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This paper studies the problem of platforming trains faced by railway station infrastructure managers to generate a feasible conflict-free timetable. This platforming problem is to assign each train to an internal line inside the railway station and to find a path towards this line through the railway station network. Two kinds of movements are considered: commercial and technical movements. Strict reference arrival and departure times are only given for commercial movements by activity managers at a national level without any feasibility checking at the railway station level. On the other hand, a time deviation is permitted for technical movements. In this paper, we propose a sliding window algorithm using mathematical programming steps to solve the platforming problem. This hybrid algorithm consists of initialization, preprocessing, resolution, reinsertion and refinement. It takes into account train cancellation with suggestions for the modification of departure and arrival time of commercial movements in order to minimize the number of cancellations. The algorithm is tested based on real data related to a French railway station.
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INTRODUCTION

The traditional process to generate a timetable for a railway network is divided into several stages proposed by [START_REF] Watson | The effects of railway privatisation on train planning[END_REF]. Firstly, a tentative timetable is generated by train activities managers (national, regional, freight) based on traffic frequencies, volume of traffic, rough layout of the railway network between the railway stations together with the desired lines and their connection requirements: [START_REF] Schrijver | Dienstregeling ontwikkeling voor Railned(Timetable development for Railway station)[END_REF] [START_REF] Serafini | Mathmatical model for periodic scheduling problems[END_REF]. Then, station operators need to check whether the tentative timetable is feasible within the railway station while satisfying capacity, safety and customer service: Kroon andZwaneveld (1995) Zwaneveld et al. (1996). At the same time, schedules for the trains through the railway station are generated by including all the required technical operations such as carriage preparation, maintenance, etc. Most of the studies focus on the problem of railway network with a global point of view: D'Ariano et al. ( 2007) D' Ariano (2008[START_REF] Caimi | Algorithmic decision support for train scheduling in a large railway network[END_REF]. Nevertheless, as a bottleneck problem, the routing and scheduling problem in large, busy, complex train stations is also a complex issue with respect to limited buffer time and space.

This paper studies a train routing and scheduling problem faced by railway station managers to generate a conflictfree timetable which consists of two sets of circulations. The first set is made of commercial circulations given by several administrative levels (national, regional, freight) over a large time horizon (typically one year before the effective realization of the production). The other set corresponds to technical circulations added by the railway station managers to prepare or repair trains. The routing problem consists in assigning each of the involved trains to a route through the railway station and to a platform in the station. Thus, routes and platforms in the station are here the critical resources. The scheduling problem consists in adjusting the timetable of technical movements to guarantee on-time arrivals and departures of all commercial circulations. A conflict-free timetable with acceptable commercial circulations and needed technical circulations must be generated. Commercial circulations with unsolvable conflicts return to their original activity managers, with suggestions for modifications of their arrival and departure times. Carey (1994a) proposes a mixed integer program to find the paths of trains in a one-way track system. The numerical example provided has 10 nodes, 28 links, and 10 train services and requires a significant amount of time to be solved. [START_REF] Carey | Extending a train pathing model from one-way to two-way track[END_REF] extends the model from one-way to two-way tracks system. The resulting model is also a mixed integer program, which is easier to solve than his earlier model, but this newer study does not provide numerical experiments. [START_REF] Kroon | Routing trains through railway stations: Complexity issues[END_REF] consider computational complexity of the problem of routing trains through railway stations. They show that the problem is NP-complete if each train has three or more routing possibilities. [START_REF] Zwaneveld | A decision support system for routing trains through railway stations[END_REF] formulate the problem of routing trains through railway stations, with the given arrival and leaving times of trains in a cyclic timetable (one hour) and the detailed layout of the railway station, as an integer linear program, based on the Node Packing Problem (NPP). [START_REF] Zwaneveld | Routing trains through a railway station based on a node packing model[END_REF] improves the model by including shunting decisions and preferences of trains for platforms and paths, and improves also the algorithm by extending the preprocessing techniques. In the model, for each train that may be shunted, only the decision whether or not to shunt is considered. The detailed shunting movements are not taken into account explicitly. [START_REF] Carey | Scheduling and platforming trains at busy complex stations[END_REF] consider the problem of train planning or scheduling for large, busy and complex train stations. A scheduling heuristics analogous to those successfully adopted by train planners using manual methods is developed. But the insolvable conflicts are removed by hand before the heuristics methods.

