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TOPOLOGICAL SIMPLICITY OF THE CREMONA GROUPS

The Cremona group is topologically simple when endowed with the Zariski or Euclidean topology, in any dimension ≥ 2 and over any infinite field. Two elements are always connected by an affine line, so the group is path-connected.

Introduction

Fixing a field k and an integer n, the Cremona group of rank n over k can be described algebraically as the group of automorphisms of the k-algebra Cr n (k) = Aut k (k(x 1 , . . . , x n )) or geometrically as the group Bir P n (k) of birational transformations of P n that are defined over the field k.

In an open problem session held at the international congress (see [Mumfo1974]), D. Mumford asked the following: "Let G = Aut C C(X, Y ) be the Cremona group [. . . ]. The problem is to topologize G [. . . ] Is G simple?".

As described in [Serre2010] (see section 2.1 below), one can endow the Cremona group with a natural Zariski topology, which is induced by morphisms A → Bir P n , where A is an algebraic variety (see §2). In [Blanc2010], it is shown that the group Bir P 2 (k) is topologically simple when endowed with this topology (i.e. it does not contain any nontrivial closed normal strict subgroup), when k is algebraically closed. In this text, we generalise this result and give a simple proof of the following: Theorem 1. For each infinite field k and each n ≥ 1, the group Bir P n (k) is topologically simple when endowed with the Zariski topology (i.e. it does not contain any non-trivial closed normal strict subgroup).

Remark 1.1. For each field k, the group Bir P 2 (k) is not simple as an abstract group [CanLam2013, Lonjo2015]. If k = R, it contains normal subgroups of index 2 m for each m ≥ 1 [Zimme2015]. For each n ≥ 3 and each field k, deciding whether the abstract group Bir P n (k) is simple or not is a still wide open question.

Remark 1.2. If k is a finite field, the Zariski topology on Bir P n (k) is the discrete topology (see Lemma 2.8), so the topological simplicity is equivalent to the simplicity as an abstract group, and is therefore false for n = 2, and open for n ≥ 3. For n = 1, this is true if and only if k = F 2 a , a ≥ 2 (see Lemma 2.14).

Recall that a local field is a locally compact topological field with respect to a nondiscrete valuation. All examples are R, C and finite extensions of Q p and F q ((t)). If k is a local field then there exists a natural topology on Bir P n (k), which makes it a Hausdorff topological group, and whose restriction on any algebraic subgroup (for instance on Aut P n (k) = PGL n+1 (k) and (PGL 2 (k)) n ⊂ Aut (P 1 ) n (k)) is the Euclidean topology (the classical topology given by distances between matrices) [BlaFur2013, Theorem 3]. This topology was called Euclidean topology of Bir P n (k). We will show the following analogue of Theorem 1, for this topology: Theorem 2. For each local field k and each n ≥ 2, the topological group Bir P n (k) is simple when endowed with the Euclidean topology (i.e. it does not contain any non-trivial closed normal strict subgroup).

Remark 1.3. The result is, of course, false for n = 1, since PSL 2 (R) is a non-trivial normal strict subgroup of PGL 2 (R), closed for the Euclidean topology.

In the 1000-th Bourbaki Seminar [Serre2010], J.-P. Serre asked whether the group Bir P n (k) is connected with respect to the Zariski topology. When k is algebraically closed, a positive answer is given in [Blanc2010, Théorème 5.1]. We generalise this result (and give a simpler proof of it) as follows:

Theorem 3. For each infinite field k, each n ≥ 2 and each f, g ∈ Bir P n (k), there is a morphism ρ : A 1 → Bir P n , defined over k, such that ρ(0) = f and ρ(1) = g. In particular, the group Bir P n (k) is connected with respect to the Zariski topology.

The second property is also true for n = 1, although the first one is false.

For each n ≥ 2, the groups Bir P n (R) and Bir P n (C) are path-connected, and thus connected with respect to the Euclidean topology.

The authors thank the referee for his careful reading and his suggestions for improving the exposition of this article.

