies of
spheres subjected to internal fluid flows. From the identi-
fication of force chains, particles sensitive to grain detach-
ment are identified. Based on the computation of autocor-
relation lengths, a typical length scale associated with this
phenomenon is then defined. From the characterization of
the void space as a pore network, particles eligible for grain
transport are identified among the detachable particles. Based
on the definition of a mean travel distance, the typical length
scale associated with grain transport is finally characterized.
The comparison between the two length scales highlights a
scale separation between grain detachment and grain trans-
port.

Keywords Mesoscales · Micromechanics · DEM · Force
chains · Autocorrelation · Pore Network

1 Introduction

In various circumstances, granular materials are submitted
to internal flows which may modify their microstructure and
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by consequence the overall hydraulic and mechanical prop-
erties of the granular assembly. At the microscale, this pro-
cess consists in a rearrangement of particles driven by three
elementary mechanisms, namely the detachment of grains
from the granular skeleton, their transport through the pore
network and possibly their reattachment to the granular skele-
ton farther away. At a larger scale, this process results in the
selective erosion of the smallest particles of a granular mate-
rial and is referred to as suffusion within the geomechanics
community (Bonelli, 2012, Sibille et al., 2015). Being able
to predict the occurrence of such a phenomenon is of crucial
interest in many domains as it can trigger off critical me-
chanical instabilities or generate undesired solid transport.

Since the end of the 20th century, the ability of an internal
fluid flow to modify the microstructure of a granular mate-
rial was systematically linked to its particle size distribution
(PSD) (Kenney and Lau, 1985, Kézdi, 2013, Terzaghi, 1939,
To and Scheuermann, 2014). More recently, with the ability
of discrete element methods (DEMs) (Cundall and Strack,
1979) to handle a substantial number of particles, these sus-
ceptibility criteria were considered from a micromechani-
cal point of view (Fonseca et al., 2014, Langroudi et al.,
2015, Shire and O’Sullivan, 2013) and linked to the average
number of contacts per particle, contact distributions and the
probability of a particle participating in stress transmission.

Complementary to these particle-based approaches, constric-
tion size distribution (CSD) curves were defined to account
for the transport properties of granular materials (Li et al.,
2014, Sjah and Vincens, 2013, To and Scheuermann, 2014,
Vincens et al., 2015). These approaches describe the void
space in terms of accessible volumes for particles of dif-
ferent sizes. Many have attempted to relate the CSD to the
PSD, to assess the possibility of some particles being trans-
ported (OSullivan et al., 2015, To and Scheuermann, 2014,
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To et al., 2015b). Recently, To et al. (2015a) even proposed
a probability criterion based on these approaches.

Although the first approaches tend to reduce the internal
flow impact to grain detachment, the second ones tend to re-
duce it to grain transport. In fact, global approaches that can
integrate and merge these two aspects are lacking. In the
last 10 years, several numerical schemes have been devel-
oped to take into account fluid/grain interactions and enable
full three-dimensional micro-modeling of the detachment,
the transport and the reattachment of grains in a granular as-
sembly (LBM, SPH and PFV methods, for instance). This
paper investigates the possibility of providing a quantitative
definition of the length scales associated with the two first
cited mechanisms from a micromechanical point of view as
there is a need to correctly define a minimum sample volume
that should be used at the material scale in order to formulate
homogenized law for suffusion.

Since detachable particles are characterized by weak con-
tact forces, grain detachment processes are closely related to
the spatial distribution of forces inside a granular assembly.
Based on the identification chained particles (Peters et al.,
2005, Tordesillas et al., 2010) combined with the computa-
tion of autocorrelation functions (Kanit et al., 2003, Lantue-
joul, 1991, Matheron, 1967), the statistical properties of the
population of particles transmitting the mechanical loading
can be explored. The typical size of the loose grain struc-
tures is characterized with the dual analysis of autocorrela-
tion lengths associated with force transmission within the
integral range theory (Matheron, 1967).

Inside a saturated granular media in which electrostatic forces
can be neglected, grain transport is mainly governed by the
geometrical properties of the porous space and in particular
the spatial distribution of the pore space accessible to free
particles. In the case of a sphere assembly, the porous phase
can be modeled as a graph characterized by pores and con-
strictions of different radii. In the wake of the previous work
of Reboul et al. (2008) and Vincens et al. (2015), the statis-
tical properties of this network are related to the possibility
of particles being transported through the granular matrix.
Given a macroscopic pressure gradient, typical transport dis-
tances are defined as a function of these virtual particle radii.

This paper is organized as follows. In section 2, idealized
virtual samples defined as poly-dispersed assemblies of spheres
of varying void indices are generated and subjected to a
drained triaxial test. Based on the geometrical and micro-
mechanical description of the generated samples under test-
ing, two mesoscales (associated with force transmission and
particle transport) are defined and quantified in sections 3
and 4 respectively.

Fig. 1 Elasto-frictional contact law used in DEM simulations.

Table 1 Mechanical parameters used in the elasto-frictional contact
law implemented in YADE.

