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Descriptive statistics plays a key role in data understanding as well as in data visualisation. However, while there exist well-established methods of visualisation for one dimensional statistics, such as the errorbar or the histogram, there still is a lack of counterparts in the two dimensional domain. In this manuscript I will focused on grid-based statistics, where each patch can be defined by its own descriptive statistics, such as mean and standard deviation. I present two new visualisation methods, that are easy to implement and to present in a grid-based manner. I contrast them to conventional methods and compare their practical usability in an expert user study.

may not necessarily be spatially centered in the surface area. A simple case would be a measurement with each sensor over time, where at each time step each seor provides one value. Another example is a comparison in between multiple cooccurrence matrices, or binned 2d histograms, for a dataset in order to reveal hidden dependencies from a third variable that is not mapped on to one of the two axes of the matrix. Statistically independent elements of the matrix show a high standard deviation when compared in between multiple cooccurrence matrices, while a low standard deviation for a given element of the matrix reveals a dependency from a third variable. An example may be the evaluation of sensor noise for a structured light-emitting camera, where a comparison of multiple cooccurence matrices for noise level vs. sensor temperature captured at di↵erent framerates, reveals that a higher framerate results in higher noise level vs. temperature, while frame rates below a certain threshold do not have an influence on the noise level at all. In the following sections I derive two new visualisation schemes, Bowtie and Bullseye, which are designed to depict the average value, standard deviation and skew for each patch in a grid in a concise and relation-preserving (i.e. in between two patches a higher mean or a lower standard deviation is depicted proportionally) manner. My manuscript is structured as follows. After reviewing the related work in Section 2, I introduce the visualization schemes in Section 3. I describe the generation of suitable questions and their multiple choice-type answers in Section 4 in order to generate a user study to evaluate the practical applicability of the visualization. The number of participants amounted to seven experts. I extend the formulae of the visualisation to incorporate skewness in an appropriate manner in Section 5. The user study for the extension is outlined in Section 6. I present the re-sults of both user studies in Section 7 before I conclude in Section 8 and give an outlook.

Related Work

This approach is related to visualization of uncertainty, patch-based and grid-based visualization as well as any glyph-based approach to summarizing large datasets into condense 2d images. The most relevant related work in these categories are the following:

Descriptive Statistics and Uncertainty Visualisation Olston et el. [START_REF] Olston | Visualizing data with bounded uncertainty[END_REF] describe several visualization approaches to plotting error bars, including, line charts, pie charts and stacked bar charts. Davis and Keller [START_REF] Davis | Modelling and visualizing multiple spatial uncertainties[END_REF] examine a variety of static visualization methods and studies their e↵ect in interactive display scenarios. MacEachren et al [START_REF] Maceachren | Visualizing geospatial information uncertainty: What we know and what we need to know[END_REF] provide a broad overview in visualization approaches for geospatial data that have uncertainty to it. Most approaches use a third dimenson, a set of colors or edge blurriness to denote the extend of deviation. Glister [START_REF] Gläscher | Visualization of group inference data in functional neuroimaging[END_REF] describes a box plot with multiple errors that are depicted as spots above and below the mean value to account for group interface in neuroimaging data.

2d data and patch-based visualization Mihalisin et al [START_REF] Mihalisin | Visualizing multivariate functions, data, and distributions[END_REF] use the two-hierarchical axis technique to render multidimensional data. The rendering is e↵ectively split-up into a grid of patches, each of which conveys information independent of the other patches. Kohler et al. [START_REF] Köhler | 2d plot visualization of aortic vortex flow in cardiac 4d pc-mri data[END_REF] introduce a circular plot that enables juxtaposing medical time-dependent information from several positions at the aorta in a grid-like manner. Ledig et al. [START_REF] Ledig | Patch-based evaluation of image segmentation[END_REF] provide a patch-based visualisation of segmentation bias in brain MRI.

Glyph visualisation

Wittenbrink [START_REF] Wittenbrink | Glyphs for visualizing uncertainty in vector fields[END_REF] uses glyphs on vector fields to denote uncertainty for each data sample. The vectors are depited as arrows with a jittering range around the end point. Ha et al. [START_REF] Hao | E↵ective visualization of temporal ensembles[END_REF] employ glyphs for visualizing shape transitions of ensembles, and therefore visualise statistical characteristics of their datasets. Johnson and Sanderson [START_REF] Johnson | A next step: Visualizing errors and uncertainty[END_REF] elaborate on direction uncertainty glyphs to visualize deviations in vector plots and volume visualization.