Preliminaries

2.1. The families of birational maps and the Zariski topology induced. In [Demaz1970], M. Demazure introduced the following functor (that he called Psaut, for pseudo-automorphisms, the name he gave to birational transformations): Definition 2.1. Let k be an algebraically closed field, X be an irreducible algebraic variety and A a noetherian scheme, both defined over k. We define

Bir X (A) =    A-birational transformations of A × X inducing an isomorphism U → V, where U, V are open subsets of A × X, whose projections on A are surjective    , Aut X (A) = A-automorphisms of A × X = Bir X (A) ∩ Aut(A × X).
Remark 2.2. When A = Spec(k), we see that Bir X (A) corresponds to the group of birational transformations of X defined over k, which we will denote by Bir X (k). Similarly, Aut X (k) corresponds to the group of automorphisms of X defined over k.

For each field k over which X is defined, we will similarly denote by Bir X (k) and Aut X (k) the group of birational transformations and automorphisms of X defined over k.

Definition 2.1 implicitly gives rise to the following notion of families, or morphisms A → Bir X (k) (as in [Serre2010, Blanc2010, BlaFur2013]): Definition 2.3. Taking A, X as above, an element f ∈ Bir X (A) and a k-point a ∈ A(k), we obtain an element f a ∈ Bir X (k) given by x p 2 (f (a, x)), where p 2 : A × X → X is the second projection.

The map a → f a represents a map from A (more precisely from the A(k)-points of A) to Bir X (k), and will be called a k-morphism (or morphism defined over k) from A to Bir X . If moreover f ∈ Aut X (A), then f also yields a morphism from A to Aut X .

If k ⊂ k is a subfield over wich X, A and f are defined, we will also say that the k-morphism above is a k-morphism.

Remark 2.4.

(1) If X, Y are two irreducible algebraic varieties and ψ : X Y is a birational map, all of them defined over an algebraically closed field k, the two functors Bir X and Bir Y are isomorphic, via ψ. In other words, morphisms A → Bir X corresponds, via ψ, to morphisms A → Bir Y . The same holds with Aut X and Aut Y , if ψ is an isomorphism. We further get a bijection between k-morphisms to Bir X and Bir Y if X, Y and ψ are defined over a subfield k ⊂ k.

(2) If X is projective, the connected component Aut • X of Aut X is an algebraic group, so there is a natural notion of morphism from A to Aut X in this case, and this one coincides with the above definition.

(3) Just like with morphisms of algebraic varieties, for any field extension k ⊂ k , any k-morphism A → Bir X is also a k -morphism, and thus yields a map

A(k ) → Bir X (k ).
Even if Bir X is not representable by an algebraic variety or an ind-algebraic variety in general [BlaFur2013], we can define a topology on the group Bir X (k), given by this functor. This topology is called Zariski topology by J.-P. Serre in [Serre2010]: Definition 2.5. Let X be an irreducible algebraic variety defined over a field k. A subset F ⊆ Bir X (k) is closed in the Zariski topology if for any k-algebraic variety A and any k-morphism A → Bir X the preimage of F in A(k) is closed.

Remark 2.6. In this definition one can of course replace "any algebraic variety A" with "any irreducible algebraic variety A".

Endowed with this topology, Bir P n (k) is connected for each n ≥ 1, and Bir P 2 (k) is topologically simple for each algebraically closed field k [Blanc2010].

Let us make the following observation, whose statement and proof is analogue to classical statements for algebraic varieties: Lemma 2.7. Let k be a field and X a geometrically irreducible algebraic variety defined over k. The Zariski topology on Bir X (k) is finer than the topology on Bir X (k) induced by the Zariski topology of Bir X (k), where k is the algebraic closure of k.

Proof. We show that for each closed subset F ⊂ Bir X (k), the set F = F ∩ Bir X (k) is closed with respect to the Zariski topology.