Parameters Value
Density 3,000 kg.m−3
Young Modulus (E) 356 MPa
Stiffness ratio (ν) 0.42
Inter-particle friction angle (φ ) 35◦

Particle-wall friction angle 0◦

Number of particles 10,000

2 Sample preparation and triaxial testing

2.1 Numerical modeling

The micromechanical analysis performed in this paper con-
siders non cohesive granular materials modeled as poly-disperse
assemblies of spheres. The interaction between two parti-
cles is modeled by the classical elasto-frictional contact law
proposed by Cundall and Strack (1979) and is illustrated in
Figure 1.
Two spherical particles are said to be in contact if they over-
lap. Based on the direction of the vector joining the particle
centers, a normal force Fn is defined as proportional to the
overlapping distance ∆un between the two particles where
the contact normal stiffness kn is proportional to the ma-
terial’s Young modulus E and to the harmonic average of
the two particles radii r1 and r2 (see Fig. 1). In addition to
the normal force, a tangential force Ft is introduced. This
tangential force is proportional to the relative tangential dis-
placement ∆ut between the two particles where the horizon-
tal contact stiffness is a fraction ν of its normal counterpart
(see Fig. 1). Contrary to ∆un, the definition of ∆ut is not
straightforward. It is defined in an incremental form as the
relative tangential displacement of the contact point between
a reference configuration (when the contact is first estab-
lished) and the current configuration. The last parameter of
the implemented contact law is the internal friction angle φ ,
which defines the largest accessible ratio Ft/Fn according to
the Mohr Coulomb theory (see Fig. 1). The input parame-
ters used in this elasto-frictional contact law are reported in
Table 1. They are chosen equal to those of Hadda (2006).
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Fig. 2 Normalised PSD curve by mass corresponding to the generated
sample. Particle radii are normalised by the mean radius value.

After computing all inter-particle contact forces, the induced
particles displacements are integrated based on Newton’s
second law of motion using the DEM open source code YADE
(Šmilauer et al., 2015).

2.2 Sample generation

Cubic assemblies of spheres are generated randomly with a
uniform radius distribution between rmin and rmax = 10rmin.
This particle size distribution is taken such that the small-
est particles have a good geometrical chance of being trans-
ported through the voids created by the largest ones accord-
ing to the Therzaghi filter rule: rmin� 4rmax (Terzaghi, 1939).
The normalized PSD curve by mass is shown in Figure 2.
The resulting coefficient of uniformity is cu = 1.3.
After generating a cloud of 10,000 non-overlapping spheres
surrounded by six bounding planes defining a cube, the par-
ticles are inflated and allowed to rearrange according to the
radius expansion technique. This process is stopped when
the confining pressure applied on the bounding planes reaches
20 kPa. From this point, the internal friction angle is artifi-
cially decreased by small steps, making it easier for parti-
cles to rearrange. Since the particle radii should be increased
to keep the confining pressure constant, this procedure re-
sults in a densification process. Three geometrical configu-
rations are generated during this process when the void ra-
tio of the sample reaches the targeted values of 0.8, 0.7 and
0.6. These values were selected such that the resulting three
samples exhibit macroscopic behaviors typical of loose, in-
termediate, and dense sands respectively. Accordingly, they
are referred to as ”loose sample”, ”medium sample” and
”dense sample” hereafter. Associated with the cubic grain
assemblies thus generated, a Cartesian coordinate system
(eeex,eeey,eeez) is defined such that the axis directions coincide

with the edges of the cube. This definition is recalled in Fig-
ure 4.

2.3 Drained triaxial test

After the sample preparation phase, the internal friction an-
gle is restored to its initial value of 35◦. The same dry drained
triaxial test is applied to the three prepared samples. This test
consists in two steps:

- First an isotropic confining pressure of σ0 = 100kPa is
applied by allowing the bounding walls to move;

- Then a vertical compression strain rate ε̇zz = −0.01s−1

is applied up to 20 % of deformation while keeping a
constant lateral confining pressure of σ0; this strain rate
is chosen such that the loading can be considered as
quasi-static (Hadda, 2006).

The classical deviatoric stress and volumetric strain responses
are shown for the three samples in Figure 3. From the re-
sulting forces applied on the bounding walls a macroscopic
stress tensor σσσ is computed. The resulting deviatoric stress
q is then defined as

 q =

√
3
2

σσσdev : σσσdev

σσσdev = σσσ − 1
3 Tr(σσσ)111

(1)

where 111 stands for the identity tensor and : stands for the
double dot contraction product.
Likewise, the macroscopic homogeneous strain tensor εεε is
defined from the bounding walls displacements. The volu-
metric strain is thus simply defined as

εv = Tr(εεε). (2)

In Figure 3, the dense sample is characterized by a dilative
behavior after a brief initial contracting phase. The stress re-
sponse reaches a peak followed by a softening phase. The
loose sample is characterized by a contractive behavior and
the absence of a stress peak. The medium sample evolves in
an isochoric way with a stress peak immediately followed
by a plateau. These three mechanical responses are consis-
tent with those classically observed both in the laboratory
(Terzaghi et al., 1996) and from discrete numerical simula-
tions (Scholtès et al., 2010, Wang and Li, 2015). Moreover,
one can highlight the existence of a unique critical state, as
described in the classical critical state theory in soil mechan-
ics (Schofield and Wroth, 1968).

3 Mesoscale investigation with respect to force
transmission

The microscale analysis of the force network in granular as-
semblies is underpinned by two governing ideas with re-
spect to grain detachment. The first idea is that the most
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Fig. 3 Stress (top) and volumetric (bottom) responses of the three pre-
pared samples during a triaxial test with confining pressure of 100 kPa
and vertical strain |εzz| ∈ [0,0.2]

detachable grains do not transmit important forces. The sec-
ond idea is that the typical length scale associated with the
detachment process should be linked with the distance be-
tween the grains transmitting the stresses through the gran-
ular assembly. As a result, the grains of the three samples
presented in the previous section are first divided into two
groups based on the force chain definition introduced by Pe-
ters et al. (2005). Then the spatial distribution of force chains
is investigated using autocorrelation functions (Kanit et al.,
2003, Matheron, 1967).