Proposed visualisation

I propose to extract the descriptive statistics from the data of each patch and rerender the respective patch in the following way: The background is set to the computed mean value of the patch, allowing for an immediate assessment of the data average. The standard de-viation is rendered in the foreground in a 2d fashion comparable to an errorbar seen from atop. That rendering includes the positive and negative extend of the standard deviation from the mean (e.g., for µ P = 4 and P = 1, it has to show the values 5 and 3 somewhere within the patch). I will elaborate on two elementary visualisations of the deviation in the next subsections. A summary of all proposed visualisations can be found in Figure 1.

Bowtie

The first visualization is generated by computing the directional derivative of a 2d Gaussian whose extend matches the patch size. Assume the width and height of the patch to be k. Then, the Gaussian's µ

G = [k/2, k/2] and G = k/10. I set dGdx (x, y) = d dx G (µ G , G ) . (1) 
Each pixel with a position specified x, y in the visualization of patch P is then set by evaluating with Eqn. 1:

P (x, y) = dGdx (x, y) max 8i,j (dGdx(i, j)) ⇤ P + µ P , (2) 
where the maximum is evaluated over all pixel positions specified with i, j in the Patch P. Note, that µ G and G are the same for each patch to be visualized and independent of µ P and P .

Bowtie-discrete

This alteration to the bowtie visualisation accommodates for rending of patches that comprise only few pixels. Each pixel in the visualization of patch P is set by evaluating dGdx discrete (x, y) of this discrete definition of the 2d Gaussian:

G discrete (µ G , G ) = exp ✓ max (|x µ G |, |y µ G |) ( G ) ◆ (3) 
Note, that, here, the maximum is evaluated between two values, |x µ G | and |y µ G | only.

Bowtie-binary

This alteration to the bowtie visualization provides the most condense rendering. It uses the definition of G discrete in Eq. 3 and evaluates for each pixel positions specified with x, y in the visualization of patch P :

P (x, y) = round 0 @ dGdx discrete (x, y) max 8i,j
(dGdx discrete (i, j))

1 A ⇤ P + µ P . (4) 

Bullseye

The second visualisation is generated by evaluating a cosine function defined on the radial distance of a patch pixel P (x, y) from the center of the patch, being identical to µ G . The radial distance is a multiple of G .The function is evaluated over three quarters of a period, until the second zero-crossing of the cosine. I set

B (x, y) = cos 0 @ q (x µ G ) 2 + (y µ G ) 2 G 1 A ⇤ ( 1,3/2⇤⇡] 0 @ q (x µ G ) 2 + (y µ G ) 2 G 1 A , (5) 
with the step function, defined as 1 within the interval and 0 elsewhere. Each pixel in the visualization of patch P is then set by evaluating with Eqn. 5:

P (x, y) = B (x, y) max 8i,j (B(i, j)) ⇤ P + µ P . (6) 

Bullseye-discrete

This alteration to the bullseye visualisation accommodates for rending of patches that comprise only few pix-els. I set

B discrete (x, y) = cos ✓ max (|x µ G |, |y µ G |) ( G ) ◆ ⇤ ( 1,3/2⇤⇡] ✓ max (|x µ G |, |y µ G |) ( G ) ◆ (7) 

Bullseye-binary

This alteration to the bullseye visualization provides the most condense rendering. Each pixel in the visualization of patch P is set by evaluating with Eqn. 7:

P (x, y) = round 0 @ B discrete (x, y) max 8i,j (B discrete (i, j)) 1 A ⇤ P +µ P . ( 8 
)
4 Expert User Study

Generation of questions

I am interested in two types of questions. The first type (Type-Ia and Type-Ib) asks for an assessment of a single patch, e.g. "is the mean of the patch one of the highest means in the 2d data?". It su ces for the user to retrieve information only from that patch and the information of the value range (e.g. from a look at the colorbar). The second type of question (Type-IIa and Type-IIb) asks for the relation between two randomly chosen patches, e.g. "is the stdev of patch a greater than the stdev of patch b?". There, the user has to compare the values at two patch positions, he may relate to the colorbar to find information about the value range of the two patches. The questions are generated in the decision tree algorithm Alg. 1 with the help of the random number generator:

