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Discharge estimation under uncertainty using variational
methods with application to the full Saint-Venant

hydraulic network model

I. Yu. GEJADZE 1, P.-O. MALATERRE
UMR G-EAU, IRSTEA-Montpellier, 361 Rue J.F. Breton, BP 5095, 34196, Montpellier, France.

Abstract. Estimating river discharge from in-situ and/or remote sensing data is a key issue for
evaluation of water balance at local and global scales and for water management. Variational data
assimilation (DA) is a powerful approach used in operational weather and ocean forecasting, which
can also be used in this context. A distinctive feature of the river discharge estimation problem is
the likely presence of significant uncertainty in principal parameters of a hydraulic model, such as
bathymetry and friction, which have to be included into the control vector alongside the discharge.
However, the conventional variational DA method being used for solving such extended problems often
fails. This happens because the control vector iterates (i.e. approximations arising in the course of
minimization) result into hydraulic states not supported by the model. In this paper we suggest a
novel version of the variational DA method specially designed for solving estimation-under-uncertainty
problems, which is based on the ideas of iterative regularization.

The method is implemented with SIC2, which is a full Saint-Venant based 1D-network model. The
SIC2 software is widely used by research, consultant and industrial communities for modelling river,
irrigation canal and drainage network behavior. The adjoint model required for variational DA is
obtained by means of automatic differentiation. This is likely to be the first stable consistent adjoint
of the 1D-network model of a commercial status in existence.

The DA problems considered in this paper are offtake/tributary estimation under uncertainty in

the cross-device parameters, and inflow discharge estimation under uncertainty in the bathymetry

defining parameters and the friction coefficient. Numerical tests have been designed to understand

identifiability of discharge given uncertainty in bathymetry and friction. The developed methodology

and software seem useful in the context of the future SWOT satellite mission.

Keywords: 1D hydraulic network model, Saint-Venant equations, SIC2, variational data
assimilation, estimation under uncertainty, adjoint problem, automatic differentiation

1 Introduction

Hydraulic and hydrological modelling is important for understanding and monitoring the fresh
water cycle, local and trans-boundary management in flood and drought context and evaluation
of water balance in the global scale [8]. Information about river discharges plays a key role in this
modelling. Unfortunately, in-situ measurements of water elevation and discharge are relatively
rare on most rivers because of limited accessibility and associated costs. However, the future
satellite missions, such as SWOTmission (Surface Water and Ocean Topography, to be launched
in 2020, see http://smsc.cnes.fr/SWOT/index.htm, https://swot.jpl.nasa.gov/mission/), will
be able to provide a complete 2D map of water levels, water longitudinal slope and width with
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a precision which seems sufficient for the river discharge estimation purpose [35]. Proper use
of this type of data, either in combination with in-situ data or without it, is an important
scientific and practical challenge.

For most rivers a 1D-network model based on the Saint-Venant equations (also referred to as
1.5D model) offers a good compromise between physical and computational complexity levels. It
supports a set of important hydraulic phenomena (tide, backwater, artificial structures, control
devices), at the same time allowing relatively inexpensive computations which may cover long-
term behavior of an entire river system. Of course, for irrigation canals, drainage and sewage
systems, the 1D-network models represent the major modelling tool. A number of highly devel-
oped models of this type are currently available, such as: Carima (Artelia, France), Mascaret
(EDF, France), Mike11 (DHI Water and Environment, Denmark), Duflow and Sobek (Delft,
Netherlands), Isis (Halcrow, UK), Infoworks (HR Wallingford, UK), HEC-RAS (US corps of
Engineers, USA), to mention a few. These models are widely used within academic, indus-
trial and consultant communities. The 1D-network model SIC2 (Simulation and Integration
of Control for Canals) has been under development at IRSTEA (previously CEMAGREF) for
about 30 years, succeeding the former CEMAGREF hydraulic models (Talweg-Fluvia-Sirene).
An innovative feature of SIC2 as compared to the models mentioned above is its adaptation
to irrigation systems and to management and control issues. Currently SIC2 has about 200
registered users around the globe.

The methods of data assimilation (DA) have become an important tool for analysis of com-
plex physical phenomena in various fields of science and technology. These methods allow us
to combine mathematical models, data resulting from instrumental measurements and prior
information. The problems of variational DA can be formulated as optimal control problems
(e.g. [26, 25]) to find unknown model parameters such as initial and/or boundary conditions,
right-hand sides in the model equations (forcing terms), distributed and/or lumped coefficients.
The solution method usually implies iterative minimization of the cost function. Equivalently,
variational DA can be considered as a special case of the maximum a-posteriori probability
estimator (MAP) in the Bayesian framework. For some time, variational DA (in the form of
’incremental 4D-Var’, see [7]) has been the only feasible method for solving high-dimensional
data assimilation problems in meteorology and oceanography. It still remains a preferable
method for operational forecasting (also, in the form of ’ensemble 4D-Var’), even though en-
semble Kalman filtering (EnKF, see [15]) is becoming increasingly popular.

The problem considered in this paper is the discharge estimation problem for river or canal
network. A distinctive feature of this problem is the likely presence of significant uncertainty
in model parameters, such as bathymetry, friction or in those defining behavior of hydraulic
structures. Indeed, properties of many rivers are known with quite a limited precision, and
even for once well-studied rivers they may evolve in time due to erosion, sedimentation or
structures being damaged. This uncertainty, if not taken into account, could degrade the
estimated discharge accuracy very noticeably. The estimation-under-uncertainty problems are
solved here by including the uncertainty-bearing functions into the control vector. We shall call
it a composite control vector to underline that it combines elements of a very different nature
and weight. We found that with such control vector the conventional variational DA method
often fails. This usually happens because some of the control vector iterates constructed during
the minimization process may initialize a hydraulic scenario which results in ’unsupported’
hydraulic state (locally dry bed, for example). In this case the model execution stops with a
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critical error message and the iterative process must be somehow re-launched. In this paper
we suggest a novel version of the variational DA approach which allows this difficulty to be
alleviated in the framework of unconstrained minimization.

A major technical difficulty with variational DA is that it requires the adjoint model to
be constructed. The advantage of EnKF is that the adjoint concept is not involved, which
partly explains its more frequent use within the engineering community. The EnKF may also
require far less computational time for producing a single current state estimate. Yet, there are
good reasons for considering variational approach as a DA method useful with the 1D-network
hydraulic model. Firstly, this model can certainly be a high-dimensional model. Secondly,
the flow behavior in the river or canal network is largely defined by the boundary conditions
and source terms, i.e. the problem of estimating the time-dependent controls could be of a
primary interest here. For this type of problems variational approach is superior to EnKF in
terms of the estimation quality, though a comparable quality can possibly be achieved by using
the Ensemble Kalman Smoother (EnKS, see [16, 5]). Thirdly, variational DA is a convenient
framework for analysis of identifiability, which is a key issue for problems with a composite
control vector [36, 6]. This issue can be investigated via the eigenvalue decomposition of the
Hessian, see e.g. [42, 19]. In this paper we report on a successful construction of the adjoint of
SIC2, which is, to the best of our knowledge, the first consistent adjoint of the full complexity
1D-network hydraulic model of an commercial status in existence. This result has been achieved
by applying the automatic differentiation (AD) engine TAPENADE [21] to a slightly modified
version of the existing SIC2 software.

References on data assimilation with the full Saint-Venant network models are scarce. There
are only a few papers reporting on the use of EnKF in this context [14, 44], whereas this method
is used more frequently with different simplified hydraulic models, see e.g. [13], [3] or [35], or
with 2D models [41]. Concerning variational DA, there are examples for idealized setups (single
reach configuration) [39, 2, 12], or for simplified (linearized) Saint-Venant model [45]. The only
paper reporting on the variational control for the full Saint-Venant network model we can refer
is [11]. The adjoint model in the latter reference is derived analytically, then implemented
numerically (’optimize-then-discretize’ approach, which yields an ’inconsistent’ adjoint). How-
ever, none of the full Saint-Venant commercial models listed at the beginning of this section has
the variational DA option. This is largely due to the difficulty of constructing adjoint models.
One reason is a complexity of the 1D-network models, which is higher than the one of 2D
models. An example of the 2D shallow water model for which the adjoint has been generated
by means of AD is DASSFLOW, see http://www.math.univ-toulouse.fr/DassFlow. Another
difficulty is related to the implicit (or semi-implicit) time discretization schemes commonly
used in Saint-Venant solvers.

In this paper two different DA problems with SIC2 have been considered: the offtake esti-
mation problem under uncertainty in the cross-device properties and the discharge estimation
problem under uncertainty in parameters defining the canal bathymetry and friction. The
observations include dense-in-time surface elevation measurements. The problems have been
solved by the novel version of the variational DA approach, whereas the conventional approach
has failed in most cases considered. Numerical tests have been designed to understand the
identifiability issue.