3.1 Statistical properties of force chains

3.1.1 Force chain definition

The detailed algorithm used to identify the chained particles
of a sample can be found in Peters et al. (2005). We simply
recall here the definition of a force chain which is based on
the following three characteristics (Peters et al., 2005):

- The particles belonging to a force chain have a higher
principal stress than the mean particle principal stress;

- The principal stress direction of chained particles is aligned
with the geometrical contact direction (less than 45◦ de-
viation);

- A force chain contains at least three contacting particles.

Based on this definition, force chains can be identified in the
three samples for several strain values. It should be noticed

Fig. 4 Force chains visualisation for the dense sample under an
isotropic confining pressure of 100 kPa (a) and at the end of the tri-
axial test (b).

here that the definition used is particle centered and not con-
tact centered as classically done for the definition of strong
and weak force networks (Cambou et al., 2013). Indeed, the
identification of force chains relies on the computation of
the principal compression intensity deduced from the mean
cauchy stress in each single grain. A typical visualization of
the force chains in the dense sample can be found in Fig-
ure 4. At the beginning of the triaxial test, the force chains
are distributed in an isotropic way which is consistent with
the fact that no principal direction of loading exist. Once the
deviatoric loading is applied, the force chains tend to align
in the vertical direction of the macroscopic principal stress
which is consistent with the previous results obtained in 2D
with the combined use of fabric tensors and contact forces
network by Radjai et al. (1998).

3.1.2 Statistical description of force chains during triaxial
loading

In addition to these qualitative observations, some of the
force chains statistical properties can be analyzed. In Figure
5 the percentage of chained particles, the total number of
force chains and the mean length of a force chain are plotted
for the different samples during the triaxial test presented
in the previous section. On these graphs, the stress-strain
curves illustrated in Figure 3 are recalled in dotted lines.
As pointed out in Peters et al. (2005), only a small fraction
of the total number of particles is involved in force chains.
At the beginning of the triaxial test, the fraction of chained
particles ranges from 23 to 31 % depending on the sample
density (Fig. 5 (a)). The higher the density, the more par-
ticles are involved in force chains. This should be related
to the fact that for a dense sample the high number of con-
tacts between particles enables a homogeneous distribution
of the stress inside the sample. Conversely, a loose sample
presents a more limited number of contacts, which results in
the concentration of the stress onto a more limited number
of particles. As the deviatoric loading starts, force chains be-
gin to disappear, as illustrated in Figure 5 (a) and (b) for the
dense and medium samples, respectively. After merely 10 %
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Fig. 5 Strain evolution of the ratio of chained particles (a), the number
of force chains (b) and the mean chain length (c) for the three sam-
ples considered during the triaxial test. The macroscopic stress strain
response is recalled in dots on the three graphs.

of strain, a critical state is reached with only 24 - 25 % of
particles involved in force chains.
The evolution of the mean length of a force chain in terms
of the number of particles involved gives information on the
ability of a material to transmit an additional load. Indeed,
granular assemblies containing long force chains are able
to sustain high stress levels because most of the stiffness
will result from the normal contact stiffness kn (see Fig. 1).
In contrast, for granular assemblies containing short force
chains the overall stiffness is more influenced by the tan-
gential contact stiffness kt ≤ kn and the friction angle φ (see
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Fig. 6 Mean probability densities for a grain of a given radius to be
part of a force chain belonging to each of the three samples. Standard
deviations are shown thanks to error bars. The dashed lines correspond
to the probability density for a grain of a given radius to be part of the
whole sample.

Fig. 1). As a result, Figure 5 (c) accounts for the three typi-
cal macroscopic stress behaviors presented in dots. In partic-
ular, the softening experienced by the dense sample can be
linked to the destruction of long force chains. Nevertheless,
a slight strain delay is observed between the stress dotted
curves and their mean chain length counterparts. This might
be related to the three arbitrary thresholds used in the force
chain definition recalled in the previous subsection, namely
the principal stress threshold, the angle threshold and the
minimum length threshold.
Overall, the three graphs in Figure 5 are consistent with the
existence of a common critical state with respect to these
meso-structures (Zhu et al., 2016) given that the curves cor-
responding to the different samples collapse on a single curve
at the end of the triaxial test.

3.1.3 Size segregation of chained particles

Another interesting statistical property of the chained parti-
cles with respect to grain detachment is the probability den-
sity that a particle of a given radius belongs to a force chain.
These probability densities for the three samples considered
are shown in Figure 6. Since no noticeable changes can be
observed in these probability density functions with respect
to the level of axial strain, only the mean density probability
functions are plotted together with error bars corresponding
to standard deviations. For comparison purposes, the prob-
ability density for a grain of a given radius to be part of
the different samples is plotted as a dashed line. It should
be noted here that the probability density functions are not
bounded, but their integral over the whole range of radii is
normalized to 1.
In Figure 6, the probability densities corresponding to chained
particles are very different from the reference horizontal prob-
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Fig. 7 Averaged lifespans of the chained particles existing before the
deviatoric loading in terms of axial strain level |εzz|.