Data: List of Means and Stdevs at each patch for the 2d data set Result: List of questions and answers in the form "True/False" initialization;

while maximum number of questions not reached do if rand(1) greater than 0.5 then if rand(1) greater than 0.5 then pos1=round(rand(1) * numberOfElements(Means)) pos2=round(rand(1) * numberOfElements(Means)) rel=Means(pos) greater than Means(pos2)? 1 : 0 // Type-IIa if rand(1) greater than 0.5 then Question = "Is the Mean at ", pos1, rel greater than 0?"greater":"smaller","than the Mean at", pos2"?" Answer=1 else Question = "Is the Mean at ", pos1, rel greater than 0?"smaller":"greater","than the Mean at", pos2"?" Answer=0 end else temp=sort(Means,'ascend'); randVal=rand(1); pos= randVal smaller than 0.5 ? randVal/4 *numberOfElements(Means): 1-randVal/4*numberOfElements(Means); // Type-Ia if rand(1) greater than 0.5 then Question = "Is the Mean at ", pos1,"one of the ", randVal greater than 0.5?"largest":"smallest","means in the dataset?" Answer=1 else Question = "Is the Mean at ", pos1,"one of the ", randVal greater than 0.5?"smallest":"largest","means in the dataset?" Answer=0 end end else if rand(1) greater than 0.5 then pos1=round(rand(1) * numberOfElements(Stdevs)) pos2=round(rand(1) * numberOfElements(Stdevs)) rel=Stdev(pos) greater than Stdev(pos2)? 1 : 0 // Type-IIb if rand(1) greater than 0.5 then Question = "Is the Stdev at ", pos1, rel greater than 0?"greater":"smaller","than the Stdev at", pos2"?" Answer=1 else Question = "Is the Stdev at ", pos1, rel greater than 0?"smaller":"greater","than the Stdev at", pos2"?" Answer=0 end else temp=sort(Stdevs,'ascend'); randVal=rand(1); pos= randVal smaller than 0.5 ? randVal/4 *numberOfElements(Stdevs): 1-randVal/4*numberOfElements(Stdevs); // Type-Ib if rand(1) greater than 0.5 then Question = "Is the stdev at ", pos1,"one of the ", randVal greater than 0.5?"largest":"smallest","stdevs in the dataset?" Answer=1 else Question = "Is the stdev at ", pos1,"one of the ", randVal greater than 0.5?"smallest":"largest","stdevs in the dataset?" Answer=0 end end end end Algorithm 1: Decision tree to generate Questions and Answers for a given list of variable means and standard deviations 4.2 Presentation of visualisation I prepare the six visualisations as follows. For a given µ P and P I render a 50 ⇤ 50 pixel patch with the equations for Bowtie (Visualization 3), Bowtie-discrete (Visualization 5), Bowtie-binary (Visualization 7), Bullseye (Visualization 4), Bullseye-discrete (Visualization 6) and Bullseye-binary (Visualization 8). The colormap scheme is Matlab's jet. At each patch, the average value is randomly chosen to lie between 0 and 10 and the standard deviation is randomly chosen to lie between 0 and 10. Further, I prepare a raw data visualisation (Visualization 1)as follows. I generate 50 ⇤ 50 = 2500 random values with Matlab's pearsonrnd function, setting the mean and standard deviation to µ P and P , while the skew and kurtosis parameter are set to zero. The 2500 random values are rearranged to a 50 ⇤ 50 patch and visualised using Matlab's jet colormap. Since each generated patch of 2500 random values includes the computer random number generator, an inherent deviation of the actual mean from the target mean (an average discrepancy of 0.041 in a range of 0 to 10, =0.045) and of the actual standard deviation from the target standard deviation (an average discrepancy of 0.0191 in a range of 0 to 10, =0.02) was measured. Finally I plot the mean values for di↵erent rows and columns together with their standard deviation using Matlab's errorbar (Visualization 2). The dataset was shown to the participants as depicted in Figure 2. Note, that the data are independent for each visualization and for each patch to avoid answer bias. The plots are rendered at a resolution of 600dpi.