Due to its complexity and size, the problem of trains routing and scheduling in a railway station for a full day is not yet properly solved. An effective model is still needed to describe a suitable ressources allocation strategy. We proposed in [START_REF] Bai | A mixed-integer linear program for routing and scheduling trains through a railway station[END_REF] a continuous-time mixedinteger linear mathematical model formulation to solve it. The proposed approach can solve an instance made of 60 trains and 121 movements representing 385 minutes of traffic within less than 2 minutes. But some conflicts remain unsolvable in reasonable time. In this paper, we extend our earlier study and establish an extended algorithm. This paper starts with the formalization of railway station layout and trains' activities. The mixed-integer linear programming model is described in section 3. Based on an incremental algorithm given in section 4, we solve a real French case study. In section 5, we give a conclusion and discuss further developments and application of the methodology. 

PROBLEM FORMALIZATION

Railway station layout

Railway station

A railway station R = (S, L, P) is defined by a set of lines L on which trains follow some paths in a set P, defined using switches in the set S. The railway station studied is given in (Fig 1). As the southern part of the railway station receives always the overload of trains' activities, we focus on conflicts at the southern part and replace the northern part by one external line and one switch. Note that our model could be used to model the northern part if needed.

(1) Switches (s k ). The set S = {s 1 , s 2 , . . . , s S } = {s k } k∈ [[1,S]] denotes a set of switches. The cardinal number of S is denoted by S.

(2) Lines (l). The set of lines is defined by

L = {l 1 , l 2 , . . . , l L } = {l f } f ∈[[1,L]] .
L denotes the cardinal of the set of lines L. A distinction is made between internal and external lines. External lines located at the entrance of the railway station are denoted by the set L → . Internal lines where passengers board are denoted by the set L → . Internal and external lines can be connected together using the set of switches, through a small railway network inside the railway station. Every line l ∈ L is connected to a unique "entrance" switch denoted as ζ(l) ∈ S, while a switch may be connected to multiple lines. (3) Paths (p c ). The set of paths is denoted by

P = {p 1 , p 2 , . . . , p P } = {p c } c∈[[1,P]] with cardinal number P. A path p ∈ P consists of a set of ordered switches p = [s p 1 , s p 2 , . . . , s p S p ] = {s p k } k∈[[1,S p ]]
with cardinal number S p . Switches of a path are always described from railway station to the outside. For each path, we consider two special switches s p 1 (internal switch) and s p S p (external switch). The set P reflects the topology of the railway station, and some sequences of switches are not valid paths. The subset of paths that connect the internal line l i ∈ L → to the external line l e ∈ L → is denoted by

P (li,le) = {p c } c∈[[1,P (l i ,le ) ]]
. The subset of internal lines l i reachable from an external line l e ∈ L → is denoted by L → le .

Trains' activities

The traffic in the railway station is defined by a set of trains

T = {t 1 , t 2 , . . . , t T } = {t i } i∈[[1,T]] with the cardinal number T. Every train t ∈ T consists of a set of ordered movements M t = [m t 1 , m t 2 , . . . , m t M t ]⊂ M with the cardinal number of M t .
The index of a movement represents its chronological order, for example m t 1 occurs before m t 2 . Four types of movements are defined depending on their commercial or technical nature, and their direction. In the following paragraphs, technical movements are denoted by a semi-arrow ; commercial movements are denoted by a full arrow →; a train leaving the railway station is denoted by →; a train entering the railway station is denoted by → (the full circle being a mnemotechnic way to denote the railway station side). The set of movements M is divided thus into four subsets such that:

M = M → M → M M .

Scheduling notations

(1) Movements scheduling notations Each movement m is associated to reference times α ref m and β ref m ∈ N depending on the type of the con-sidered movement. Those reference times constrain their effective times α m and β m ∈ N that must be computed to generate a feasible timetable. Commercial movements must respect firmly their reference times, but it is allowed to advance or postpone some technical movements by a duration L ∈ N in order to free the railway network for other commercial circulations, according to the following equations in an obvious way:

∀m ∈ M ,β ref m -L ≤ β m ≤β ref m (1) ∀m ∈ M ,α ref m + L ≥ α m ≥α ref m (2) ∀m ∈ M → , β m =β ref m (3) ∀m ∈ M → , α m =α ref m
(4) By convention, all movements take the same duration to traverse the railway network, denoted by S ∈ N (S = 5 in our case study). The time interval of a movement m is thus defined by [α m , β m ] with