ability density for the whole sample imposed by the PSD
curve shown in Figure 2. Indeed, force chains are mainly
composed of large particles (Cambou et al., 2013, Voivret
et al., 2009) and particles smaller than 0.4rmean are rarely
involved in force chains. The dual comment is that the finest
particles are the least loaded particles of the samples and
therefore the most likely to be detached, provided that fluid
forces resulting from an internal flow are large enough. Fine
particles are also good candidates for being transported over
large distances, which will be estimated in Sect. 4. How-
ever, no sharp transition is visible in the probability densi-
ties in Figure 6. As a result, no clear radius threshold exists
between the loose particles of a granular assembly and the
primary fabric responsible for stress transmission, as pro-
posed in many suffusion susceptibility criteria. This result is
consistent with the recent findings of To et al. (2015b), prov-
ing the existence of an overlapping zone in the PSD curve
in which a grain can either belong to the loose or the coarse
phase of the resulting granular assembly.
As already mentioned, the probability density functions shown
in Figure 6 do not depend on the strain level, which can re-
sult either from very stable force chains or from stable statis-
tic rearrangements of chained particles. In order to chose
between these two options, the lifespan of a chained parti-
cle during the triaxial loading is introduced as the width of
the strain interval during which this particle is continuously
identified as belonging to force chains. In Figure 7, the av-
erage lifespan of the chained particles initially identified in
the three samples under the isotropic confining pressure σ0
is shown with respect to the grains’ radii.
As seen in Figure 7, the average lifespan increases with the
size of the particles from less than 1% for r = rmin up to
4 % for r = rmax. The force chains containing large parti-
cles are therefore less sensitive to an increase in the axial
strain and have a longer lifespan than the force chains com-
posed of small particles. However, it can be noted that even

for the largest particles, the average lifespan remains limited
to a few percent of strain. Overall, it can be concluded that
the force chains are constantly rearranging to cope with the
deviatoric loading. This dynamic process affects all the par-
ticles whatever their radii, but the largest chained particles
are more stable than their smaller counterparts. This result is
consistent with the recent findings of To et al. (2015b) con-
cerning the evolving populations of loose and primary fabric
particles. The comparison between the three graphs in Fig-
ure 7 highlights the fact that the initial void ratio does not
seem to have a strong influence on this rearrangement pro-
cess. These results are consistent with the recent findings of
Zhu et al. (2016) concerning the force chains’ lifespan den-
sity probability in the critical state, which mostly follows an
exponential decrease with respect to the axial strain.

3.2 Force chain autocorrelation and associated mesoscopic
length scales

Even if the statistical properties shown so far are able to de-
scribe several salient features of the chained particles, they
do not capture the spatial distribution of the force chains.
Based on the theoretical work of Kanit et al. (2003), Lantue-
joul (1991), Matheron (1967), the spatial distribution of the
chained particles can be described using autocorrelation func-
tions.

3.2.1 Definition of autocorrelation functions

If Ω denotes the domain occupied by the chained particles
of a given sample of volume V , the autocorrelation func-
tion C is defined for any vector hhh = (hx,hy,hz) as the joint
probability that a point xxx and the translated point xxx+hhh si-
multaneously belong to chained particles (Matheron, 1967):

C :
{
R3 7→ R
hhh 7→ P{xxx ∈Ω ∩ xxx+hhh ∈Ω ∀xxx ∈V} . (3)

For hhh= 0, the autocorrelation C(0) corresponds to the chained
particles volume fraction as C(hhh) = P{xxx ∈ Ω} , and for
||hhh|| → ∞, C(hhh) converges towards C(0)2 because of proba-
bility independence (P{xxx∈Ω ∩ xxx+hhh∈Ω} = P{xxx∈Ω}×
P{xxx+hhh ∈ Ω}). Thus a normalized autocorrelation function
C̃ can be introduced as

C̃(hhh) =
C(hhh)−C(0)2

C(0)−C(0)2 . (4)

When ||hhh|| varies from 0 to ∞, C̃ varies from 1 to 0 and the
rate of decrease characterizes the microstructure autocorre-
lation distance. A quantitative definition of this autocorre-
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lation distance can be derived from the introduction of an
approximate expression as

C̃fit(hhh) = exp

(
−

√(hx

Lx

)2
+
(hy

Ly

)2
+
(hz

Lz

)2
)
, (5)

where Lx, Ly and Lz are three lengths scales that capture the
decrease rate of C̃. Even though this expression is empirical,
the initial and final theoretical values of C̃ are recovered,
the principal directions of geometrical anisotropy imposed
by the mechanical loading along the axis x, y and z are re-
spected (Radjai et al., 1998), and as predicted by the the-
oretical work of Matheron (1967) and reviewed in Corson
(1974), the initial tangent of the fit is not equal to zero and
close to the specific surface of the samples (not shown here).
A refinement of the definition of the three length scales in-
troduced above can be derived from integral range theory
(Kanit et al., 2003, Matheron, 1975). It was shown that the
variance of a homogenized property Z of a biphasic material
computed over a volume V is given by

D2
Z(V ) = φ(1−φ)(∆Z)2 A3

V
(6)

where ∆Z is the property contrast between the two-phases of
the material, φ is the material porosity and A3 is the integral
range defined as

A3 =
∫∫∫

R3
C̃(hhh) dhxdhydhz. (7)

In our case, Z is simply the indicator function associated
with force chains (Z(xxx) = 1 if xxx∈Ω , 0 otherwise) and φ the
porosity computed only by considering chained particles.
Then, the integral range associated with the proposed fit
given in equation (5) can be expressed as a function of Lx,
Ly and Lz

Afit
3 = 8π Lx Ly Lz. (8)

Thus a more physical definition of the autocorrelation lengths
can be given as

L′x = 2π1/3 Lx

L′y = 2π1/3 Ly

L′z = 2π1/3 Lz

. (9)

With this definition of the autocorrelation lengths, the in-
tegral range related to the chained particles can be seen as
a volume of dimensions (L′x,L

′
y,L
′
z). Combined with equa-

tion (6), this gives a quantitative definition of the represen-
tative elementary volume (REV) associated with force trans-
mission within a given sample as a multiple of the integral
range. As a result, this also specifies the REV associated
with grain detachment processes, namely a small volume
which is structurally entirely typical of the whole material

on average and for which the fluctuations due to the imposed
boundary conditions can be ignored (Hill, 1963).
It is worth noting here that the integral range can be seen as
a virtual unit cell inside which the microstructure is highly
correlated. The whole grain assembly may therefore be seen
as a collection of unit cells, the shape of which depends on
the shape of the autocorrelation C(hhh).