User study demographics

The seven participants of the user study were chosen among experts in data processing and data analysis. Their eyesight was normal or corrected with glasses/ contact lenses. The participants' age ranged from 26 to 34. All users are acquainted with the definitions of mean and standard deviation, are able to read plots with Matlab's errorbar and imagesc visualisations of 2d-datasets.

Preparation of study

The participants were introduced to the new visualization concept. Prior to the evaluation they have been asked to identify the mean and the extent of the standard deviation at some sample patches, in order to validate if they understood the concept.

Extension to Skewness

For skewed distribution I assume a normalized value range of the skewness, from -1, maximal negative skew, to +1, maximal positive skew. The mean and standard deviation may stay constant for various skewness values. I extend the two previously introduced types of visualization to depict the asymmetry of the underlying distribution. The bowtie would have to be shortened at the side depicting the shorter tail of the distribution, and lengthened at the side depicting the longer tail of the distribution. With the skewness approaching 0, the bowtie would resort to the shape defined in the previous sections.

The bullseye shall depict the the assymetry as follows: The part of the period that correspond to the longer tail of the distribution is stretched by being assigned a longer wavelength, while the part of the period that corresponds to the shorter tail of the distribution is shortened by being assigned a short wavelength. Analogous to the previous case, a summary of all proposed visualisations can be found in Figure 3.

Bowtie

For the extension of the bowtie, we again assume a Gaussian with µ G = [k/2, k/2] and G = k/10. To account for the shortening and lengthening, I introduce a rescaling function along the x-Axis, centered at µ

G : (x, µ, skew) = x µ 2 skew⇤sign(x µ) (9) 
Using Eqn. 9 I set

G skew = 1 (2 ⇤ p 2 ⇤ ⇡) ⇤exp( (( (x, µ, skew)) 2 / 2 +(y µ) 2 / 2 )) (10) 
With skew ranging from -1 to +1, the Gaussian is shortened (lengthened) on one half-plane from the µ G and lengthened (shortened) on the other half-plane by a factor of up to 2 1 2 . A zero skew will result in evaluation of the stretching term to identity. Again, I evaluate with Eqn. 10

dG skew dx (x, y) = d dx G skew . (11) 
Each pixel in the visualization of patch P is then set by evaluating with Eqn. 11:

P (x, y) = dG skew dx (x, y) max 8i,j (dG skew dx(i, j)) ⇤ P + µ P . (12) 

Bowtie-discrete

Again, this alteration to the bowtie visualisation accommodates for rending of patches that comprise only few pixels. the stretching term is incorporated as follows:

G skew,discrete = 1 (2 ⇤ p 2 ⇤ ⇡) ⇤exp( (max(|( (x, µ, skew)|, |y µ|) 2 )/ 2 ) (13)
Each pixel in the visualization of patch P is set by evaluating dGdx skew,discrete of this discrete definition of the skew 2d Gaussian.

Fig. 2 A typical dataset as shown to the participants. From top left to bottom right the visualizations depicted are: 2d data, errorbar, bowtie, bullseye, bowtie-discrete, bullseye-discrete, bowtie-binary, bullseye-binary Fig. 3 The di↵erent forms of visualisation juxtaposed to a patch of input data. Both rows show a beta-distribution. In the upper row, all visualizations show the distribution with a with µ P = 9.38, P = 9.79, and skew = 0.99. In the lower row, all visualizations show the distribution with a with µ P = 1.99, P = 10.07 and skew = 0.90. The color scales fit the individual value ranges in both rows.

Bowtie-binary

Again, this alteration to the bowtie visualization provides the most condense rendering. It uses the definition of G discrete should return one value for the right wing, one for the left wing of the bow tie and one for the background, to depict the mean. Instead of round we perform a case distinction with Eqn. 13 as follows:

P (x, y) = 8 > > > > > > > > > > > < > > > > > > > > > > > : max 8i,j
(dGdx skew,discrete (i, j)) if dGdx skew,discrete (x, y)

⇤ P + µ P > 0 min 8i,j
(dGdx skew,discrete (i, j)) if dGdx skew,discrete (x, y)

⇤ P + µ P < 0 µ P else (14) 
In order to lengthen (shorten) the sidelength of each wing accordingly I evaluate dGdx skew,discrete only up until the first zero-crossing of the second derivative of G skew,discrete , the point of steepest descent in G skew,discrete , on both sides of the mean µ G . This point is located at (x, ⇡/2, skew) = ± p 2 ⇤ /2.