The paper is organized as follows. A brief mathematical statement of the 1D-network
model is given in Sect.2, and the DA problem statement in Sect.3. Distinctive features of
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the DA problem under consideration and the solution method which takes into account these
features are presented in Sect.4. The most important implementation details are presented in
Sect.5 and the numerical results for two test problems in Sect.6. The main results of the paper
are summarized in the Conclusions. Appendix I provides a brief description of the SIC2 model
and Appendix II contains the list of notations.

2 Model statement

The hydraulic network is represented by a set of closed-line segments or ’reaches’ connected at
nodes Nk, see e.g. Fig.1. In reality ’reach’ is a continuous extent water, especially a stretch
of a river or a canal between two bends, offtakes/tributaries or structures (weirs, locks, mills).
The spatial discretization along reach number i produces a set of co-ordinates (also called
longitudinal abscissas) xi,j, j = 1, · · · , K̄i, where K̄i is the set dimension. Each xi,j has the
associated global index k and its own position vector ~rk = (x′

k, y
′
k, z

′
k) in the global co-ordinate

system (bathymetry). Given ~nk is a pre-dominant flow direction at xi,j , a hydraulic cross-
section Si,j is defined by a set of points on a plane ~nk · (~r − ~rk) = 0 describing the bed profile,
which are evaluated from a design sketch or from a topographical survey. For each section
this data allows the wetted area A(Z, pg), the wetted perimeter P (Z, pg), the hydraulic radius
R(Z, pg) and the top width L(Z, pg) to be computed for any given water level line Z. Here pg
are geometric parameters of the corresponding computational cross-section. For a given reach,
pg are functions of the longitudinal abscissa.

For a ’regular’ section, the shallow water flow in the longitudinal direction x is described
by the Saint-Venant equations:

∂A

∂t
+

∂Q

∂x
= QL, (2.1)

∂Q

∂t
+

∂Q2/A

∂x
+ gA

∂Z

∂x
= −gASf + CLQLv, (2.2)

t ∈ (0, T ),

where Q(x, t) is the discharge, Z(x, t) is the water level, A(Z(x, t), pg(x)) is the wetted area,
v(x, t) = Q/A is the mean velocity, Sf is the friction term dependent on the Strickler coefficient
Cs(x) and on the wetted perimeter P (Z, pg), QL(x, t) is the lateral discharge and CL(x) is the
lateral discharge coefficient. The initial condition for equations (2.1)-(2.2) is

Z(x, 0) = Z0(x), Q(x, 0) = Q0(x). (2.3)

For an internal node we consider the mass balance equation alongside the condition of local
elevations or ’heads’ (h = v2/2g + Z) equality, for all connected reaches. On the network
example presented in Fig.1 these equations are

q1 = −Q|S1,k1
−Q|S2,k2

+Q|S3,1
, (2.4)

Z|S1,k1
= Z|S3,1

, Z|S2,k2
= Z|S3,1

, (2.5)

or
h|S1,k1

= hS3,1
, h|S2,k2

= hS3,1
, (2.6)
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Figure 1: River or canal network conceptual scheme

where q1 is the offtake or tributary at node N3.
Boundary conditions are defined at boundary nodes. For the upstream nodes we usually

use the inflow discharge Q(t) or elevation Z(t), for example 2:

Q(t)|S1,1
= Q1(t) ∨ Z(t)|S1,1

= Z1(t), (2.7)

whereas for the downstream nodes it is the elevation Z(t) or the rating curve Q = f(Z, prc),
where prc are the rating curve parameters, for example:

Z(t)|S3,k3
= Z3(t), ∨ Q|S3,k3

= f(Z|S3,k3
, prc). (2.8)

We also consider a singular section (which consists of the collocated upstream and downstream
sections), where the Saint-Venant equations are no longer valid and are replaced by other
equations. It is mainly used to represent artificial structures (cross-devices), such as gates,
weirs, bridges etc., but it can also be used to describe an abruptly changing natural bathymetry.
For a singular section we consider the mass balance equation alongside the equation relating
the elevations (or ’heads’), for example:

Q|S3,i
−Q|S3,i+1

= 0 (2.9)

Q|S3,i
= F(Z|S3,i

, Z|S3,i+1
, Cd|S3,i

), (2.10)

where Cd is the cross-device discharge coefficient or the expansion head loss coefficient.
Let U be a space of the input variables of the model (2.1)-(2.10). Let us also assume that

the specified network configuration includes Kr reaches, Kbn boundary nodes, Ks sections, Kss

singular sections and Kin internal nodes where the part of the network can be cut off and
substituted by sink/source terms (offtakes/tributaries). Then, the full control vector U ∈ U
looks as follows:

U = (Z0, Q0, Z, Q, q, QL, Cs, Ck, Cd, prc, pg)
T , (2.11)

2In the text below ∨ stands for logical ’or’ and ∧ for logical ’and’
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where by (Z0, Q0) we mean a set of initial conditions for all reaches, i.e.

(Z0, Q0) = {(Z0,k(x), Q0,k(x)), k = 1, · · ·Kr},

by (Z,Q) - a set of inflow discharges or elevations at all boundary nodes, i.e.

(Z,Q) = {(Zk(t) ∨Qk(t)), k = 1, · · ·Kbn}

by q - a set of all offtakes/tributaries, i.e. q = {qk(t), k = 1, · · ·Kin}, by pg - a set of
geometric parameters for all sections, i.e. pg = {pg,k, k = 1, · · ·Ks}, and, similarly, for the
remaining variables in (2.11), each having its own dimension. For given U , by solving the
model equations (2.1)-(2.10) simultaneously for all network reaches, we obtain the flow fields
(Z,Q) = {(Zk(x, t), Qk(x, t)), i = 1, · · ·Kr}, (Z,Q) ∈ X , where X is the state space.

Let us note that the general description presented above does not cover all the variety of
hydraulic options implemented in SIC2, but it is sufficient to demonstrate our results. The
basic features of this model are presented in Appendix I.

3 Data assimilation problem statement

For modelling the behavior of a hydraulic network the ’true’ input vector (2.11) must be spec-
ified. In reality, some components of U contain uncertainties ξb. Thus, instead of U we use its
best available guess

Ub = U + ξb, (3.12)

which is known as a ’background’ in variational DA or as a ’prior’ in statistics. Because of the
presence of ξb, the flow field (Z,Q) evaluated on Ub also contains an error.

Let us assume that we observe the state variables in the form

Y = C(Z,Q) ∈ Y , (3.13)

where Y is the observation space, and C : X → Y is the observation operator. For example,
the water surface elevation measured by the gauge stations, located at the specified sections of
the specified reaches, may be available. We shall denote by Io the array defining the indices
of these reaches and sections. Usually, such measurements are recorded with sufficiently small
time step, so we can treat them as nearly continuous in time. Then the observation operator
is as follows:

Y = C(Z,Q) = {Z(t)|Si,j
, (i, j) ∈ Io}.

Now we can define the control-to-observation map

R(U) = Y (3.14)

where R : U → Y is a nonlinear operator. The actual observations usually contain noise
(observation uncertainty), i.e.

Y ∗ = Y + ξo. (3.15)

The aim of data assimilation is to use observations Y ∗ to improve the prior Ub and, subsequently,
the model solution for (Z,Q).
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In the Bayesian framework the posterior probability density of U conditioned on observations
Y ∗ is given by the Bayes formula

p(U |Y ∗) =
p(Y ∗|U)p(U)

p(Y ∗)
. (3.16)

Looking for the mode of the posterior density p(U |Y ∗), i.e. maximizing p(U |Y ∗), is the essence
of variational DA. Under a Gaussian assumption on the prior and observation uncertainties, i.e.
ξb ∼ N(0,B), ξo ∼ N(0, O), where B is the background error covariance and O - the observation
error covariance, maximizing p(U |Y ∗) is equivalent to minimizing the cost function

J(U) =
1

2
‖O−1/2(R(U)− Y ∗)‖2 +

1

2
‖B−1/2(U − Ub)‖

2.