3.2.2 Autocorrelation between chained particles during
triaxial loading

The autocorrelation functions corresponding to 0, 5, 10 and
20 % of deformation are plotted in Figure 8 for the dense
sample together with equation (5). Analysis is restricted to
the principal directions of loading eeex, eeey and eeez. Given that
the samples used in this study are surrounded by bounding
planes, the boundary particles tend to crystallize in the vicin-
ity of these planes. This effect was highlighted in Reboul
et al. (2008) for the local porosity, and the autocorrelation
analysis is restricted to the core of the samples to get rid
of these boundary effects (effective lengths of 0.8 times the
total dimensions of the sample are adopted).
In the initial state, the autocorrelation points for hhh ∝ eeex and
hhh ∝ eeez cannot be distinguished. Accordingly, the autocorre-
lation lengths L′x and L′z are very similar in this case, which is
consistent with the fact that under the isotropic initial confin-
ing pressure the force chains tend to follow an isotropic dis-
tribution, as illustrated in Figure 4. In the final state, the au-
tocorrelation function converges toward 0 much more slowly
in the z direction than in the x direction. This is consistent
with the fact that the force chains tend to align along the
vertical principal direction of loading as seen in Figure 4.
Thus the autocorrelation lengths L′x and L′z are able to ac-
count for this anisotropic evolution of the microstructure.
However, the proposed fit systematically overestimates the
horizontal autocorrelation and cannot account for the nega-
tive values obtained for the horizontal autocorrelation func-
tion for |εzz| ≥ 5%. This latter anti-correlation feature should
be related to an exclusion zone around force chains in the
horizontal plane located at about 3rmean.
More comprehensively, the three autocorrelation lengths are
plotted against the axial strain for the three samples consid-
ered in Figure 9 (a). A similar analysis is performed for the
non-chained particles in Figure 9 (b).
In Figure 9 (a), as the horizontal autocorrelation lengths re-
mains more or less constant for all the samples around 3rmean
for the chained particles, the vertical autocorrelation length
increases significantly between the initial and the final state.
For the loose and the medium samples, the increase is monotonous
whereas the vertical autocorrelation length for the dense sam-
ple reaches a peak value around 4.5rmean for the chained
particles. For |εzz| > 15%, a critical state is reached as L′z
stabilizes for all the samples around 4rmean for the chained
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Fig. 8 Rescaled autocorrelation functions computed for the dense sample at different strain levels (|ε| ∈ {0,0.05,0.1,0.2}). The plot of C̃ is
restricted to hhh ∝ eeex and hhh ∝ eeez. The corresponding fitted autocorrelation functions C̃fit are shown and the estimated autocorrelation lengths L′i are
given.

particles. At this stage, the spatial distribution of chained
particles can be characterized by a small volume, the size of
which is

(L′x,L
′
y,L
′
z) = (3rmean,3rmean,4rmean). (10)

With reference to equation (6), this gives the order of mag-
nitude of the REV associated with the stress distribution
within the different samples. For the sake of illustration,
the volume fraction occupied by chained particles for the
dense sample in the isotropic compression state is 30 %. An
estimation of this volume fraction with a variance of 10−4

would require a volume V equal to roughly 2000 times big-
ger than A3 corresponding to a REV of dimensions
(38rmean,38rmean,50rmean) which is close to the total size
of our sample.
In Figure 9 (b) the evolution of the autocorrelation lengths
computed for the non-chained particles is qualitatively simi-
lar to the one corresponding to chained particles. This argues

in favor of the fact that the spatial distribution of loose par-
ticles can be effectively described by the spatial distribution
of chained particles. However, the autocorrelation lengths L′i
are slightly smaller when considering the non-chained par-
ticles instead of the chained ones which could be related to
the slight misfit observed in Figure 8 with respect to the hor-
izontal autocorrelation for |εzz| > 0%. When looking at the
transient evolution of L′z with respect to εzz, it can be noted
that the dense sample is characterized by an initial increase
in the vertical autocorrelation followed by a decrease toward
the critical state. This can be closely related to the macro-
scopic response observed in Figure 3. Indeed the increase
in the vertical autocorrelation corresponds to a lengthening
of the force chains along the vertical direction which ac-
counts for the initial hardening of the dense sample. The
following decrease in the vertical autocorrelation accounts
for the destruction of force chains and thus to the stress soft-
ening observed for the dense sample. For the medium and
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Fig. 9 Strain evolution of the three autocorrelation lengths L′i (i∈ {x,y,z}) during the triaxial test. Analysis is restricted either to particles belonging
to force chains (a) or to particles not belonging to force chains (b).

the loose samples, L′z increases more or less continuously
until reaching the critical state. This is consistent with the
fact that these two samples do not experience any softening.
In the end of the triaxial test, the three samples exhibit a
common mesostructure associated with force chains whose
size is characterized by equation 10. This provides a quan-
titative definition of the force chain pattern existing in the
critical state as pointed out by Zhu et al. (2016).