Bullseye

The second visualisation is generated by evaluating a cosine function defined on the radial distance of a patch pixel P (x, y) from the center of the patch. As previously, the function is evaluated over three quarters of a period, until the second zero-crossing of the cosine. I set

! skew (x, y) = q (x µ G ) 2 + (y µ G ) 2 G B skew (x, y) = cos( (! skew (x, y), ⇡/2, skew) (0, ⇡/2, skew)) ⇤ ( 1,⇡] ( (! skew (x, y) , ⇡/2, skew)) . ( 15 
)
Each pixel in the visualization of patch P is again set by evaluating with Eqn. 15:

P (x, y) = (B (x, y) , 0, skew) max 8i,j
( (B (i, j) , 0, skew))

⇤ P + µ P . (16)
Note, that I use the stretching function, to scale the first and second half-period to the correct amplitudes.

Bullseye-discrete

This alteration to the bullseye visualisation accommodates for rending of patches that comprise only few pixels. I set

! skew,discrete (x, y) = max (|x µ G |, |y µ G |) G B skew,discrete (x, y) = cos( (! skew,discrete (x, y), ⇡/2, skew) (0, ⇡/2, skew))
⇤ ( 1,⇡] ( (! skew,discrete (x, y) , ⇡/2, skew)) .

(17)

Bullseye-binary

This alteration to the bullseye visualization provides the most condense rendering. Each pixel in the visualization of patch P is set by evaluating with Eqn. 17:

P (x, y) = 1 max 8i,j (| (B skew,discrete (i, j), 0, skew)|) ⇤ 0 B B B B B B B B B B B @ 8 > > > > > > > > > > > < > > > > > > > > > > > : max 8i,j ( (B skew,discrete (i, j), if (B skew,discrete (x, y), 0, skew)) ⇤ P 0, skew) > min 8i,j ( (B skew,discrete (i, j), if (B skew,discrete (x, y), 0, skew)) ⇤ P 0, skew) < 0 else 1 C C C C C C C C C C C A +µ P , (18) 
with a threshold parameter, e.g. = 1/4

6 Expert user study to skewness extension

Generation of questions

Again, I am interested in two types of questions, one examines only the patch in question itself, while the other examines two patches jointly. My questions concerning the skewness are : "To which side is patch a skewed?" "(Type-III ) and "Are patch a and patch b skewed to same or opposite sides?"(Type-IV ). The questions are generated in the decision tree algorithm Alg. 2 with the help of the random number generator.

Presentation of visualisation, User study demographics, Preparation of study

The six visualisations are prepared as previously. At each patch, the average value is randomly chosen to lie between 0 and 10, the standard deviation is randomly chosen to lie between 0 and 10, and the skew is randomly chosen to lie between -1 and 1. Further, the raw data visualisation (Visualization 1) is prepared as as follows. I generate 50 ⇤ 50 = 2500 random values with Matlab's pearsonrnd function, setting the mean and standard deviation to µ P and P and the skew parameter accordingly, while the kurtosis parameter is set to two. The 2500 random values are rearranged to a 50 ⇤ 50 patch and visualised using Matlab's jet colormap. Since each generated patch of 2500 random values includes the computer random number generator, an inherent deviation of the actual mean from the target mean (an average discrepancy of 0.1489 in a range of 0 to 10, =0.1144), of the actual standard deviation from the target standard deviation (an average discrepancy of 0.0777, =0.0581 in a range of 0 to 10) and of the skew from the target skew (an average discrepancy of 0.0245 in a range of -1 to 1, =0.0171) has to be taken into account. Finally I plot the mean values for di↵erent rows and columns together with their standard deviation using the extension to Matlab's errorbar which allows di↵erent length of the error on each side of the mean value (Visualization 2). The dataset was shown to the participants as depicted in Figure 4. Note, again, that the data are independent for each visualization and for each patch to avoid answer bias. The participants of the user study were the same as in the previous study. They were explained the concept of skewness and I ensured that they idenitify the amount of skewness and the direction of skew correctly in each type of visualization before answering the questions.