β m = α m + S.
(2) Trains scheduling notations A train t is associated to effective arrival and departure times A t and B t ∈ N corresponding to the effective times of its first and last movements. The train occupies the allocated internal line during the interval [A t , B t ], such that:

A t = α m t 1 (5) B t = β m t M t (6)
The chronological order of movements belonging to M t is enforced using the following equation: 

∀t ∈ T, ∀i ∈ {1, ..., M t -1}, β m t i ≤ α m t i+1 (7) 
→ m ∈ L → (resp. l → m ∈ L → ).
The subset of movements going through an exernal line l ∈ L → (i.e. for which l → m = l) is denoted by M l . The internal line allocated to the train t is denoted by λ t ∈ L → . All movements of the train must arrive at or depart from the same internal line λ t , as expressed below:

∀t ∈ T, ∃λ t ∈ L s.t. ∀m ∈ M t , l → m = λ t (8)
The path of the movement m is denoted by p m ∈ P. Since this path should describe a circulation between lines l → m and l → m , we have obviously:

s pm 1 = ζ(l → m ) and s pm S pm = ζ(l → m ) (9 
) which restricts the number of possible paths for the movement m.

Safety constraints Conflicts between trains on internal lines are avoided by the following constraints, expressing that one internal line cannot be occupied by two trains during the same time interval:

∀t, t ∈ T s.t. λ t = λ t , [A t , B t ] ∩ [A t , B t ] = ∅ (10)
Conflicts between movements on switches are eliminated in the same way: two movements using paths containing a common switch (except switch at the northern part) cannot be scheduled during the same time interval:

∀s ∈ S, ∀m, m ∈ M s.t. s ∈ S pm ∩ S p m [α m , β m ] ∩ [α m , β m ] = ∅ (11)
Lines Preferences To compute a good platforming solution, many factors need to be taken into account, such as customer services and railway station usual practices.

A"preference list of internal lines" is proposed to meet these requirements for each train. Based on the length of trains, their nature (TGV, TER, Freight) and their origin and destination, the preference list of internal lines for a train t is defined as an ordered set

L P ref t = [l → 1 , l → 2 , ..., l → L Pref t
] with the cardinal number L Pref t .

MIXED-INTEGER LINEAR PROGRAMMING FORMULATION

In this section, we extend our earlier mathematical model given in [START_REF] Bai | A mixed-integer linear program for routing and scheduling trains through a railway station[END_REF] by adding a set of equations allowing trains cancellation. Allowing trains to be canceled guarantees the existence of solutions. Such solutions can be found in a short time, compatible with the development of an incremental methodology. At each step, they are refined, leading to solutions with less and less cancelled trains.

Hereafter, the function δ(Q) is an indicator such that δ(Q) = 1 if the condition Q is valid, otherwise 0.

Parameters

• R is a sufficiently big constant. 

Variables

• α m (resp. β m ) is the effective starting (resp. ending) time of movement m. α m + S = β m .

• A t is the starting time of occupation of the internal lines by the train t. • B t is the ending time of occupation of the internal lines by the train t. • X L → T l,t identifies the internal lines allocated to the train t. X L → T l,t = δ(λ t = l).

• X P M p,m identifies the path allocated to the movement m. X P M p,m = δ(p = p m ). • X OrderT t,t identifies the time order of two trains using the same line. X OrderT t,t = δ(t circulates before t ).

• X OrderM m,m identifies the time order of two movements using two conflicting paths.

X OrderM m,m = δ(m circu- lates before m ). • X CancelM m identifies the cancellation of the movement m. X CancelM m = δ(m is cancelled). • X CancelT t identifies the cancellation of the train t. X CancelT t = δ(t is cancelled)
To improve the effiency of the process branch-and-cut, all scheduling variables α m , β m , A t and B t are defined in the continuous-time domain. Based on the proof in [START_REF] Bai | A mixed-integer linear program for routing and scheduling trains through a railway station[END_REF], the integrality of the scheduling variables is guaranteed by the characteristic of the mathematical model (the matrix of constraints over scheduling variables is totally unimodular). The routing and cancellation decision variables are defined as binary variables.

Constraints

In addition to constraints (1) to ( 7), we express the allocation constraints with the parameters and variables defined above.