To do this, we need to show that the preimage of F by any k-morphism ρ : A → Bir X is closed. By definition of the Zariski topology of Bir X (k), the set

C = {a ∈ A(k) | ρ(a) ∈ F } is Zariski closed in A(k). The closure R of C ∩ A(k) in A(k) is defined over k [Sprin2009, Lemma 11.2.4]. Since R(k) ⊂ C(k), we have R ∩ A(k) = R(k) ⊂ C ∩ A(k) ⊂ R ∩ A(k), so C ∩ A(k) = R(k) is closed in A(k).
It remains to observe that the equality

F = F ∩ Bir X (k) implies that C ∩ A(k) = {a ∈ A(k) | ρ(a) ∈ F } = {a ∈ A(k) | ρ(a) ∈ F } = ρ -1 (F ).
Lemma 2.8. Let k be a finite field and X be an algebraic variety defined over k. The Zariski topology on Bir X (k) is the discrete topology.

Proof. Let us show that any subset F ⊂ Bir X (k) is closed. For this, we take a k-algebraic variety A, a k-morphism ρ : A → Bir X , and observe that ρ -1 (F ) is finite in A, hence is closed.

2.2.

The varieties H d . The following algebraic varieties are useful to study morphisms to Bir P n . Definition 2.9. [BlaFur2013, Definition 2.3] Let d, n be positive integers.

(1) We define W d to be the projective space parametrising, for each field k, equivalence classes of non-zero (n + 1)-uples (h 0 , . . . , h n ) of homogeneous polynomials

h i ∈ k[x 0 , . . . , x n ] of degree d, where (h 0 , . . . , h n ) is equivalent to (λh 0 , . . . , λh n ) for any λ ∈ k * .
The equivalence class of (h 0 , . . . , h n ) will be denoted by

[h 0 : • • • : h n ]. (2) We define H d ⊆ W d to be the set of elements h = [h 0 : • • • : h n ] ∈ W d such that
the rational map ψ h : 

P n P n given by [x 0 : • • • : x n ] [h 0 (x 0 , . . . , x n ) : • • • : h n (x 0 , . . . , x n )] is birational. We denote
H d (k) ⊂ W d (k) the induced topology and on π d (H d (k)) = {f ∈ Bir P n (k) | deg(f ) ≤ d}
the quotient topology induced by π d . The Euclidean topology on Bir P n (k) is then the inductive limit topology induced by the inclusions

{f ∈ Bir P n (k) | deg(f ) ≤ d} → {f ∈ Bir P n (k) | deg(f ) ≤ d + 1}.
Lemma 2.11. Let k be a local field, let A be an algebraic variety defined over k, and let ρ : A → Bir P n be a k-morphism. Then the map

A(k) → Bir P n (k)
is continuous for the Euclidean topologies.

Proof. There exists an open affine covering (A i ) i∈I of A, with respect to the Zariski topology, with the following property: for each i ∈ I there exists an integer d i and a morphism of algebraic varieties ρ i :

A i → H d i , such that the restriction of ρ to A i is π d i • ρ i [BlaFur2013, Lemma 2.6].
It follows from the construction that the A i and ρ i can be assumed to be defined over k.

We take a subset U ⊂ Bir P n (k), open with respect to the Euclidean topology, and want to show that ρ -1 (U ) ⊂ A(k) is open with respect to the Euclidean topology. As all

A i (k) are open in A(k), it suffices to show that ρ -1 (U ) ∩ A i (k) is open in A i (k) for each i.
This follows from the fact that ρ| A i = π d i • ρ i and that both π d i and ρ i are continuous with respect to the Euclidean topology.

2.4. The projective linear group. Note that Bir P n (k) contains the algebraic group Aut P n (k) = PGL n+1 (k) and that the restriction of the Zariski topology to this subgroup corresponds to the usual Zariski topology of the algebraic variety PGL n+1 (k), which can be viewed as the open subset of P (n+1) 2 -1 (k), more precisely as complement of the hypersurface given by the vanishing of the determinant.

Let us make the following two observations:

Lemma 2.12. If k is an infinite field and n ≥ 2, then PSL n (k) is dense in PGL n (k) with respect to the Zariski topology. Moreover, every non-trivial normal subgroup of PGL n (k) contains PSL n (k). In particular, PGL n (k) does not contain any non-trivial normal strict subgroup which is closed with respect to the Zariski topology.