Result

At first, it has to be understood, that the questions generated by the two generation algorithms indeed denote equivalence-types, i.e. an answer to two questions of the same equivalence-type are statistically independent of one another. It can be reasoned as follows. The visualizations are relation-preserving, i.e. a higher mean, std. skewness is depicted as such. The maximum value (mean, std, skewness) in a dataset is depicted with a maximal color in the colormap or a maximal geometry. Therefore, a statement about one such value of a patch being greater than the value of another patch is equivalent to the other patch's value being smaller than that value. This can be understood by simply changing the order of patches in the question and exchanging "greater" with "smaller" or vice versa. A question about a maximal or minimal value is drawn from patches whose value is located in the top or bottom 25% of the value range. This is equivalent to distinguishing the middle 50 % of patches from the (upper and lower) rest. As all means, standard deviations and skewness are determined by a random number generator, their location in the visualization is independent from their location in the value range. Further, as for each visualization the means, standard deviations and skewness are determined by the random number generator, their visualization is independent from their location in the value range. However, it is ensured, that for each visualization there exist patches with minimal and maximal values, and for any two patches a relation (one is greater or smaller than the other) exists. Therefore, I evaluate while maximum number of questions not reached do if rand(1) greater than 0.5 then if rand(1) greater than 0.5 then pos1=round(rand(1) * numberOfElements(Skewnesses)) pos2=round(rand(1) * numberOfElements(Skewnesses)) rel=sign(Skewnesses(pos)) equal to sign( Skewnesses(pos2))? 1 : 0 // Type-IV if rand(1) greater than 0.5 then Question = "Are the distribution of the patch at ", pos1 ," and of the patch at ", pos2 ," skewed to", rel greater than 0?"the same":"the opposite","side?" Answer=1 else Question = "Are the distribution of the patch at ", pos1 ," and of the patch at ", pos2 ," skewed to", rel greater than 0?"the opposite":"the same","side?" Answer=0 end else temp=sort(Skewnesses,'ascend'); randVal=rand [START_REF] Davis | Modelling and visualizing multiple spatial uncertainties[END_REF]; pos= randVal smaller than 0.5 ? randVal/4 *numberOfElements(Skewnesses): 1-randVal/4*numberOfElements(Skewnesses); // Type-III if rand(1) greater than 0.5 then Question = "Is the distribution of the patch at ", pos1," skewed to the ", randVal greater than 0.5?"right":"left","?" Answer=1 else Question = "Is the distribution of the patch at ", pos1," skewed to the ", randVal greater than 0.5?"left":"right","?" Answer=0 end end else end end Algorithm 2: Decision tree to generate Questions and Answers for a given list of variable means, fixed standard deviations and variable skewnesses on the answers to each equivalence-type rather than to specific questions involving patch locations, detail of relation (smaller or greater than), or information if the statement phrased in the question is true or false. In order to limit the amount of questions in the user study to a manageable size for the participants I chose one question of each type from the list of randomly generated questions (which has to be su ciently large enough, to ensure existence of each type of question) for each visualization. The overall number of questions, that a participant had to answer with "yes" or "no" was 8⇤6 = 48. The results of the user study are listed in Table 1. The Bow-Tie and Bullseye visualization achieve the highest number of correct answers for equivalence-type Ia and Ib. For type-IIa questions, the proposed visualizations achieve the same number of correct answers. For type-IIb the bowtie and bullseye-discrete visualizations achieve the highest number of correct answers. The binary visualizations achieve the highest correct answers for type-III questions, while most proposed visualizations except the bullseye-discrete achieve the highest correct answers for type-IV questions. In most types of questions, the number of correct answers for raw and errorbar visualization is lower than for the proposed visualizations. I have asked the experts to rate the eight di↵erent visualizations in the categories Visual Design, Readability and Level Of Detail. Based on their subjective assessment of the visualizations they would assign an integer number between 1 (lowest) and 5 (highest). The results of that survey are listed in Table 2. While the Raw and Errorbar visualization achieve comparable results for the Level Of Detail, the proposed visualizations are rated higher in the categories Visual Design and Readability. While a preference in Visual Design between the bowtie and bullseye depended mainly on the subjective taste of the participants, it could be seen that the binary design were rated slightly higher than the discrete or continuous designs.