4 Mesoscale investigation with respect to particle
transport

The microscale analysis of the pore network is critical to
understanding the transport of free particles through a gran-
ular matrix after being detached from the granular skeleton.
If we envision for instance a possible homogenization ap-
proach, identifying the typical length scale associated with
the transport of particles and comparing it to the scale mon-
itoring the grain detachment process studied in the previous
section stands as a critical issue.

4.1 Pore network definition

In the wake of the previous work of Reboul et al. (2008) and
Vincens et al. (2015) for the transport of spherical cohesion-
less particles, the pore space can be reduced to the definition
of a pore network. A regular triangulation of a spheres as-
sembly (Edelsbrunner and Shah, 1996) is built from YADE
software. This particular type of triangulation has the im-
portant property that all the edges of its dual tessellation be-

long to the pore space (Chareyre et al., 2012, Vincens et al.,
2015).
This tessellation is the key ingredient in defining a pore net-
work composed of pores (the nodes of the graph) and con-
strictions (the edges of the graph). The pores are defined
following the level 0 analysis introduced in Reboul et al.
(2008). Their positions are defined at the center of each tetra-
hedron of the regular triangulation in terms of power dis-
tances and their radii as the radius of the largest interior
sphere in the associated tetrahedra. The constrictions are
modeled as cylinders joining two adjacent pores (Reboul
et al., 2008) and their radii are defined as the radius of the
largest interior circle on the common face of the two tetra-
hedra defining the constriction. The definition of the pore
and constriction radii is shown in Figure 10 (a) and (b). For
the sake of illustration, three-dimensional visualizations of
the pore network associated with two simple grain assem-
blies are shown in Figures 10 (c) and (d). It should also be
noticed that the considered triangulation is built while con-
sidering all the particles, including the potentially migrating
particles identified thanks to the force chains analysis. This
choice is motivated by the idea that only a few non-chained
particles will actually be detached under the action of a fluid,
leading to few changes in the initial pore network.
The bounding planes surrounding the samples locally in-
duce a very different microstructure from that observed in
the core of the samples. Indeed, close to the boundary, a
significant number of tetrahedra are found to be flat, which
results in the estimation of very huge pore and constrictions
radii. Consequently, the pore network is only defined on a
centered subvolume fraction of 0.83. A visualization of the
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Fig. 10 Visualization of a tetrahedron with its inscribed pore sphere
(a), a tetrahedron face with its inscribed constriction circle (b), a simple
assembly of four spheres with the associated pore network (c), and
an assembly of nine sphere with the associated pore network (d). In
these figures, the spherical particles are represented in grey, the pore by
blue spheres and the constrictions between two pores by blue cylinders.
The tetrahedra resulting from the regular Delaunay triangulation are
represented with black lines joining the different particles centers.

pore network for the dense sample at the beginning and the
end of the triaxial test is given in Figure 11.
In this figure the constrictions are represented by grey-scaled
cylinders linking two pore centers. The lighter the cylin-
ders, the greater the constrictions. The whole pore network
is visible in snapshots (ai) and (bi) in Figure 11. The net-
work is very dense and enables many possible paths con-
necting the different pores of the sample. To show only suf-
ficiently large constrictions that allow particle transport, a
radius threshold is applied. The two snapshots (aii) and (bii)
correspond to a radius threshold r = 0.3rmean, and the two
snapshots (aiii) and (biii) correspond to a radius threshold
r = 0.5rmean. In both cases, sufficiently small particles ex-
ist in the sample to be transported through the represented
constrictions (see Figure 12). Although many constrictions
larger than 0.3rmean are still connected together, constric-
tions larger than 0.5rmean are isolated from one another. These
features give an idea of the expected transport distances in
the pore space for particles of different radii. The compar-
ison between Figure 11 (a) (|εzz| = 0%) and Figure 11 (b)
(|εzz| = 20%) highlights the fact that the number of large
constrictions increases between the beginning and the end
of the triaxial test for the dense sample, which is consistent
with its dilative behavior observed in Figure 3.

4.2 Statistical identification of potentially transportable
particles

From the pore network definition, the probability densities
corresponding to pore and constriction radii are computed
and plotted in Figure 12 for the three samples considered
at four strain levels. To identify whether some particles of
the sample could be transported within the pore space, the
density probabilities that a grain and a non-chained grain

would be of a given radius (see Figure 6) are also reported
in Figure 12.
For every sample in Figure 12, the pore and the constriction
probability density function follows single-mode distribu-
tions around r = 0.25rmean and r = 0.5rmean, respectively.
Since the constriction mode value (r = 0.2rmean) is signifi-
cantly smaller than the pore value (r = 0.5rmean), the trans-
port of particles is governed mainly by the constriction sizes
and not by the pore sizes. For the three samples, the com-
parison between the constriction probability density and that
corresponding to the grains highlights that a large number of
grains are small enough to be transported through the pore
network. An even larger fraction of the non-chained grains
is concerned.
While observing how the strain of the pore and constriction
probability densities evolved, the contractive/dilative behav-
ior observed in Figure 3 is recovered. For the dense sample,
the probability densities are shifted toward larger radius val-
ues, which is related to an overall increase of the pore space
volume. This observation is consistent with the dilative be-
havior observed in Figure 3. On the contrary, for the medium
and the loose samples, the probability densities are shifted
toward slightly smaller radius values, which accounts for a
decrease in the pore space volume.