Proof.

(1) Observe that the group homomorphism det :

GL n (k) → k * yields a group homomorphism det : PGL n (k) → (k * )/{f n | f ∈ k * }
, whose kernel is the group PSL n (k). We consider the morphism

ρ : A 1 (k) \ {0} → PGL n (k) t → t 0 0 I
where I is the identity matrix of size (n -1) × (n -1), and observe that ρ -1 (PSL n (k))

contains {t n | t ∈ A 1 (k)}, which is an infinite subset of A 1 (k) and is therefore dense in A 1 (k). The closure of PSL n (k) contains thus ρ(A 1 (k) \ {0}). As every element of PGL n (k) is equal to some ρ(t) modulo PSL n (k), we obtain that PSL n (k) is dense in PGL n (k).
(2) Let N ⊂ PGL n (k) be a normal subgroup with N = {id}, and let f ∈ N be a non-trivial element. We want to show that N contains PSL n (k). Since the center of PGL n (k) is trivial, one can replace f with αf α -1 f -1 , where α ∈ PGL n (k) does not commute with f , and assume that f ∈ N ∩ PSL n (k). Then, as PSL n (k) is a simple group [Dieud1971, Chapitre II, §2], we obtain PSL n (k) ⊂ N .

(1) and (2) imply that PGL n (k) does not contain any non-trivial normal strict subgroup which is closed with respect to the Zariski topology.

Remark 2.13. Lemma 2.12 does not work for the Euclidean topology. For instance, for each n ≥ 1, the group 

PSL 2n (R) = {A ∈ PGL 2n (R) | det(A) > 0} is a normal strict subgroup of PGL 2n (R)
k * → k * x → x 2
is surjective if and only if it is injective, and this corresponds to ask that the characteristic of k is 2.

(

): If char(k) = 2, then PSL 2 (k) PGL 2 (k) is a non-trivial normal subgroup. If char(k) = 2, then PGL 2 (k) = PSL 2 (k) is a simple group if and only if k = F 2 ([Dieud1971, Chapitre II, §2]). 2 

Proof of the results

3.1. The construction associated to fixed points. Let us explain the following simple construction that will be often used in the sequel.

Example 3.1. Let f ∈ Bir P n (k) be an element fixing the point p = [1 : 0 : • • • : 0] and that induces a local isomorphism at p.

In the chart x 0 = 1, we can write f locally as

x = (x 1 , . . . , x n ) p 1,1 (x) + • • • + p 1,m (x) 1 + q 1,1 (x) + • • • + q 1,m (x) , . . . , p n,1 (x) + • • • + p n,m (x) 1 + q n,1 (x) + • • • + q n,m (x)
,

where the p i,j , q i,j ∈ k[x 1 , . . . , x n ] are homogeneous of degree j. For each t ∈ k \ {0}, the element θ t : (x 1 , . . . , x n ) → (tx 1 , . . . , tx n ) extends to a linear automorphism of P n (k) fixing p. Then the map t → (θ t ) -1 • f • θ t gives rise to a morphism F : A 1 \ {0} → Bir P n (k) whose image contains only conjugates of f by linear automorphisms.

Writing F locally, we can observe that F extends to a morphism A 1 → Bir P n (k) such that F (0) is linear. Indeed, F (t) can be written locally as follows:

F (t)(x) = F (t)(x 1 , . . . , x n ) = p 1,1 (x) + tp 1,2 (x) + • • • + t m-1 p 1,m (x) 1 + tq 1,1 (x) + • • • + t m q 1,m (x) , . . . , p n,1 (x) + tp n,2 (x) + • • • + t m-1 p n,m (x) 1 + tq n,1 (x) + • • • + t m q n,m (x) ,
and F (0) corresponds to the derivative (linear part) of F at p, which is locally given by

(x 1 , . . . , x n ) → (p 1,1 (x), . . . , p n,1 (x))
and which is an element of Aut P n (k) ⊂ Bir P n (k) since f was chosen to be a local isomorphism at p.