The covariance B is block-diagonal, with each block corresponding to a component of U in
(2.11). A method for generating those blocks is discussed in detail in Sect.5.4. For a given
sensor the observation error is considered as an uncorrelated time series, thus the covariance O
is diagonal with elements σ2

O(t).
The above expression is the conventional 4D-Var cost function as it is understood in mete-

orology and oceanography [7, 25]. Let us note that in these applications the initial condition
is normally used as control. This is perfectly justifiable given the huge inertia of atmospheric
and oceanic flows. Since the initial condition is a state of the system, asymptotic solutions of
the model equations can be used for defining B, see [9]. In our case the inertia of the system
is relatively small, so the influence of the initial condition on the flow is limited. Instead, the
flow is governed by the boundary conditions and source terms. For these types of controls it
is only possible to specify a simplified B using, for example, hydrological modelling. The same
is true for the spatially distributed model coefficients pg or Cs. Here one should consider the
expert opinion on the accuracy of topological surveying. Since defining sufficiently accurate B
seems unreliable we consider the cost function in the form

J(U, α) =
1

2
‖O−1/2(R(U)− Y ∗)‖2 +

α

2
‖B−1/2(U − Ub)‖

2. (3.17)

where α > 0 is a parameter responsible for the relative weight of the residual and penalty
terms inside J(U, α), to be determined from an auxiliary condition. The above formulation is
similar to the one used in the Tikhonov regularization (TR) method [43], where α is called the
’regularization’ parameter 3.

In practice, the full input vector U is not used as a control vector in data assimilation. First,
the components of U which do not contain any uncertainty must be excluded. The remaining
components should be ranked by their influence on the model solution and the most influential
ones may be considered as controls. Since we deal with incomplete observations, the reason for
reducing the control vector dimension (degrees of freedom) is quite obvious. Thus, considering
U as a set with elements {Ui}, we define V ⊂ U , which consists of a few components of
interest, and U0, the complement of V in U . The simplest approach is to ignore the remaining
uncertainty-bearing components in U0 by fixing their values at the corresponding Ub. A more

3TR is the most commonly used method of regularization of ill-posed inverse problems, derived in the
deterministic framework
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sophisticated approach is to consider these components as ’nuisance’ parameters, which implies
a different expression for the posterior density (3.16) and, under the Gaussian assumption, a
modified cost function.

Taking into account the above considerations we consider the data assimilation problem in
the form

V̂α = argmin
V

J(V, α), (3.18)

J(V, α) =
1

2
‖O−1/2(R(V, U0)− Y ∗)‖2 +

α

2
‖B−1/2(V − Vb)‖

2, V ⊂ U, U0 = U \ V, (3.19)

where Vb ⊂ Ub and B is a sub-matrix of B relevant to V . The problem (3.18)-(3.19) can be
solved by any gradient-based minimization algorithm, for example by a quasi-Newton method
in the form:

Vi+1 = Vi + βiH
−1
i J ′

V (Vi, α), V0 = Vb, (3.20)

where H−1
i is an inverse Hessian approximation, βi is the descent step and J ′

V (Vi, α) is the cost
function gradient at point Vi at the ith-iteration.

For the operator R(U) we define the tangent linear operator R′(U) (Gateaux derivative)
and its adjoint (R′(U))∗ [32] as follows:

R′(U)w = lim
t→0

R(U + tw)−R(U)

t
, (3.21)

(w, (R′(U))∗w∗)
U
= (R′(U)w,w∗)

Y
, w ∈ U , w∗ ∈ Y . (3.22)

Given the above operator definitions, the full gradient of J(u, α) in (3.17) can be expressed in
the form:

J ′
U(U, α) = (R′(U))∗O−1(R(U)− Y ∗) + αB−1(U − Ub), (3.23)

whereas the sought partial gradient is simply a subset of the full gradient

J ′
V (V, α) ⊂ J ′

U(U, α).

Operator R(U) is implemented as a FORTRAN subroutine involving the SIC2 software. Sub-
routines for the tangent linear R′(U) and adjoint (R′(U))∗ operators are produced by the
automatic differentiation engine TAPENADE [21]. Analytic expressions for the tangent linear
and adjoint operators for the Saint-Venant equations can also be found in the literature, e.g.
[2, 39, 12, 11].

Let us mention that in solving estimation problems involving the ’composite’ control vector,
i.e. a vector which includes both driving conditions and model parameters, the quasi-Newton
method should be preferred to the Gauss-Newton method because it allows the intrinsic nonlin-
earity of such problems to be better managed. This makes sense unless computing the gradient
at each iteration is too costly.

4 Solving the DA problem: special features

The DA problem presented in Section 3 has a few special features making it different from
the classical DA problems in weather and ocean forecasting. One difference has been already
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mentioned: it is a boundary and source term control problem, rather than an initial value control
problem. For these controls the background covariance is constructed on a more subjective
basis. In order to attenuate the impact of the subjective judgment the regularization parameter
α is introduced, thus allowing a variable influence of the penalty term. Another important
feature is the ’composite’ nature of the control vector, which includes both the driving conditions
and parameters defining basic properties of the system, such as bathymetry, friction, etc.

In order to use the gradient based unconstrained minimization of the cost function (3.19)
we assume that the mapping R(V, U0) exists and is continuous everywhere in a vicinity of the
reference (true) value Vref , i.e. the domain D(R) ⊆ U is dense around the point (Vref ∪ U0).
Then we believe that if (Vb ∪ U0) ∈ D(R), then (Vi ∪ U0) ∈ D(R), ∀i. Here we intuitively
assume a ’regular convergence’ property, which means that if the iterative process is converging
in terms of the residual function, i.e.

‖O−1/2(R(Vi+1, U
0)− Y ∗)‖ ≤ ‖O−1/2(R(Vi, U

0)− Y ∗)‖, (4.24)

then it is also converging in terms of the distance

‖Vi+1 − Vref‖ ≤ ‖Vi − Vref‖. (4.25)

In the numerical experiments conducted this convergence pattern has indeed been observed
when controlling the driving conditions only, for example the inflow discharge Q(t), or param-
eters only, for example, the Strickler coefficient Cs(x).

The situation changes dramatically when a composite control vector is considered, for exam-
ple, when the inflow discharge Q(t) and the bathymetry defining parameters pg(x) are simulta-
neously sought. In this case the convergence pattern looks far more erratic. That is, reduction
of the residual norm does not necessarily imply reduction in the estimation error norm. It is,
therefore, possible that during minimization some combinations of controls may result into the
hydraulic conditions which cannot be supported by the model, such as dry bed or supercritical
flow. Formally, it means that (Vi ∪ U0) /∈ D(R).

The reason for such behavior can be explained as follows. The control vector is weakly
constrained by the penalty term, but the constraints start to take effect only when the relative
weight of the two terms in the cost function becomes comparable. In the course of iterations
the residual term value is decreasing and the penalty term value is increasing starting from
zero. Thus, at initial iterations the residual term largely dominates the gradient and the
control update remains essentially unconstrained. At the same time, introducing inequality
constraints into the DA formulation looks highly undesirable.

In order to overcome this difficulty we intend to regularize the iterative process itself. The
idea comes from the iterative regularization (IT) method [1, 23] 4, where iterating in a Hilbert
space with a stronger than L2-norm is suggested. In our setup this can be achieved by using
the change of variables

V = Vb +B1/2W. (4.26)

Then, the DA problem (3.18)-(3.19) can be written as follows:

Ŵα = argmin
W

J(W,α), (4.27)

4IR is the method of regularization of ill-posed inverse problems which relies on intrinsic properties of iterative
minimization algorithms defined in Hilbert spaces, such that the iteration number serves as the regularization
parameter
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J(W,α) =
1

2
‖O−1/2(R(Vb +B1/2W,U0)− Y ∗)‖2 +

α

2
‖W‖2. (4.28)

Again, we are looking for W by a quasi-Newton minimization algorithm

Wi+1 = Wi + βiH̃
−1
i J ′

W (Wi, α), W0 = 0. (4.29)

It is obvious that, if W belongs to the Euclidean space with L2-norm, V belongs to the space
with a stronger norm defined by the covariance B or, in different words, V always belongs to
a compact set restricted by B, which is the main regularizing condition [43].

Let us note that the DA cost function in the form similar to (4.27)-(4.28) is sometimes used
in variational DA (first introduced probably in [10]), however for a totally different reason: for
high-dimensional problems it could sometimes be easier (or better substantiated) to define the
operator-vector product B1/2v rather than B−1/2v. For example, it can be modelled by solving
the heat conduction equation [33], or by using a recursive filter [28].

It is easy to show that the expression for the gradient of (4.28) becomes

J ′
W (W,α) = (B1/2)∗(R′(Vb +B1/2W,U0))∗O−1(R(Vb +B1/2W,U0)− Y ∗) + αW

= (B1/2)∗J ′
V (V, α).

Taking into account the above relationship, the regularized quasi-Newton iterative process for
solving (3.18)-(3.19) takes the form:

Wi+1 = Wi + βiH̃
−1
i (B1/2)∗J ′

V (Vi, α), W0 = 0, V0 = Vb,
Vi+1 = Vb +B1/2Wi+1,
i = 0, . . .

(4.30)

After the iterations have converged, the solutions by (3.20) and (4.30) coincide because both
satisfy the condition J ′

V (Vi, α) = 0. However, all iterates Vi = Vb + B1/2Wi from the process
(4.30) belong to a compact set restricted by B. Subsequently, the above iterative sequence
exhibits a better ’regularity’ in the sense (4.24)-(4.25). Let us also mention that, from the
point of view of the IR concept, some other options to regularize the iterative process can be
considered.