4.3 Mean travel distance functions and associated
mesoscopic length scales

Even though many particles are identified in Figure 12 as
potentially detachable by analyzing the statistical properties
of the pore network, determining the distance that a particle
of a given radius can cover requires knowing the spatial dis-
tribution of pore and constriction radii. This distribution is
accessible from the graph description of the pore space (see
Figure 11). As constriction radii are smaller than their pore
counterparts (Figure 12), only the constriction radii are con-
sidered while assessing the possibility for a grain to move
from one pore to another. This is the reason why pores are
not represented in Figure 11.

4.3.1 Pore-to-pore transport criteria

In a granular material subjected to an internal flow, parti-
cle transport is not isotropic and is governed by the direc-
tion and intensity of the flow through the pore space of the
media. Therefore, the transport properties of the pore net-
works defined for the three samples are considered with a
horizontal fluid flow imposed by a small pressure gradient
of 10 Pa� σ0 between the sample boundaries in the x di-
rection. It should be noted that in hydraulic structures the
flow direction is most often perpendicular to the principal
direction of loading and therefore is mostly horizontal. This
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Fig. 11 Three dimensional visualization of the dense sample pore network under the initial isotropic loading (a) and after 20 % of deformation (b).
Only constrictions are represented thanks to cylinders. The lighter the constrictions, the larger their radii. On the left, all constrictions are visible.
In the middle, a radius threshold of 0.3rmean is applied. On the right, a radius threshold of 0.5rmean is applied.

fluid/grain problem is addressed using the DEM-PFV model
implemented in YADE (Chareyre et al., 2012).
From these simulations a pore pressure map is defined and
used to study the transport of particles in the pore network.
Based on the Hagen-Poiseuille flow velocity profile for a cir-
cular tube and the expression of the drag force of a uniform
flow acting on a sphere for low Reynolds numbers (Fig. 13),
it can be assumed that the drag force acting on a particle
of radius r in a constriction of radius R and subjected to a
pressure gradient ∇p∇p∇p scales as

FFF ∼ r ∇p∇p∇pR2 (11)

From this simple scaling law, a criterion for particle trans-
port is established. Given a pore i connected to neighboring
pores { j1, j2, j3, j4}, a transported particle of radius r in the
pore i will move to a neighboring pore k ∈ { j1, j2, j3, j4} if
and only if

{
Rik > r
||∇p∇p∇pi j||R2

i j ≤ ||∇p∇p∇pik||R2
ik ∀ j ∈ { j1, j2, j3, j4}

. (12)

In other words, the particle propagates to the next accessible
pore in the direction of maximum drag force.

4.3.2 Definition of a transport susceptibility criterion

To estimate the average distance a particle of radius r can
travel in the pore space, a propagation path P(n0,r) is de-
fined for every node n0 of the pore network by repeated ap-
plication of the propagation criterion introduced in equation
(12). For any node n0, the farthest node nk that the particle
considered can reach is thus computed. From the list of the
visited nodes {n0, ...nk}, the true travel distance D(n0,r) and
the tortuosity T (n0,r) corresponding to the path P(n0,r)
are then computed as

D(n0,r) = ∑
k−1
i=0 ||xxxi+1−xxxi||

T (n0,r) =
D(n0,r)
||xxxk−xxx0||

(13)

where xxxi stands for the vector position of node ni. Figure 14
provides examples of propagation paths computed for the
dense sample under the initial isotropic confining pressure
σ0 and for a radius threshold r = 0. On average, all the vis-
ible paths are aligned with the horizontal direction x corre-
sponding to the imposed flow pressure gradient. As the ra-
dius threshold is chosen as r = 0, all the paths end on the
sample boundaries, which is consistent with the fact that the
pore space in 3D for a sphere assembly is a connected space.
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Fig. 12 Probability density for a pore (dashed blue), a constriction
(solid blue), a grain (dotted red) or a non-chained grain (dash-dotted
black) to be of a given radius. The three graphs correspond to the three
samples used in this study. The line thickness corresponds to the strain
level |εzz| ∈ {0,0.05,0.1,0.2} during the triaxial test. The thicker the
line, the larger the strain.

Fig. 13 Hagen-Poiseuille flow velocity profile in a circular tube (a)
and Stokes drag force (b). In both cases viscous flow conditions are
assumed.

The mean travel distance D̄(r) and the mean tortuosity T̄ (r)
are then deduced from statistical averaging of the above quan-
tities over all the nodes of the pore network. In Figure 15 the
mean travel distance is plotted together with the mean tortu-
osity for different radius values at four strain levels.
For the smallest radius values, the mean travel distance reaches
a plateau, which is related to a percolation phenomenon. In-
deed, the transport path can end up on the boundary of the
sample for some nodes, as seen in Figure 14. In this case, the
end of the propagation path does not coincide with the ac-

Fig. 14 Visualization of 60 propagation paths for the dense sample
under the initial isotropic confining pressure σ0. The paths are chosen
randomly for a radius threshold r = 0. The arrows indicate the propaga-
tion direction. The more intense the blue color, the larger the constric-
tion radius. All paths end on the boundaries of the sample materialised
by an empty cube.

tual farthest point the particle would reach in a non-bounded
sample. Consequently, such events are dismissed in the av-
eraging process. In Figure 15 a percolation phenomenon is
observed for r smaller than 0.2rmean for all the samples.
Conversely, no transport is possible for particles larger than
0.5rmean for all the samples. This observation is consistent
with the findings of Reboul et al. (2008) highlighting the fact
that the connectivity of the pores larger than the radius mode
value of the probability density function on Figure 12 is too
small to allow the transport of such large particles. The grey
zone on the graphs corresponds to the range of radius values
for the grains constituting the samples. If the largest grains
cannot be transported, the smallest ones can be transported
over long distances up to 25rmean. However, no percolation
exists since there is no overlapping between the initial per-
colation plateau and grey zones on the graphs. Because of
its dilative behavior (see Figure 3), transport appears to be
greater in the dense sample after a few percent of vertical
strain. This is not the case in the initial state (thin curves)
where the mean travel distances increase as the sample den-
sities decrease. For the loose and medium samples that ex-
hibit a contractive behavior, the mean travel distance is re-
duced for the largest particles, but the mean travel distance
of the smallest particles is slightly increased.