Using the example above, one can construct k-morphisms

A 1 → Bir P n .
Proposition 3.2. Let k be a field, n ≥ 1, let g ∈ Bir P n (k) and p ∈ P n (k) be a point such that g fixes p and induces a local isomorphism at p. Then there exist k-morphisms ν : A 1 \ {0} → Aut P n and ρ : A 1 → Bir P n such that the following hold:

(1) For each field extension k ⊂ k and each t ∈ A 1 (k ) \ {0}, we have

ρ(t) = ν(t) -1 • g • ν(t).
Moreover, ν(1) = id, so ρ(1) = g. (2) The element ρ(0) belongs to Aut P n (k). It is the identity if and only if the action of g on the tangent space T p (P n ) is trivial.

Proof. Conjugating by an element of Aut P n (k), we can assume that p = [1 : 0 :

• • • : 0].
We then choose ν to be given by

ν(t) : [x 0 : x 1 : • • • : x n ] → [x 0 : tx 1 : • • • : tx n ],
and define ρ : Proof. We can assume that n ≥ 2, as the result is trivial for n = 1 (in which case

A 1 \{0} → Bir P n by ρ(t) = ν(t) -1 •g•ν(t)
Bir P n (k) = Aut P n (k)) .
Let us choose a non-trivial element f ∈ N . As f is a birational transformation, it induces an isomorphism U → V , where U, V ⊂ P n are two nonempty open subsets defined over k. Since k is infinite, U (k) and V (k) are not empty, so we can find p ∈ U (k), and q = f (p) ∈ V (k). We can moreover choose p = q, since {p ∈ U | f (p) = p} is open and non-empty in U . Let us take an element α ∈ Aut P n (k) that fixes p and q. The element g = α -1 f -1 αf ∈ N fixes p and is a local isomorphism at this point. We can choose α such that the derivative D p (g) of g at this point is not trivial, since

D p (g) = D p (α -1 ) • D q (f -1 ) • D q (α) • D p (f ).
Indeed, changing coordinates one can assume that q = [1 : 0 :

• • • : 0], p = [0 : 1 : 0 : • • • : 0] and can for instance choose α : [x 0 : • • • : x n ] → [x 0 + ξx 2 : x 1 : x 2 : • • • : x n ],
for some ξ ∈ k. This choice yields D q (α) = id and gives infinitely many possibilities for D p (α -1 ). By Proposition 3.2, there exists a k-morphism ρ : A 1 → Bir P n such that ρ(0) ∈ Aut P n (k) \ {id} and such that ρ(t) ∈ N for each t ∈ A 1 (k) \ {0}. Since N is closed (with respect to the Zariski or to the Euclidean topology), ρ -1 (N ) ⊂ A 1 (k) is closed (with respect to the Zariski or to the Euclidean topology respectively, see Lemma 2.11 in the latter case) and contains A 1 (k) \ {0}. For the Zariski topology, one uses the fact that k is infinite to get ρ -1 (N ) = A 1 (k). For the Euclidean topology, one uses the fact that k is non-discrete to get the same result. In each case, we find that ρ(0) ∈ N ∩Aut P n (k).

Lemma 3.4. Let k be an infinite field, n ≥ 2 an integer and N ⊂ Bir P n (k) be a normal subgroup, with

N ∩ Aut P n (k) = {id}. Then PGL n+1 (k) = Aut P n (k) ⊂ N.
Proof. The group N ∩Aut P n (k) is a non-trivial normal subgroup of Aut P n (k) = PGL n+1 (k), so contains PSL n+1 (k) by Lemma 2.12.