Optimal choice of the regularization parameter α is the key issue in the Tikhonov regulariza-
tion method. For example, in the deterministic framework the residual (discrepancy) principle
is used [34]. Let us introduce the residual function r(W ) = R(Vb+B1/2W,U0)−Y ∗. According
to the residual principle, the optimal value of α is the solution to the equation

‖r(Ŵα)‖ = ∆, (4.31)

where ∆ is an estimation of the observation uncertainty norm, called the residual threshold.
In the probabilistic framework we assume that ξo ∼ N(0, O). Therefore, instead of (4.31), one
may consider a statistical hypothesis

r(Ŵα) ∼ N(0, O),

which can be accepted with confidence level γ if

rT (Ŵα)O
−1r(Ŵα) ∼ χ2(m, γ), (4.32)
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where m is the observation space dimension. For large m the mode of χ2(m, γ) is approaching
m.

The need for solving the problem (4.27)-(4.28) alongside the conditions (4.31) or (4.32)
noticeably complicates the solution algorithm and may increase the computational cost. This
difficulty can be avoided by using the iterative regularization (IR) method. This method is
founded on special properties of some gradient-based algorithms, which is explained below. The
solution to the problem (4.27)-(4.28) depends on α, therefore the residual norm and the solution
norm both depend on α. Excluding the parameter one can build a plot {‖r(Ŵα)‖, ‖Ŵα‖}α∈(0,∞),
which is known as the L-curve, see [20]. For linear R this is a monotonic decreasing function.
In the IR method the cost function in the problem (4.27)-(4.28) is considered without the
penalty term. If this modified problem is solved by an iterative method, we can obtain the
residual norm and the solution norm as functions of the iteration number i; subsequently a
plot {‖r(Wi)‖, ‖Wi‖}i=1,..., which is called the discrete L-curve, can be constructed. The main
postulate of the iterative regularization is that for certain family of iterative methods the
discrete L-curve is close to the continuous L-curve, at least for ‖r(Wi)‖ ≥ ∆. This means that,
if the iterations have been stopped upon satisfying the criterion

‖r(Wi)‖ = ∆, (4.33)

then the solution norm ‖Wi‖ ought to be close to ‖Ŵα‖ satisfying the condition (4.31). Similarly,
instead of (4.32) we can use

rT (Wi)O
−1r(Wi) ∼ χ2(m, γ). (4.34)

In our numerical implementation, for the IR method the gradient of the cost function (3.19) is
computed with α being fixed as an infinitesimal real constant.

5 Implementation details

5.1 Initial condition treatment

The initial condition (Z0, Q0) is a model state at t = 0. As such it must be a model solution
consistent with the parameters which define the fundamental properties of the model, such as
bathymetry, friction, rating curve parameters and cross-device coefficients, and also with the
previous values of time-dependent controls. Changing arbitrarily some of those parameters
while keeping the initial condition intact leads to severe shocks in the flow fields at the initial
time period. Furthermore, the difference between the observations and the model predictions
during the initial time period dominates the gradient. The corresponding updates being intro-
duced into the nonlinear system may lead to unsupported flow conditions. Even if the initial
condition is consistent with the other parameters at the start of the iterative process, indepen-
dent updates of time-dependent controls and parameters may lead to inconsistency again.

The way to deal with this issue is as follows. We notice that the influence of the initial state
on the flow is very limited in time, then it is dominated by the driving conditions (boundary
conditions and source terms). Therefore, we postulate that (Z0, Q0) is a steady state flow
solution consistent with the initial value of the time-dependent controls and time-independent
controls. This state is approached by performing a relaxation model run. By doing so we
stop considering (Z0, Q0) as an independent control, but it becomes a unique function of other
controls.
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5.2 Development of the adjoint model

The adjoint model is a code for computing the cost function J(U) and its gradient J ′
U(U).

It is generated by applying the automatic differentiation (AD) engine TAPENADE to the
code which computes the hydraulic state over the time period t = 0, . . . , T and, given the
data Ub, Y

∗, evaluates the cost function. The first step is, therefore, to create a subroutine
forward (Ψ, U, (Ub, Y

∗), J(U)), which calls transi - the main computational routine of SIC2.
Here Ψ is the complete input of SIC2, U is the control vector, (Ub, Y

∗) is the data to be
assimilated and J(U) is the cost function. The structure of this subroutine is presented in
Fig.2. The SIC2 model reads all inputs from data files before calling transi. Thus, the first
operation inside forward is mapping U into the variables involved in this call. At this stage the
penalty term is computed. Next, the relaxation is performed by running transi for a relatively
short period of time T ∗ with the value of time dependent controls being fixed at their initial
values, for example Q(t) = Q(0), etc. At this stage the residual term is not computed. Then,
the initial condition is equated to the final state from the relaxation run and transi is run again
for the full simulation period T . After (or during) the main run the residual term of J(U) is
computed.

Subroutine forward is specified as a ’head’ object for processing (differentiation) by TAPE-
NADE, mentioning U as an input and J(U) as an output. After processing we obtain subroutine
forward b (Ψ, U, U∗, (Ub, Y

∗), J(U), J∗(U)), where U∗ := J ′
U(U), plus the adjoint counterparts

to all subroutines involved with forward.
Despite a relatively simple basic concept, the practical implementation of the AD procedure

has been a challenging task, since the SIC2 code was not originally designed having the AD
option in view. For successful AD, the connections between the input and output variables
should be as transparent as possible. This is not always the case with older software, usually
created under severe memory restrictions. For example, all EQUIVALENCE operators have
been removed and the memory allocation correspondingly re-arranged. The logic of some
iterative procedures used in the solver has also been revised.

5.3 Spline approximation of time-dependent controls

The time-dependent controls, such as the inflow discharge Q(t), water elevation Z(t) at bound-
aries, offtakes/tributaries qi(t) and the lateral discharge QL(x, t) are approximated in time
by cubic splines. Thus, the control points for the chosen control variable can be arbitrarily
distributed in time. Given the values of control at these points the spline coefficients are con-
structed. The values of the control variable at time instants required for the model numerical
integration (usually at t = i × dt, where dt is the integration time step) are evaluated as the
corresponding spline values. This allows the number of control nodes to be significantly smaller
than the number of integration time steps, which is useful given that the simulation period
can be fairly long. Besides, the control nodes can be distributed more densely in the areas of
fast dynamics and more sparsely in the areas of slow dynamics. This approach can also be
considered as a preliminary regularization. The spline evaluation routine is a part of the block
referred to as ’conformity mapping’ in Fig.2 and, as such, is also subjected to the AD.
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Figure 2: Structure of subroutine forward.

5.4 Defining the covariance

The controls in U can be divided into three groups: time dependent controls, e.g. the inflow
discharge Q(t), spatially distributed controls, e.g. the Strickler coefficient Cs(x) or bed eleva-
tion z(x) ∈ pg, and lumped parameters, e.g. the cross-device discharge coefficients Cd. For
the lumped parameters we can only prescribe the variance, for the distributed controls the
covariance matrix must be specified.

Here we present a slightly modified version of the approach described in [19]. In solving ill-
posed inverse problems the solution is often considered to be a smooth function which belongs
to a Sobolev space of certain order, e.g. W 2

2 . Let f(x), x ∈ (a, b) be a one-dimensional function
of x and let us introduce two positive weight functions µ1(x), µ2(x). We define the norm of
f(x) in W 2

2 as follows:

‖f(x)‖2W 2
2
[a,b] =

∫ b

a

µ1(x)f
2(x) + µ1(x)

(

∂

∂x

(

µ2(x)
∂f(x)

∂x

))2

dx.

To evaluate this integral numerically we discretize f(x) using a set of uniformly distributed
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nodes {xi ∈ X̄, i = 1, . . . , m}, such that xi = (i− 1)∆x and substitute the integral by the sum

‖f(x)‖2W 2
2
[m] = ∆x

m
∑

i=1

µ1(xi)f
2(xi) + ∆x

m
∑

i=1

µ1(xi)

(

∂

∂x

(

µ2(x)
∂f(x)

∂x

))2 ∣
∣

∣

∣

x=xi

. (5.35)

Numerical implementation of the second term depends on the boundary conditions imposed on
f(x); in this paper we use the ’natural’ boundary conditions, i.e. f ′′(a) = f ′′(b) = 0.