Conclusion

I have introduced a new visualization approach for statistics over a 2d grid, that facilitates visual descriptions of properties, such as the mean value, the standard deviation and the amount and direction of skew. The approach consisted of two independent visualization schemes, one based on the derivative of a 2d Gaussian, the other based on the evaluation of radially invariant cosine function. I have encoded skewness by introducing a stretch- 1 The result table for the eight di↵erent types of visualization. The experts have been presented four di↵erent equivalence types of questions about the mean, standard deviations and skewness. The all questions were phrased as statements about a specific patch in the visualizations could be answered either with "true" or "false". The last two columns list how many experts gave the correct (incorrect) answer to the question, i.e. were able to correctly (incorrectly) assess if the statement about that patch was a true or false statement given the visualization presented to them. The data for each visualization were generated independently, each mean, standard deviation, and skewness is selected by a random number generator.

ing function that shortens and lengthens the respective halfplanes corresponding to the sides distribution that has short and long tail. The visualisation scheme has been evaluated in an expert user study, i.e. by professionals who are acquainted with the statistical terms depicted. While it was hard for the experts to answer the questions correctly, when they were presented the raw input data or errorbar plots, they had a higher success rate when using one of the proposed visualizations.

In the future I want to include further properties such as kurtosis, hyperskewness or hyperflatness.

Fig. 1

 1 Fig. 1 The di↵erent forms of visualisation juxtaposed to a patch of input data. All visualisation show a normal distribution with µ P = 1.83 and P = 4.44 in the top row and µ P = 3.14, P = 1.09 in the bottom row with the same color scale.

Fig. 4 A

 4 Fig.4A typical dataset as shown to the participants. From top left to bottom right the visualizations depicted are: 2d data, errorbar, bowtie, bullseye, bowtie-discrete, bullseye-discrete, bowtie-binary, bullseye-binary

  

Table

  Equivalence-Type Type of Visualization # Experts who answered correctly # Experts who answered incorrectly

	Type-Ia	Raw	5	2
	Type-Ia	Errorbar	5	2
	Type-Ia	Bowtie	6	1
	Type-Ia	Bullseye	6	1
	Type-Ia	Bowtie-discrete	5	2
	Type-Ia	Bullseye-discrete	5	2
	Type-Ia	Bowtie-binary	5	2
	Type-Ia	Bullseye-binary	5	2
	Type-Ib	Raw	5	2
	Type-Ib	Errorbar	4	3
	Type-Ib	Bowtie	5	2
	Type-Ib	Bullseye	6	1
	Type-Ib	Bowtie-discrete	6	1
	Type-Ib	Bullseye-discrete	6	1
	Type-Ib	Bowtie-binary	6	1
	Type-Ib	Bullseye-binary	4	3
	Type-IIa	Raw	4	3
	Type-IIa	Errorbar	2	5
	Type-IIa	Bowtie	6	1
	Type-IIa	Bullseye	6	1
	Type-IIa	Bowtie-discrete	6	1
	Type-IIa	Bullseye-discrete	6	1
	Type-IIa	Bowtie-binary	7	0
	Type-IIa	Bullseye-binary	6	1
	Type-IIb	Raw	4	3
	Type-IIb	Errorbar	2	5
	Type-IIb	Bowtie	6	1
	Type-IIb	Bullseye	5	2
	Type-IIb	Bowtie-discrete	5	2
	Type-IIb	Bullseye-discrete	6	1
	Type-IIb	Bowtie-binary	6	1
	Type-IIb	Bullseye-binary	6	1
	Type-III	Raw	4	3
	Type-III	Errorbar	2	5
	Type-III	Bowtie	5	2
	Type-III	Bullseye	4	3
	Type-III	Bowtie-discrete	5	2
	Type-III	Bullseye-discrete	4	3
	Type-III	Bowtie-binary	6	1
	Type-III	Bullseye-binary	6	1
	Type-IV	Raw	3	4
	Type-IV	Errorbar	4	3
	Type-IV	Bowtie	6	1
	Type-IV	Bullseye	6	1
	Type-IV	Bowtie-discrete	6	1
	Type-IV	Bullseye-discrete	4	3
	Type-IV	Bowtie-binary	6	1
	Type-IV	Bullseye-binary	6	1
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Property

Type of Visualization 5 (highest) [START_REF] Johnson | A next step: Visualizing errors and uncertainty[END_REF] Table 2 The di↵erent types of visualization have been rated for their visual design, readability and level of detail. Each expert assigned them a score between 5 (highest) and 1 (lowest)