For each a ∈ k * , we define g a ∈ N and h ∈ Bir P n (k) by

g a : [x 0 : • • • : x n ] → [x 0 : ax 1 : 1 a x 2 : x 3 : • • • : x n ] h : [x 0 : • • • : x n ] [x 0 : x 1 : x 2 • x 1 x 0 : x 3 : • • • : x n ]. Then, g a = hg a h -1 ∈ N is given by g a : [x 0 : • • • : x n ] → [x 0 : ax 1 : x 2 : x 3 : • • • : x n ].
As every element of PGL n (k) is equal to some g a modulo PSL n+1 (k), we obtain that PGL n+1 (k) ⊂ N . Proposition 3.5. Let k be an infinite field, n ≥ 2 an integer and consider Bir P n (k) endowed with the Zariski topology or the Euclidean topology (if k is a local field). Then the normal subgroup of Bir P n (k) generated by Aut P n (k) is dense in Bir P n (k).

In particular, Bir P n (k) does not contain any non-trivial closed normal strict subgroup.

Proof.

(1) Let f ∈ Bir P n (k), f = id. It induces an isomorphism U → V , where U, V ⊂ P n are two non-empty open subsets, defined over k. Since k is infinite, we can find p ∈ U (k).

There exist α 1 , α 2 ∈ Aut P n (k) such that g := α 1 f α 2 fixes p, is a local isomorphism at this point and such that D p (g) is not trivial. By Proposition 3.2, there exist k-morphisms ν : A 1 \ {0} → Aut P n (k) and ρ 1 :

A 1 → Bir P n (k) such that ρ 1 (t) = ν(t) -1 • g -1 • ν(t) for each t ∈ A 1 (k) \ {0} and ρ 1 (0) ∈ Aut P n (k).
We define a k-morphism

ρ 2 : A 1 → Bir P n (k), ρ 2 (t) = α -1 1 • g • ρ 1 (t) • ρ 1 (0) -1 • α -1 2 . Since α 1 , α 2 , ρ 1 (0), ν(t) ∈ Aut P n (k) for all t ∈ A 1 \ {0}, the map ρ 2 (t) = α -1 1 • g • ν(t) -1 • g -1 • ν(t) • ρ 1 (0) -1 • α -1 2
is contained in the normal subgroup of Bir P n (k) generated by Aut P n (k), for each t ∈ A 1 \ {0}. Therefore, f = ρ 2 (0) is contained in the closure of the normal subgroup of Bir P n (k) generated by Aut P n (k).

(2) Let {id} = N ⊂ Bir P n (k) be a closed normal subgroup (with respect to the Zariski or to the Euclidean topology). It follows from Proposition 3.3 and Lemma 3.4 that Aut P n (k) ⊂ N . Since N is closed, it contains the closure of the normal subgroup generated by Aut P n (k), which is equal to Bir P n (k).

Note that Proposition 3.5, together with Lemma 2.12 (for dimension 1 in the case of the Zariski topology), yields Theorems 1 and 2.

3.3. Connectedness of the Cremona groups. The group Bir P n is connected with respect to the Zariski topology [Blanc2010]. More precisely, we have the following: Proposition 3.6. [Blanc2010, Théorème 5.1] Let k be an algebraically closed field and n ≥ 1. For each f, g ∈ Bir P n (k) there is an open subset U ⊂ A 1 (k) that contains 0 and 1, and a morphism ρ : U → Bir P n (k) such that ρ(0) = f and ρ(1) = g. This corresponds to saying that Bir P n (k) is "rationally connected". We will generalise this for any field k, and provide a morphism from the whole A 1 (Proposition 3.11 below), showing then that Bir P n (k) is "A 1 -uniruled".

Let us recall the following classical fact. Lemma 3.7. For each field k and each integer n ≥ 2, there is an integer m and a k-morphism ρ : A m → SL n such that ρ(A m (k)) = SL n (k).

Proof. Using Gauss-Jordan elimination, every element of SL n (k) is a product of a diagonal matrix and r elementary matrices of the first kind: matrices of the form I + λe i,j , λ ∈ k, i = j, where (e i,j ) i,j=1,...,n is the canonical basis of the vector space of n × nmatrices. Moreover, the number r can be chosen to be the same for all elements of SL n (k). We then observe that

1 λ -1 0 1 1 0 1 1 1 λ -1 -1 0 1 1 0 -λ 1 = λ 0 0 λ -1
for each λ ∈ k * . Using finitely many such products, we obtain then all diagonal elements. This gives the existence of s ∈ N, only dependent on n, such that every element of SL n (k) is a product of s elementary matrices of the first kind.