In practice, we consider a discrete function f̄(x̄i), where {x̄i ∈ X̄, i = 1, . . . , n} are arbi-
trarily distributed nodes. Therefore, a mapping G : X̄ → X must be constructed. Since we
need the second derivative of f(x), the cubic spline approximation of f(xi) is sufficient. In this
case the mapping is nonlinear, i.e. G := G(f̄). The inverse of the covariance matrix B must
satisfy the following condition

‖B−1/2f̄‖L2[n] ≈ ‖G(f̄)‖W 2
2
[m]. (5.36)

Assuming that f̄ is reasonably close to the prior f̄b, the elements B−1
i,j can be obtained by the

following formula:

B−1
i,j ≈

∂2(‖G(f̄)‖2
W 2

2
[m]

)

∂f̄i∂f̄j

∣

∣

∣

∣

f̄=f̄b

.

The code for computing the elements B−1
i,j is obtained by applying automatic differentiation (in

the direct mode) twice to the subroutine evaluating ‖G(f̄)‖W 2
2
[m]. The matrix B−1 is symmetric

and narrow-banded. It can be easily factorized using Cholesky decomposition:

B−1 = B−1/2(B−1/2)T .

Given the factor B−1/2, the product v = B1/2w is defined via solving the equation B−1/2v = w.
Since B−1/2 is a triangular banded matrix, the solution procedure is simply a backward sweep.
In the covariance matrix obtained by this method the functions µ1(x) and µ2(x) define the local
variance and correlation radius, respectively. For any time-dependent control, the covariance is
generated for the full time domain. It is slightly more complicated for the spatially distributed
controls due to the presence of nodes and singular sections.

Let us denote by Ω1(f) and Ω2(f) the first and the second terms in (5.35), respectively.
Then, equation (5.36) can be written in the form

‖B−1/2f̄‖L2[n] ≈ Ω1(G(f̄)) + Ω2(G(f̄)). (5.37)

Here Ω1 is the normalized Euclidean norm and Ω2 is a measure of auto-correlations in f̄ . It is
reasonable to suggest that assimilating the observation noise may lead to ’decorrelation’, i.e.
to a sharp rise of Ω2 against Ω1. Thus, for monitoring the data assimilation process we shall
consider

ǫ(f̄) = Ω2(G(f̄))/Ω1(G(f̄)). (5.38)

For example, ǫ(V −Vb) can be used for comparing solutions obtained by different methods: for
an equal residual norm ‖r(V )‖ one should prefer the solution with the smallest ǫ(V − Vb).

The blocks of matrix B for different functions involved in the control vector are generated
using the method described above. While the method allows to vary the variance and correlation
levels along the abscissa x, in the numerical examples considered below these are uniform almost
everywhere (except near the boundaries). The correlation radius for the time dependent controls
has been chosen as 3h, and for the spatially distributed controls as 1km. The background mean
deviation values for different functions σB[·] are given in Sect. 6.1 and Sect. 6.2.
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5.5 Miscellaneous

a) Bathymetry. In Sect.2 the bathymetry is formally defined by geometric parameters pg,
entering the functions A(Z, pg) and P (Z, pg). Here we present a more detailed description. For
each section i, the elevation z(xi) of the lowest point of the cross-section shape with respect
to the reference horizontal level is given. The function z(x) is referred to as the bed elevation.
Other parameters describe the cross-section shape itself. The dilation coefficient b(xi) is in-
troduced to modify the cross-section shape by scaling its horizontal dimensions. Subsequently,
this affects the functions A(Z, pg) and P (Z, pg). For example, in the case of trapezoidal shape,
b(x) scales the trapezoid bases. The functions z(x) and b(x) are considered as the generalized
bathymetry controls.
b) Identical twin experiment. In this paper the identical twin experiment approach is
adopted: given a reference (’true’) value of the control vector Vref , for a chosen observation
scheme the model predictions at the specified points (in space and time) are considered as ’ex-
act’ observations; after being corrupted by noise these observations are considered as ’noisy’.
The task is to estimate the control vector using either ’exact’ or ’noisy’ data and to evaluate
the estimation error dV = V̂ − Vref .

In estimating boundary conditions involving dissipative models oscillatory solutions are
often obtained. The oscillations, however, may have a limited effect on the averaged system
behavior. Thus, in order to characterize the discharge estimation error, alongside

dQ(t) = Q̂(t)−Qref (t) (5.39)

we shall consider the spatially averaged discharge error

〈dQ(t)〉 =

(

1

Ks

Ks
∑

i=1

(Q̂(t)|Si
−Qref(t)|Si

)2

)1/2

. (5.40)

c) Minimization routine. For minimization the limited-memory Broyden-Fletcher-Goldfarb-
Shanno algorithm (LBFGS) [27] is used, with 7 secant pairs being retained. In all numerical
tests conducted within this project utilizing the unconstrained minimization has been proved
sufficient if applied in combination with the iterative regularization technique suggested in
Sect.4. The LBFGS software has been downloaded from:
http://users.iems.northwestern.edu/∼nocedal/lbfgs.html.
d) Tables. Some results of numerical tests are summarized in Tables 2-4. Firstly, this is the
convergence information: N - number of iterations required to obtain an estimate, ‖r(V0)‖

2 -
the residual norm at iteration zero, i.e. before data assimilation, ‖r(VN)‖

2 - the residual norm
at iteration N , i.e. after data assimilation. Similarly, the values of the gradient norm ‖J ′

V (V0)‖
2

and ‖J ′
V (VN)‖

2 are presented. Secondly, this is the decorrelation level in the estimate, expressed
by ǫ, see (5.38). The latter is important for monitoring and stopping the iterative process. Also,
Tab.3 provides δCd,k - the estimation error in the cross-device discharge coefficients.

15

Author-produced version of the article published in International Journal for Numerical Methods in Fluids, 2017, N°83(5), p.405-430.
The original publication is available at http://onlinelibrary.wiley.com
https://doi.org/10.1002/fld.4273 



Figure 3: Testing configurations.

6 Numerical results

6.1 Case A

In this case the offtake estimation problem under uncertainty in the cross-device properties
is considered. This problem is important in the framework of the irrigation canal network
management.

The computational scheme and the geometry of the canal are presented in Fig.3(A). It
consists of four 3km-long reaches. The canal is fed from a large upstream reservoir with a
constant water level Z = Z∗. This provides the inflow discharge of about 7m3/sec. At the inlet
and between reaches there are the cross-devices (of the ’undershot gate’ type) which regulate
the discharge and the water levels along the canal. The key parameter describing the cross-
device hydraulic properties is the discharge coefficient Cd, see http://sic.g-eau.net for details.
At the canal outlet the rating curve Q(Z, prc) is defined. The bed elevation at the canal inlet
is z = 1.36m, at the outlet - zero; the slope is, therefore, about 11cm/km. Water can be
taken in via the side canals or by pumps, which are implemented as offtakes qk(t) at nodes
5, 8, 11, 14. The offtake functions are approximated by cubic splines constructed on a set of
evenly distributed time points with the step dtc = 1h. The model integration time step is
dt = 5min.

The task is to estimate functions qi(t) using observations of water levels Z made by station-
ary sensors. These are located just in front and behind the gates, as presented in the scheme
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Figure 4: Offtake estimation problem, no uncertainty.

in Fig.3(A). Observations are collected during the time period T = 48h, the observation time
step is dto = 5min. The total number of observations is m = 4.609 · 103 (to be used in (4.32)).
The observation error mean deviation is σO = 0.01m, which is a usual level of the measurement
accuracy by a gauge station. The background error mean deviations are σB[qi] = 0.1m3/s and
σB[Cd] = 0.06.

In the first series of numerical tests the control vector V = (q1(t), ..., q4(t))
T is considered,

whereas no uncertainty in other model inputs is assumed. The goal here is to investigate the
performance of the variational DA algorithm in general, and to compare different regulariza-
tion techniques. The results are presented in Fig.4 and the relevant auxiliary information in
Tab.2.5 Any subplot in Fig.4 shows: the reference offtake function qk(t) in l.1, the initial guess
(background) qb,k(t) in l.2, the estimate qk(t) obtained by assimilating exact data without
regularization in l.3/A1 and the estimate qk(t) obtained by assimilating noisy data without
regularization in l.4/A2. In the last two cases the minimization process has been stopped
upon reaching the numerical convergence limit. As expected, the estimate that corresponds to
the ’exact’ data closely follows the reference function. Small oscillations at the corners of a
’box’-function are due to the chosen control time step (dtc = 1h) in the spline approximation.

5In order to refer to a line in the figure and to the corresponding column in the table simultaneously, we
shall combine the references. For example, l.3/A1 means: line 3 and table column A1.
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Figure 5: Offtake estimation problem. Left: Tikhonov versus iterative regularization. Right: uncer-
tainty in Cd ignored.
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Figure 6: Offtake estimation problem: uncertainty in Cd taken into account.
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However, the estimate that corresponds to the ’noisy’ data exhibits quite a strong oscillatory
behavior, in particular q4(t) in the lower-right corner of Fig.4. This is despite the fact that
the spline approximation of the offtakes is used with dtc ≫ dt, i.e. the solutions in l.4/A2
are implicitly regularized (’natural’ or step regularization). The estimates obtained by assim-
ilating noisy data using iterative regularization are presented in l.5/A4. Here, the effect of
regularization can be clearly seen.