Preference of internal lines. Considering length, origin and destination of trains, we choose only one internal line from the preference list L P ref t for the train t. The order of the internal lines in the preference list is respected by the calculation process (enumeration is made starting from the preferred line). ∀t ∈ T,

li∈L P ref t X L → T li,t = 1 (12)
Allocation of paths. For all movements, one path must be allocated, and the chosen path must connect the given external line and the line allocated in the railway station as described in the equation ( 9). The relation between allocated paths and internal lines is represented by the following constraints:

∀m ∈ M, ∀l e ∈ L → , s.t. Y L → M le,m = 1 p∈P le X P M p,m = 1 (13) ∀t ∈ T, ∀l e ∈ L → , ∀m ∈ M l → e ∩ M t , ∀l i ∈ L → le p∈P (l i ,le) X P M p,m ≥ X L → T li,t (14) 
Cancellation processing and safety constraints. Based on numerical experiments given in [START_REF] Bai | A mixed-integer linear program for routing and scheduling trains through a railway station[END_REF], we found out that the density of trains within small periods of time is a great difficulty to overcome. To handle this issue, we propose to study a model allowing train cancellations. Such way of modelling guarantees the existence of solutions which can be found within acceptable computation time. This model will be used in the first stage of the proposed methodology presented in section 4.1. Two additional variables are added in the model to represent respectively cancellation of trains X CancelT t and movements X CancelM m . The cancellation of a train means the train does not constrain any internal line. Cancellation of movements suppress contraints on paths.

Using these new variables, equations enforcing safety constraints are rewritten as follows:

∀t, t ∈ T, t = t , ∀l ∈ L → , s.t. C ref T t,t = 1, B t ≤ A t + R • (3 -X L → T l,t -X L → T l,t (15) 
-X OrderT t,t + X CancelT t + X CancelT t )
Following contraint (15), if two uncancelled trains t and t are allocated to the same line l in the railway station and if train t circulates before t , then the term 3 -

X L → T l,t -X L → T l,t -X OrderT t,t
= 0 and we have B t ≤ A t . Otherwise, if this term is larger than zero, the constraint ( 15) is relaxed with a big enough constant R.

Using cancellation processing, if train t or t is cancelled, we have

X CancelT t + X CancelT t ≥ 1. So 3 - X L → T l,t -X L → T l,t -X OrderT t,t + X CancelT t + X CancelT t ≥ 1
and equation ( 15) does not constrain anymore t and t .

The safety constraint for pairs of movements with cancellation processing is enforced in the same way as above:

∀m = m ∈ M, ∀p = p ∈ P s.t. C ref M m,m = 1, Y P p,p = 1, β m ≤ α m + R • (3 -X P M p,m -X P M p ,m (16) 
-X OrderM m,m + X CancelM m + X CancelM m
) If a train t is cancelled, all movements of t are cancelled as well. If one movement of a train is cancelled, the train is also cancelled: 

∀t ∈ T, ∀m ∈ M t , X CancelM m = X CancelT t ( 17 

INCREMENTAL METHOD BASED ON SLIDING-WINDOW ALGORITHM

Based on the formulation described above, this method combines several runs of branch-and-cut withing a slidingwindow algorithm.

Incremental algorithm

In this section we describe an incremental algorithm for solving the problem of platforming trains in one-day timetable through a railway station, based on the formalization proposed in section 2. This algorithm can be described as follows:

( Step 3

Step 3 involves the generation of full-day timetable with cancellation processing. Due to the size of the whole problem, we propose to solve the problem step by step using a sliding-window approach controlled by a parameter N ∈ N (sliding window width). At each step, N trains are considered in the mathematical model. The first N/2 trains solved will be stored, the reminder being relaxed to be solved again at next step. All trains before the first train of one subgroup compose its inherited group as valid constraints. The first N/2 trains of one subgroup compose its buffer group which acts as a conflicts holding area between this subgroup and its previous subgroup. Solutions of this buffer group will be fixed at next step and will belong to next inherited group. The last N/2 trains of one subgroup compose its new group. To solve every subgroup of N trains, a mathematial model is formalized as described in section 3 and solved by CPLEX branch-and-cut algorithm.

A full-day conflict-free timetable with minimum train cancellation is obtained at the end of this step and is represented by S 0 . T Cancelled denotes the group of trains cancelled with cardinal number T C .

Step 4 As the compensation mesure of step 3 where some trains may be potentially revalidated, we try to reinsert cancelled trains t ∈ T Cancelled , one by one, by relaxing constraints (1) to (4) in step 4.