Denoting by ν i,j : A 1 → SL n (k) the k-morphism sending λ to I + λe i,j , this shows that every element of SL n (k) is in the image of a product morphism A m → SL n (k) of finitely many ν i,j . The number of such maps being finite, we can enlarge m and obtain one morphism for all maps.

Corollary 3.8. For each field k, each integer n ≥ 2 and all f, g ∈ PSL n (k), there exists a k-morphism ν : A 1 → PSL n such that ν(0) = f and ν(1) = g.

Proof. It suffices to take a morphism

ρ : A m → SL n as in Lemma 3.7, to choose v, w ∈ A m (k) such that ρ(v) = f , ρ(w) = g in PSL n (k)
, and to define ν(t) = ρ(v +t(w -v)). Remark 3.9. By construction, Corollary 3.8 also works for SL n (k), but is in fact false for GL n (k). Indeed, every k-morphism ν : A 1 → GL n gives rise to a morphism det •ν : A 1 → A 1 \ {0}, which is necessarily constant. As every morphism A 1 → PGL n lifts to a morphism A 1 → GL n , the same holds for PGL n .

Example 3.10. Let k be a field, n ≥ 2 and λ ∈ k * . We consider g ∈ Bir P n (k) given by g

: [x 0 : • • • : x n ] → x 0 (x 1 + λx 2 ) + x 1 x 2 x 1 + x 2 : x 1 : • • • : x n
We observe that p 1 = [0 : 1 : 0 : • • • : 0] and p 2 = [0 : 0 : 1 : 0 : • • • : 0] are both fixed by g. In local charts x 1 = 1 and x 2 = 1, the map g becomes:

[x 0 : 1 : x 2 : x 3 : • • • : x n ] → x 0 (1 + λx 2 ) + x 2 x 2 + 1 : 1 : x 2 : x 3 : • • • : x n [x 0 : x 1 : 1 : x 3 : • • • : x n ] → x 0 (x 1 + λ) + x 1 x 1 + 1 : x 1 : 1 : x 3 : • • • : x n
Applying Proposition 3.2 to the two fixed points, we get two k-morphisms ρ 1 , ρ 2 : A 1 → Bir P n such that ρ 1 (1) = g = ρ 2 (1) and ρ 1 (0), ρ 2 (0) ∈ Aut P n (k). The two elements are provided by the construction Example 3.1. Choosing for this one the affine coordinates x 1 = 0 and x 2 = 0 using permutations of the coordinates, we obtain the following maps corresponding to the linear parts in these affine spaces:

ρ 1 (0) : [x 0 : x 1 : x 2 : x 3 : • • • : x n ] → [x 0 + x 2 : x 1 : x 2 : x 3 : • • • : x n ] , ρ 2 (0) : [x 0 : x 1 : x 2 : x 3 : • • • : x n ] → [x 0 λ + x 1 : x 1 : x 2 : x 3 : • • • : x n ] .
We can now give the following generalisation of [Blanc2010, Théorème 5.1] (Proposition 3.6): Proposition 3.11. For each infinite field k, each integer n ≥ 2 and all f, g ∈ Bir P n (k), there exists a k-morphism ν : A 1 → Bir P n such that ν(0) = f and ν(1) = g.

Proof.

Multiplying the morphism with f -1 , we can assume that f = id. We denote by N ⊂ Bir P n (k) the subset given by N = g ∈ Bir P n (k) there exists a k-morphism ν : A 1 → Bir P n such that ν(0) = id and ν(1) = g .