In Fig.5(left) the estimates obtained using the Tikhonov regularization and the iterative
regularization methods are displayed. To compare the two methods the values of ǫ (5.38)
presented in Tab.2 for cases A3 and A4 must be compared. One can see that these values are
not very different. The same can be seen for the graphs presented in l.2 and l.3, which proves
a practical equivalency between the TR and IR in terms of the final result. However, IR has
the advantage of the regular convergence. This found to be critically important when dealing
with the composite control vector, see Sect.6.2.

In the second series of numerical tests we investigate the offtake estimation problem under
uncertainty in the cross-device discharge coefficients Cd. This type of uncertainty is quite
relevant to anthropogenic water distribution systems. Let us assume that the expected value
for the properly functioning gate is Cd = 0.82, but it could take smaller values, should the
gate malfunction or be jammed by an external object. For example, we consider the following
set of coefficients: Cd = 0.82, 0.76, 0.68, 0.82, i.e. there is a problem with the second and
third gates. However, when solving the DA problem, we assume that all gates are functioning
properly. The vector V = (q1(t), ..., q4(t))

T is estimated by assimilating ’exact’ data, without
regularization. The results are presented in Fig.5(right). Here we notice that the shape of the
’box’-function is recovered well, but the magnitudes are wrong.

The way to deal with the systematic uncertainties is to include the corresponding vari-
ables into the control vector V (and to remove them from U0). Thus, we consider now
V = (qk(t), Cd,l)

T , k, l = 1, . . . , 4. The results of data assimilation are presented in Fig.6
and the relevant auxiliary information in Tab.3. Any subplot of Fig.6 shows: the reference off-
take function qk(t) in l.1, and the offtake estimate obtained by assimilating exact data without
regularization in l.2/A5. We notice that the magnitude error which appears in Fig.5(right) has
been largely removed. The estimates of qk(t) obtained by assimilating noisy data using the IR
are presented in l.4/A7. For comparison, the corresponding estimates from the first test series
are presented in l.3/A6. The results for q1(t) and q2(t) look nearly identical, whereas for q3(t)
and q4(t) a relatively small bias can be noticed. This bias exists despite a very small estimation
error in Cd: the largest one is δCd ≈ 0.4%, see case A6. This fact points out a significant
sensitivity of the offtake estimates to the errors in Cd. We also note that the iterative process
has converged more slowly: it takes N = 63 against N = 22 iterations to reach about the same
level of the residual norm ‖r(VN)‖

2 = 4.610 · 103, i.e. extending the control vector slows down
the solution process. Overall, it can be concluded that for the given set of sensors and for the
chosen σO, resolving several time-dependent controls of a relatively small magnitude (about 3%
of the total discharge each) is feasible, even in the presence of uncertainty in Cd.

6.2 Case B

In this case the inflow discharge estimation problem under uncertainties in bathymetry and
friction parameters is considered. This is an important problem in studying and monitoring
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N Case noise uncertainties controls

1 B1.1 none none Q(t)
2 B1.2 σ = 10cm none Q(t)
3 B2.1 none z(x) Q(t)
4 B2.2 none z(x) Q(t), z(x)
5 B2.3 σ = 10cm z(x) Q(t), z(x)
6 B3.1 none Cs(x) Q(t)
7 B3.2 none Cs(x) Q(t), Cs(x)
8 B5.1 none b(x) Q(t)
9 B5.2 none b(x) Q(t), b(x)
10 B4.1 none z(x), Cs(x) Q(t)
11 B4.2 none z(x), Cs(x) Q(t), z(x), Cs(x)
12 B4.3 none z(x), Cs(x) Q(t), z(x)
13 B6.1 none z(x), Cs(x), b(x) Q(t)
14 B6.2 none z(x), Cs(x), b(x) Q(t), z(x), Cs(x), b(x)
15 B6.3 none z(x), Cs(x), b(x) Q(t), z(x)

Table 1: Subcases of case B.

the behavior of natural river systems. The canal computational scheme is presented in Fig.3(B).
The canal consists of four 5km-long reaches, each being represented by 26 sections. The distance
between sections is 200m. The inflow discharge Q(t) is specified at the canal inlet node, and
the rating curve Q(Z, prc) is given at the outlet node. As before, Q(t) is approximated by cubic
splines constructed on a set of evenly distributed time points with dtc = 1h. The reference values
of the spatially distributed parameters (as functions of the section number) are presented in
l.1, Fig.8, right subplots.

The task is to estimate the function Q(t) using observations of water levels Z. The ob-
servation points are located just in front and behind the internal nodes as presented in the
scheme in Fig.3(B). Observations are collected during the time period T = 24h, the observa-
tion time step is dto = 5min. The observation error mean deviation is σO = 0.1m, which is
an expected error level in measurements recorded by a remote sensing tool. The number of
observations is m = 2.302 · 103 (to be used in (4.32)). The background error mean deviations
are σB[Q(t)] = 2.5m3/s, σB[z(x)] = 0.15m, σB[Cs(x)] = 2.8m−1/3s−1 and σB[b(x)] = 0.1.

The list of subcases of case B is presented in Tab.1, graphical results - in Fig.7-9, and some
auxiliary information in Tab.4. It must be emphasized that we have never been successful in
solving the DA problems in the classical formulation (3.18)-(3.19) with the composite control
vector. Hence, in case B all problems have been solved using the modified formulation (4.27)-
(4.28). When assimilating the ’exact’ data, the minimization process has been stopped upon
reaching the numerical convergence limit, whereas for the ’noisy’ data - by the criterion (4.33)
(in Tab.4 this is referred as IR∗ and IR, correspondingly.

In the first two tests the inflow discharge is estimated assuming no uncertainty in other
parameters. The results are presented in Fig.7. The left subplot shows Qref in l.1, the initial
guess on Q(t) in l.2 and its estimated value based on the ’noisy’ data - in l.3. The one based on
the ’exact’ data replicates the reference value almost perfectly and it is not displayed. On the
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Figure 7: Inflow discharge estimation problem: left - estimate; right - estimation errors.

right subplot the estimation errors 〈dQ(t)〉 and dQ(t) are presented in l.1 and l.2. Assessing
these results one may conclude that the inflow discharge has been estimated fairly well (less
than 7% relative error for dQ(t) and 2.5% for 〈dQ(t)〉).

The inflow discharge is estimated under uncertainty in one spatially distributed function
(z(x) or Cs(x) or b(x)) in tests n.3 − 9. The uncertainty is ignored in cases B2.1, B3.1 and
B5.1, but it has been taken into account by including the corresponding function into the
control vector in cases B2.2, B3.2 and B5.2. The results are presented in Fig.8.

Let us consider the upper subplots in Fig.8, for example. Here, the inflow discharge is
estimated using an erroneous guess (right subplot, l.2) on the actual bed elevation z(x) (right
subplot, l.1). While ignoring the uncertainty, one gets the estimation error presented in l.1 and
l.2, left subplot. These errors are largely removed if the uncertainty is taken into account, see
l.1′, 2′. The corresponding estimate of z(x) is shown in l.3, right subplot. One can see that
z(x) is well estimated. The results relevant to the Strickler coefficient Cs(x) and to the dilation
coefficient b(x) are presented in the mid and lower subplots, respectively. The comments made
previously on cases involving z(x) are equally valid for Cs(x) and b(x). Assessing these results
one may conclude that the composite control vector, which consists of one time-dependent
control and one spatially distributed control, can be successfully estimated.

Let us mention that the above results have been obtained using the ’exact’ data. It has
been noticed that the observation noise (at least uncorrelated) is largely absorbed into the time-
dependent control estimates, whereas it has little effect on the spatially distributed or lumped
control estimates. To illustrate this statement we consider case B2.3, which is equivalent to
case B2.2, but the ’noisy’ data has been assimilated. The corresponding errors 〈dQ(t)〉 and
dQ(t) are presented in l.1′ and l.2′ in Fig.7, right subplot. One can notice that these errors look
very similar to the estimation errors being encountered in case B1.2, i.e. without considering
uncertainty. At the same time, the estimate of z(x) in case B2.3 can hardly be distinguished
from the one in case B2.2. Therefore, the results in Fig.8 can be extrapolated to the case of
’noisy’ data: the errors 〈dQ(t)〉 and dQ(t) should contain additional components similar to
those presented in Fig.7, right subplot.