The dashed curves in Figure 15 represent the evolution of the
tortuosity of the transport paths. No noticeable difference is
visible between the three samples and the mean tortuosity
decreases from 1.5 to 1 as the particle size increases follow-
ing the mean change in travel distance. The limit value of
1 corresponds to the case where particles are so large that
they are trapped in one or two pores. As the mean travel dis-
tance increases, the mean tortuosity increases and stabilizes
around a finite value. This should be related to the fact that
the propagation is driven by the flow direction, the mean di-
rection of which is parallel to the x direction with limited
fluctuations along the cross directions.
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Fig. 15 Mean travel distance (solid lines) and mean tortuosity (dashed lines) for different radius thresholds. The three graphs correspond to the
three samples used in this study and the line thickness corresponds to the strain level |εzz| ∈ {0,0.05,0.1,0.2} during the triaxial test. The thicker
the line, the bigger the strain. The grey domain in the background corresponds to the accessible radius values for the grains composing the samples.

5 Conclusions

Specific micromechanical tools are developed in this paper
to investigate the susceptibility of a polydisperse assembly
of spherical particles to grain detachment and grain trans-
port. Basically, the granular assembly can be considered as a
two-phase medium. A partition of its solid fraction between
chained particles and non-chained particles makes it possi-
ble to analyze the grain detachment process. Similarly, the
void fraction can be split into two parts corresponding to an
accessible pore network and a non-accessible pore network.
This dual partition is a fundamental ingredient to describe
the grain transport process.
Based on DEM simulations, the microstructure’s evolution
is recorded during a triaxial loading and the relevance of
the proposed micromechanical tools in correctly predicting
the observed macroscopic behavior is investigated. In par-
ticular, the ability of the chained particles’ autocorrelation
lengths to recover the hardening and softening behaviors of

the dense sample confirms the relevance of this approach
to describe the typical length scales associated with stress
transmission. Likewise, the mean travel distance functions
are shown to address the dilative and contractive behaviors
of the specimen considered.
By simultaneously considering the size distributions of the
non-chained particles and the constrictions of the pore net-
work, the ability of a fluid flow to modify the microstructure
of the samples is analyzed with respect to the fraction of
both potentially detachable and transportable particles.
By carefully considering the spatial distribution of particles
participating in stress transmission and the spatial distribu-
tion of constrictions enabling particle transport within the
pore space, two mesoscales are introduced to study the grain
detachment and the grain transport processes from a mi-
cromechanical point of view. It was shown that the typical
length scale associated with grain transport can be up to ten
times larger than that associated with grain detachment. As a
result, a scale separation should exist between these two pro-
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cesses for the smallest particles and for the used particle size
distribution. This implies that grain detachment and grain
transport can be studied independently from one another.
Macroscopically, if this separation of scales holds, suffusion
may be described as the superposition of a detachment and
a transport processes.
Eventually, full 3D modeling of the suffusion process on a
sufficiently large sample with respect to the two mesoscales
is accessible and can be used to confirm this scale separa-
tion. This would pave the way for the definition of a homog-
enized law for suffusion thanks to the use of representative
elementary volumes sufficiently big with respect to the grain
detachment and transport mechanisms.
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scale modeling of viscous flow and induced forces in
dense sphere packings. Transport in porous media 94(2),
595–615 (2012). DOI 10.1007/s11242-011-9915-6

Corson, P.B.: Correlation functions for predicting properties
of heterogeneous materials. ii. empirical construction of
spatial correlation functions for two-phase solids. Journal
of applied Physics 45(7), 3165–3170 (1974). DOI 10.
1063/1.1663742

Cundall, P.A., Strack, O.D.: A discrete numerical model for
granular assemblies. Geotechnique 29(1), 47–65 (1979).
DOI 10.1680/geot.1979.29.1.47

Edelsbrunner, H., Shah, N.R.: Incremental topological flip-
ping works for regular triangulations. Algorithmica 15(3),
223–241 (1996)

Fonseca, J., Sim, W., Shire, T., O’Sullivan, C.: Microstruc-
tural analysis of sands with varying degrees of internal
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Kézdi, Á.: Soil physics: selected topics, vol. 25. Elsevier
(2013)

Langroudi, M.F., Soroush, A., Shourijeh, P.T.: A compari-
son of micromechanical assessments with internal stabil-
ity/instability criteria for soils. Powder Technology 276,
66–79 (2015). DOI 10.1016/j.powtec.2015.02.014

Lantuejoul, C.: Ergodicity and integral range. Journal of
Microscopy 161(3), 387–403 (1991). DOI 10.1111/j.
1365-2818.1991.tb03099.x

Li, W., Vincens, E., Reboul, N., Chareyre, B.: Constrictions
and filtration of fine particles in numerical granular fil-
ters: Influence of the fabric within the material. In: Scour
and Erosion: Proceedings of the 7th International Confer-
ence on Scour and Erosion, Perth, Australia, 2-4 Decem-
ber 2014, p. 241. CRC Press (2014)
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