If f, g ∈ N are associated to k-morphisms ν f , ν g , we define a k-morphism ν f g : A 1 → Bir P n by ν f g (t) = ν f (t)ν g (t), which satisfies ν f g (0) = id and ν f g (1) = f g. For each h ∈ Bir P n (k), we can also define a morphism t → hν f (t)h -1 . Thus, N is a normal subgroup of Bir P n (k) and it contains PSL n+1 (k) by Corollary 3.8. As N is a priori not closed, we cannot apply Theorem 1. However, we will apply Proposition 3.2 and Example 3.10 to obtain the result. First, taking λ, g, ρ 1 , ρ 2 as in Example 3.10, the morphisms t → ρ i (t)•ρ i (0) -1 , i = 1, 2, show that g •(ρ 1 (0)) -1 , g •(ρ 2 (0)) -1 ∈ N , which implies that ρ 1 (0)•(ρ 2 (0)) -1 ∈ N . Since ρ 1 (0) ∈ PSL n+1 (k) ⊂ N , this implies that ρ 2 (0) : [x 0 : x 1 : x 2 :

x 3 : • • • : x n ] → [x 0 λ + x 1 : x 1 : x 2 : x 3 : • • • : x n ]
belongs to N , for each λ ∈ k * . Hence, Aut P n (k) = PGL n+1 (k) ⊂ N .

Second, we take any g ∈ Bir P n (k) of degree d ≥ 2, take a point p ∈ P n (k) such that g induces a local isomorphism at p, choose α ∈ PSL n+1 (k) such that α • g fixes p. Proposition 3.2 yields the existence of a k-morphism ρ : A 1 → Bir P n with ρ(1) = α • g and ρ(0) ∈ Aut P n (k). Choosing ρ : A 1 → Bir P n given by ρ (t) = ρ(t) • ρ(0) -1 , we obtain that ρ (1) = α • g • ρ(0) -1 ∈ N . Since α, ρ(0) ∈ Aut P n (k) ⊂ N , this shows that g ∈ N and concludes the proof.

Corollary 3.12. For each infinite field k and each n ≥ 1, the group Bir P n (k) is connected with respect to the Zariski topology.

Proof. For n = 1, the result follows from the fact that Bir P 1 = Aut P 1 = PGL 2 is an open subvariety of P 3 . For n ≥ 2, this follows from Proposition 3.11. Corollary 3.13. For each n ≥ 2, the groups Bir P n (R) and Bir P n (C) are path-connected, and thus connected with respect to the Euclidean topology.

Proof. Let us fix k = R or k = C. For each f, g ∈ Bir P n (k) there is a k-morphism ν : A 1 → Bir P n such that ν(0) = f and ν(1) = g (Proposition 3.11). The corresponding map k = A 1 (k) → Bir P n (k) is continuous with respect to the Euclidean topologies (Lemma 2.11). The restriction of this map to the interval [0, 1] ⊂ R ⊂ C yields a map [0, 1] → Bir P n (k), continuous with respect to the Euclidean topologies and sending 0 to f and 1 to g. Theorem 3 is now proven, as a consequence of Proposition 3.11 and Corollaries 3.12 and 3.13.

  which is closed with respect to the Euclidean topology. Lemma 2.14. Let k be a finite field. Then (1) PGL 2 (k) = PSL 2 (k) if and only if char(k) = 2, (2) PGL 2 (k) is a simple group if and only if k = F 2 a , a ≥ 2. Proof. (1): As explained before, PSL 2 (k) = PGL 2 (k) if and only if every element of k * (or equivalently of k) is a square. As k is finite, the group homomorphism

  . As it was shown in Example 3.1, the k-morphism ρ extends to a k-morphism A 1 → Bir P n such that ρ(0) ∈ Aut P n (k). Moreover, this element is trivial if and only if the action of g on the tangent space T p (P n ) is trivial.

3.2. Closed normal subgroups of the Cremona groups. As a consequence of Proposition 3.2, we obtain the following result: Proposition 3.3. Let k be an infinite field. Let n be a positive integer. Let N ⊂ Bir P n (k) be a normal subgroup. If N is closed with respect to the Zariski topology or to the Euclidean topology (if k is a local field), then N ∩ Aut P n (k) is not the trivial group.
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