The inflow discharge is estimated under uncertainty in more than one spatially distributed
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Figure 8: Inflow discharge estimation problem under uncertainty in one spatially distributed function:
upper - z(x), mid - Cs(x), lower - b(x).
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Figure 9: Inflow discharge estimation problem under uncertainty in more than one spatially dis-
tributed function.

functions in tests 10− 15: z(x) and Cs(x) in cases B4.1-B4.3 and z(x), b(x) and Cs(x) in cases
B6.1-B6.3. The testing principle is the same as before: first, the uncertainty is ignored (cases
B4.1 and B6.1), then the uncertainty is taken into account by including the corresponding
variables into the control vector (cases B4.2 and B6.2). The results are presented in Fig.9. The
upper subplots show the errors 〈dQ(t)〉 and dQ(t). As before, l.1 and l.2 show the estimation
error when the uncertainty is ignored, and l.1′ and l.2′ - when the uncertainty is taken into
account. The lower/left subplot shows the graphs related to z(x), and the lower/right subplot -
those related to Cs(x). The estimate of b(x) in case B6.2 is presented in l.4 in Fig.8(lower/right).

We notice that taking uncertainty into account allows the errors 〈dQ(t)〉 and dQ(t) to
be reduced significantly, though not as significantly as in tests n.3 − 9. At the same time
the improvement over the prior in z(x), Cs(x) and b(x) is far less evident. Assessing these
results one may conclude that the time-dependent control can be well resolved against spatially
distributed controls, however it may be difficult to resolve simultaneously different spatially
distributed controls, for example, z(x) and Cs(x). This may depend, of course, on the flow
dynamics and on the observations available.

Let us also comment on tests n.12 (case B4.3) and n.15 (case B6.3). The motivation to
perform these tests is as follows. We assume that the estimate of Q(t) is the main objective
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of data assimilation, whereas all other functions are included into the control vector just to
mitigate the influence of the associated uncertainties on Q(t). Therefore, one may try to deal
with all parameter uncertainties by introducing a single spatially-dependent model error. For
example, along with Q(t) only the ’effective’ value of z(x) can be sought. Some results on
tests n.12 and n.15 are presented in Tab.4. Let us consider case B4.3. Here, the achieved
value of the residual norm is 1.080 · 102. This is not too different from the corresponding value
in case B4.2, which is 0.640 · 102, given that the residual threshold value is ∆ = 2.302 · 103.
While the estimation errors 〈dQ(t)〉 and dQ(t) have been only slightly larger than in case B4.2,
the solution process has required N = 151 iterations against N = 61 in case B4.2. Similar
results have been obtained in case B6.3. Thus, in terms of accuracy the ’effective bathymetry’
approach gives comparable results, however more iterations may be required.

Conclusions

1. A novel version of the variational DA method which is suitable for solving estimation-
under-uncertainty problems is suggested. The method includes several components described
in Sections 4, 5.1 and 5.4. The idea of regularizing iterative process (rather than the optimal
solution) is acquired from the IR concept. An approach utilized to implement this idea (change
of variables) leads us to the iterative process (4.30). The key property of this iterative process
is its regular convergence, which helps (albeit not guaranties) keeping the iterates within the
domain where the model solution exists. Using the suggested iterative process the solution has
been successfully obtained for all subcases of test case ’B’, for example. This has not been
achieved while using the conventional iterative process 3.20.

The method can be used with 2D and 3D models if the operator-vector product B1/2v (or
Bv) is available. However, using the quasi-Newton method with the 3D models may not be
feasible because of computational limitations.
2. Automatic differentiation engine TAPENADE has been successfully applied to the SIC2

model to generate its tangent linear and adjoint models. While SIC2 was not originally de-
signed for this type of processing, only a few minor changes to the original code have been
introduced. The adjoint model has been extensively tested in different configurations (beyond
those presented in this paper) to check the gradient. It must be acknowledged that TAPE-
NADE has greatly evolved since one of the authors used it for the first time in 2005 [18], and
has become a powerful tool for processing the progressively complex models, such as SIC2 or
the full physics ocean model ORCA [24]. It is hardly a secret that difficulty with constructing
the adjoint model often prevents researches and practitioners from using the variational DA
method (or any other gradient based optimization). These examples should facilitate applica-
tion of this method in relevant circumstances.
3. Several data assimilation problems have been tried within the identical twin experiment
framework. Attention has mainly been paid to inflow discharge and offtake estimation prob-
lems under uncertainty in basic model parameters. Having the minimization problem solved
to a certain level of accuracy does not necessarily imply that all components of the composite
control vector are properly estimated. Due to the problem’s nonlinearity, there may exist many
local minima in which the minimization process is likely to be trapped. The most difficult case
is when the difference between the estimates at these (stationary) points is essential, while the
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difference between the corresponding cost function values remains negligible as compared to
the observation noise.

The numerical results show that, having no uncertainty in model parameters, one can well
estimate the inflow discharge or resolve several offtakes or tributaries. Under uncertainty,
one can successfully resolve the composite control which includes time-dependent controls and
lumped parameters (case A), or one time-dependent control and one spatially distributed con-
trol (case B). However, it is difficult to resolve several spatially distributed controls, if more
than one have been included into the control vector (e.g. bed elevation and Strickler coeffi-
cient) alongside the time-dependent control. The affirmative result is that even in the latter
case the time-dependent control itself (which is often the main object of interest) is estimated
sufficiently well.
4. The identifiability issue has to be investigated in a systematic way, rather than empirically
by considering the estimation error for a set of test cases. This can be achieved by analyzing the
eigenvalues of the Hessian of an auxiliary control problem, see e.g. [19], which is an immediate
future task. Let us note that such analysis is possible thanks to availability of the tangent
linear and adjoint counterparts of SIC2. Another nearest methodological task is to account for
’stochastic’ uncertainty components using the ’nuisance’ parameter concept.
5. It has been mentioned that development of methodology and software for discharge estima-
tion under uncertainty using SIC2 is partly motivated by the future SWOT satellite mission.
This mission is going to provide new types of data, namely, water surface width and slope, which
requires an appropriate observation operator to be defined. Another feature of the SWOT-type
data is its sparse-in-time, but dense-in-space nature. It is interesting to investigate how this
relatively crude data interacts with dense-in-time, but sparse-in-space accurate in-situ data.
We are also working on application of the developed tools to Garonne river benchmark [38].
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A

ppendix 1: Short description of the SIC2 model SIC2 is a hydrodynamic model that has been
developed at IRSTEA (CEMAGREF) for more than 30 years. It is an industrial software dis-
tributed to different type of users, including consultant companies, irrigation canal managers,
engineering schools and universities all over the world (France, Spain, Italy, Portugal, Nether-
lands, England, Germany, Morocco, Tunisia, Egypt, Senegal, USA, Mexico, Pakistan, Iraq, Sri
Lanka, Vietnam, China, etc). It has many innovative features, that make it the leader among
this type of software, for some specific applications including irrigation canal design, irrigation
canal manual or automatic control, and data assimilation.

The basic features of the SIC2 model are as follows:
a) the model is based on the full Saint-Venant 1D non-linear partial derivative equations [4];
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b) the model is based on the semi-implicit Preissmann scheme [37];
c) two-step solution approach is used: the boundary conditions for the reaches are computed
first, then the water profiles in the reaches are recovered. The second step can be potentially
implemented in a parallel setting;
d) in the version of SIC2 used, only subcritical flows are allowed in the unsteady mode, but
local critical and supercritical flows can be managed within the cross-devices 6;
e) the canal can be composed of a minor, medium (with a different Strickler coefficient) and
major bed (can be used as a storage area during the canal overflow events) and ponds at nodes.
The minor - medium bed interactions are modelled using the Debord formula, validated on
large laboratory experiments, giving better results than the more classical Divided Channel
Method [17];
f) the model allows the pressurized flow conditions using the Preissmann slot approach;
g) the model has two separate modules: one calculating real steady flow solutions, even in
branched and looped networks, without a priori knowledge of flow repartition, and one calcu-
lating unsteady flow solutions on the same type of networks. The steady flow module is able to
manage any well posed boundary conditions, such as water levels, discharges and rating curves,
at either upstream, downstream or intermediate boundary conditions.

One original and unique feature of SIC2 is to be able to describe any operational rule or
algorithm either of feedforward or feedback type, moving any dynamical cross or lateral device
(gate, weir, pump, etc) using any measurement over the hydraulic system. This allows to
design, test and optimize management rules on irrigation canal, or on rivers having dynamical
devices (dams, hydroelectrical power plants, moving weirs, etc). Some predefined algorithms are
already available into a library (ex: PID), even some of them with auto-tuning procedures (ex:
ATV). More advanced algorithms can be implemented using several programming languages
(ex: MatLab, Scilab, Fortran, WDLangage) taking advantage of an embedded interface of
these languages into SIC2. Using this feature some very advanced MIMO (Multi Input, Multi
Output) automatic controllers have been tested such as LQG, ℓ1, H∞ [29, 30].