The potential conflicting trains of cancelled train t,

T Conf lict t = {t |C ref T t,t
= 1} and all other cancelled trains T Cancelled are given the full flexible interval L for technical movements. An acceptable deviation upper bound F is defined for commercial movements, such that the departure or arrival time of commercial movements can only be postponed. To meet the practical demand, we can set the value of F to provide different versions of timetables. For instance, in the next section, we set F = 10 and L = 60 to absorb trains cancellation.

Trains without flexible time interval

T -(T Cancelled ∪ T Conf lict t
) inherit the allocation solution S 0 and are considered as valid constraints.

The solution obtained at the end of this step is denoted by S 1 .

Step 5

The last step aims to minimize the deviation of commercial movements. The scheduling and routing solution of all trains without the time deviation of commercial movements obtained in step 4 is retained as valid constraints. Trains delayed are given the starting solution corresponding to S 1 . A full-day conflict-free timetable with minimum deviation for commercial movements without train cancellation is obtained at the end of this step and denoted by S 2 .

Computational results

The computational results are obtained using CPLEX version 12.6 on a 64 bits computer under Linux with 2.5GHz CPU and 8GB of RAM. For each group, the calculation time is limited to 500 seconds. Solutions obtained in step 3 are presented in table (1). The full-day timetable is divided into 8 subgroups of trains with N = 60 shown in the first column. The second and third column contains the numbers of technical and commercial movements for the corresponding subgroup. The trains subgroup can be divided into three groups: inherited group, buffer group and new group which are described, in the 5th and 6th columns, by the number of trains and the time interval occupied in minutes.

Once variables and constraints shown in 7th and 8th columns are sent to the solver, CPLEX presolve eliminates redundant constraints and variables according to valid constraints. The reduced problem is described in 9th and 10th columns. The minimum number of trains cancelled solved within 500 seconds and resolution information are given in the last three columns in table (1). At last, there are 9 trains cancelled in the full-day timetable. The group of cancelled trains T Cancelled is made of {53, 59, 71, 84, 91, 96, 97, 176, 191}. We relax potential conflicting trains and reinsert trains cancelled in step 4. We need to absorb train cancellations within minimum time deviation for commercial movements. The deviation upper bound F for commercial movements is 10 minutes. The flexible time interval L is 60 minutes. The calculation information of every reinsertion process is displayed in table (2). At each line, we select a train t to reinsert. The conflicting trains T Conf lict t are relaxed as shown in first column. The cancellation is absorbed step by step until no train remains cancelled. The group of trains cancelled after the reinsertion is shown in the last column.

In order to refine the solution obtained in step 4, the last step tries to minimize the time deviation of commercial movements. At last, 9 train cancellations are absorbed by 182 minutes deviation which involves 37 trains. Deviation of 3 trains reaches the deviation upper bound 10 minutes. 
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 2 Fig. 2. Cumulative sliding-window algorithm (3) Resolution: solve the full-day timetable with minimum trains cancellation by combination of mixedinteger linear programming (MILP) model and cumulative sliding-window algorithm. (4) Reinsertion: reinsert cancelled trains and their movements within acceptable flexible time intervals. (5) Refinement: minimize the deviation of commercial movements.
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  trains are divided into T N/2 subgroups of N trains in chronological sequence until the end of the problem: [1, N ], 3N/2], [N +1, 2N ] . . . [( T N/2 -1)•N/2+1, T]. An illustrative execution is given in (Fig 2), with N = 60 and T = 247.
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8 trains are postponed for more than 6 minutes. Others 29 trains have a delay of less than 5 minutes.

CONCLUSION

In this paper, we present a trains platforming problem through a railway station given reference times and railway station layout. To ensure the feasibility of timetable, a cancellation processing is added to eliminate insolvable conflicts. An incremental algorithm is proposed to generate the conflict-free full-day timetable step by step. The problem is formalized in Step 1. Precomputation is done on Step 2. In step 3, the timetable with minimum train cancellation is generated by the algorithm which combines branch-and-cut algorithm and cumulative sliding window algorithm. The trains cancelled are reinserted with relaxed constraints in step 4. The timetable is refined to minimum time deviation of commercial movements in step 5.

In further work, the partitioning process of step 3 needs to be studied with different values of N or dynamic subgroup sizes. Based on steps 4 and 5, a real-time platforming tool can be developped. Finally, the robustness of the timetable needs to be taken into account, in order to neutralize small deviations and stabilizing delay propagation.