Another original and unique feature of SIC2 is its capability to model complex hydraulic
structures that are encountered on irrigation canals, such as hydrodynamic gates (AMIL, AVIS,
AVIO, Mixte gates). Also, the modelling of more classical devices such as gates and weirs are
modelled in such a way that it allows all possible flow conditions and all continuous transitions
between these conditions.

SIC2 has been used to design and test different Data Assimilation algorithms such as Kalman
Filter, Monte Carlo particle filters, on both test cases or real systems (Rhône River) [22].

For a detailed description of the model see [4, 31] and the User’s Manual at the website:
http://sic.g-eau.net.

A

ppendix 2: List of notations a) Latin
A(Z, pg) - wetted area
ATV - Auto-Tuned Variation method to tune a PID controller

6In the recent versions of SIC2 the supercritical flow regime is supported in both steady and unsteady flow
calculation, implementing ideas developed in [40]
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B - background covariance matrix of U
B - background covariance matrix of V (sub-matrix of B)
b(x) - dilation coefficient, scales the cross-section profile (part of pg vector)
C - observation operator
Cd - cross-device discharge coefficient
CL(x) - lateral discharge coefficient
Cs(x) - Strickler coefficient
dQ(t) - inflow discharge estimation error
dt - model integration time step dto - observation time step dtc - time-dependent control time
step 〈dQ(t)〉 - spatially averaged discharge estimation error
F(Z,Cd) - cross-device function
g - gravity acceleration
h - ’head’
H, H̃ - Hessian matrices (in different spaces)
H∞ - Automatic controller algorithm based on the H∞ norm minimization
J(U) - data assimilation cost function
J ′
V (U) - cost function gradient with respect to V at point U

ℓ1 - Automatic controller algorithm based on the ℓ1 norm minimization
LQG - Linear Quadratic Gaussian automatic controller algorithm
m - dimension of the observation vector
O - observation error covariance matrix
pg - general notation for parameters defining the bathymetry
prc - rating curve data
P (Z, pg) - wetted perimeter
PID - Proportional Integral Derivative automatic controller algorithm
qi - offtake/tributary discharge at node number i (lumped source term)
qb,i - prior of qi
Q(x, t) - local discharge (state variable)
Qref - ’true’ value of Q(x, t)
Q0(x) - discharge initial value (initial condition)
Q(t) - discharge at boundary node (boundary conditions)
Qref - ’true’ value of Q(t)
QL(x, t) - lateral discharge (distributed source term)
R - control-to-observation mapping
r(W ) - residual vector
t - time
T - final time
U - control space
U - full control vector
U0 - complement of V in U
Ub - prior (background) of U
v - mean velocity
V - subset of U
V ref - ’true’ value of V
V̂ - estimate of V

27

Author-produced version of the article published in International Journal for Numerical Methods in Fluids, 2017, N°83(5), p.405-430.
The original publication is available at http://onlinelibrary.wiley.com
https://doi.org/10.1002/fld.4273 



Vb - prior (background) of V
W - modified control variable
X - state space
x - the computational section longitudinal abscissa
Y - observation space
Y - observed model predictions
Y ∗ - observations
Z(t) - water level at boundary node (boundary conditions)
Z(x, t) - local water level (state variable)
Z0(x) - elevation and discharge initial value (initial condition)
z(x) - bed elevation, the lowest point of the cross-section profile (part of pg vector)

b) Greek
α - regularization parameter
β - descent step
γ - confidence level
∆ - observation uncertainty norm (residual threshold)
σB - background error mean deviation
σO - observation error mean deviation
χ2(m, β) - χ2-probability distribution
ξb - background error
ξo - observation error
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[21] Hascoët L., Pascual V., TAPENADE 2.1 user’s guide. INRIA Technical Report, 2004,
no.0300, 78 pp.

[22] Jean-Baptiste N., Malaterre P.-O., Dorée C., Sau, J. Data assimilation for real-time esti-
mation of hydraulic states and unmeasured perturbations in a 1D hydrodynamic model,
Math. Comput. Simul., 2011, Vol. 81, pp. 2201-2214

[23] Kaltenbacher B., Neubauer A., Scherzer O., Iterative Regularization Methods for Nonlinear
Ill-posed Problems. Radon Series on Computational and Applied Mathematics. de Gruyter,
2008.

[24] Kazantsev E., Optimal boundary conditions for ORCA-2 model. Ocean Dynamics, 2013,
Vol .63, Issue 8, pp. 943–959.

[25] Le Dimet F.X., Talagrand O., Variational algorithms for analysis and assimilation of me-
teorological observations: theoretical aspects. Tellus A, 1986, Vol. 38, pp. 97–110.

[26] Lions J.L. Contrôle Optimal des Systèmes Gouvernés par des Équations aux Dérivées
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Case A1 A2 A3 A4

noise no yes yes yes
regul. none none TR IR
N 114 75 32 22

‖r(V0)‖
2 1.094 · 104 1.567 · 104 1.567 · 104 1.567 · 104

‖r(VN)‖
2 3.177 · 100 4.487 · 103 4.613 · 103 4.612 · 103

‖J ′
V (V0)‖

2 1.142 · 1010 1.162 · 1010 1.162 · 1010 6.650 · 108

‖J ′
V (VN)‖

2 3.243 · 101 1.671 · 103 2.954 · 105 9.561 · 103

ǫ 0.424 27.48 0.165 0.123

Table 2: Case A: auxiliary information

Case A5 A6 A7

noise no no yes
regul. none none IR
N 68 122 63

‖r(V0)‖
2 9.357 · 104 9.357 · 104 9.813 · 104

‖r(VN)‖
2 4.303 · 103 3.131 · 100 4.609 · 103

‖J ′
V (V0)‖

2 1.189 · 1011 2.661 · 1012 2.582 · 1011

‖J ′
V (VN)‖

2 3.679 · 101 8.044 · 101 5.719 · 104

ǫ 95.9 0.569 0.126
δCd,1 0.0 −2.051·10−3 −8.308·10−4

δCd,2 −6.000·10−2 −2.378·10−4 −2.122·10−4

δCd,3 −1.200·10−1 −4.016·10−4 4.834 · 10−5

δCd,4 0.0 1.137 · 10−4 −3.221·10−3

Table 3: Case A (extension): auxiliary information
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Case B1.1 B1.2 B2.1 B2.2 B2.3

noise no yes no no yes
regul. none IR IR∗ IR∗ IR
N 51 33 63 68 39

‖r(V0)‖
2 2.279 · 105 2.504 · 105 4.308 · 105 4.093 · 105 4.308 · 105

‖r(VN)‖
2 1.479 · 10−3 2.323 · 104 1.179 · 105 1.439 · 101 2.323 · 104

‖J ′
V (V0)‖

2 9.713 · 108 3.061 · 109 5.774 · 109 5.865 · 109 5.832 · 109

‖J ′
V (VN)‖

2 6.355 · 10−1 8.957 · 102 1.959 · 101 1.853 · 103 1.328 · 103

ǫ 0.738 0.706 1.475 0.698 0.710

Case B3.1 B3.2 B4.1 B4.2 B4.3

noise no no no no no
regul. IR∗ IR∗ IR∗ IR∗ IR∗

N 61 68 75 61 151
‖r(V0)‖

2 2.589 · 105 2.589 · 105 4.075 · 105 4.075 · 105 4.075 · 105

‖r(VN)‖
2 2.706 · 104 9.225 · 100 1.292 · 105 6.400 · 101 1.080 · 102

‖J ′
V (V0)‖

2 1.878 · 109 1.884 · 109 4.090 · 109 4.193 · 109 4.152 · 109

‖J ′
V (VN)‖

2 1.413 · 100 1.715 · 102 5.693 · 100 1.351 · 103 1.356 · 102

ǫ 0.871 0.795 1.295 0.721 0.657

Case B5.1 B5.2 B6.1 B6.2 B6.3

noise no no no no no
regul. IR∗ IR∗ IR∗ IR∗ IR∗

N 6 140 80 65 142
‖r(V0)‖

2 2.299 · 105 2.299 · 105 4.967 · 105 4.967 · 105 4.967 · 105

‖r(VN)‖
2 2.084 · 104 2.193 · 10−1 2.338 · 105 4.906 · 101 9.386 · 101

‖J ′
V (V0)‖

2 1.418 · 109 1.432 · 109 2.128 · 109 2.449 · 109 2.235 · 109

‖J ′
V (VN)‖

2 4.066 · 10−1 1.109 · 101 4.066 · 10−1 1.373 · 103 1.430 · 102

ǫ 1.182 0.742 1.183 0.708 0.582

Table 4: Case B: auxiliary information
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