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Abstract

In this paper, we consider the problem of optimally designing the experimental conditions for LPV system identification with
the local approach. Such an LPV system identification experiment is characterized by a number of local LTI identification
experiments performed at constant values of the scheduling variable. The main contribution of this paper is to determine these
constant values of the scheduling variable as well as the input spectra of the corresponding local LTI identification experiments
in order to obtain a user-defined model accuracy with the least input energy.
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1 Introduction

In this paper, we consider the problem of optimally de-
signing the identification experiment leading to a model
of a Linear Parameter Varying (LPV) system. A LPV
system is a system whose parameters vary as a function
of an external variable, the so-called scheduling variable
[21]. When the scheduling variable is kept constant, the
LPV system reduces to a Linear Time-Invariant (LTT)
system whose dynamics depend on the chosen value for
the constant scheduling variable. A constant scheduling
variable is often called an operating point in the litera-
ture (see e.g. [3]).

It is important to note that efficient control design
methods have been developed for LPV systems [1,2,19].
These control design methods deliver controllers whose
parameters are, such as the system itself, a function of
the scheduling variable. Methodologies have also been
developed for the identification of such LPV systems.
There exist two mainstream approaches for the identi-
fication of LPV systems, namely the local [24,15,21,20]
and the global approaches [4,21,3,14,9]. In this paper,
we will restrict attention to the so-called local approach
for LPV system identification. In the first step of this lo-
cal approach, the scheduling variable is kept constant at
successive operating points and the corresponding local
LTT models are identified using classical LTT identifica-
tion [16]. In a second step, these identified models are
interpolated to deliver a model of the LPV system. This
second step is generally done by determining an estimate
of the time-invariant coefficients 6° of the (e.g. polyno-
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mial) function describing the dependence of the system
parameters on the scheduling variable [21,3].

In order to design such a LPV system identification
procedure in an optimal way, we need to determine opti-
mal values 1) for the number of local LTT identification
experiments that will be performed, 2) for the operat-
ing points at which these local LTT identification exper-
iments will be performed and 3) for the input spectra
that will be used in each of these local LTI identifica-
tion experiments. These experimental conditions will be
determined in such a way that we can guarantee a user-
defined model accuracy with the least input energy.

The main contribution of this paper is to propose a
convex optimization problem to tackle this rather com-
plex optimal experiment design problem. For this pur-
pose, an intermediate contribution is to determine the
minimal variance estimate for the parameter vector #°
describing the LPV system (see above), as well as an ex-
pression for the covariance matrix Py of this estimate.
The obtained expression for Py is such that its inverse is
a summation of the contributions of each of the local LTI
identification experiments. This property allows one to
transform classical accuracy constraints into constraints
that are linear in the input spectra used in the local
experiments. Consequently, similarly as for optimal ex-
periment design in the LTI case [6,10], one can use con-
vex optimization to determine the optimal input spectra
that have to be used at each operating point when the
values of these operating points have been fixed a-priori.
If this convex optimization problem is performed for a
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set of operating points that constitutes a fine grid of the
scheduling space, the obtained solution will typically be
sparse i.e. many of the input spectra will be identically
zero. The optimal operating points among this fine grid
of the scheduling space are consequently those corre-
sponding to a nonzero input spectra and local LTT iden-
tification experiments will only be performed at those
operating points.

Such an optimal LPV identification experiment design
framework is novel. However, we had already tackled, in
[13,23], the sub-problem of selecting optimal operating
points for LPV system identification using the local ap-
proach. In [13], this problem is tackled supposing that
each local LTT identification experiment yields a perfect
model of the local LTI system (i.e. the variance is sup-
posed equal to zero). With this assumption, the optimal
operating points are defined as those leading to the best
approximation of a complex parameter dependence on
the scheduling function by a polynomial function of low
order. In [23], an iterative methodology is developed to
determine a set of operating points for which the corre-
sponding local LTI systems represent a sufficient sam-
ple of the different local dynamics of the LPV system.
However, unlike in the present paper, those operating
points are not determined as the solution of an optimiza-
tion problem and the variance of the identified local LTI
models is also neglected.

Notations. The matrix

X1 0 0
0 0
0 0 Xn

will be denoted diag(X7, ..., X n) if the elements X; (i =
1,...,N) are scalar quantities while it will be denoted
bdiag(Xy, ..., Xn) if the elements X; (i = 1,...,N) are

matrices.

2 Identification Procedure
2.1 True System

We consider the identification of a Single-Input Single-
Output (SISO) LPV system i.e. a SISO system whose
parameters vary with time as a function of an exogenous
variable, the so-called scheduling variable p(t). We as-
sume that p(¢) is a scalar signal that we can manipulate
for identification purpose and that can vary in a given
scheduling interval [pmin, Pmaz]- The considered SISO
LPV system is as follows:

y(t) = g(t) +v(t)

with A(z, ¢ (p())) §(t)
and D(z,¢°(p(1))) v(t)

= B(z,C(p®)) ult) (1)
= O C(p(1) €(t)

with u(t) the input signal, y(¢) the measured output and
e(t) a white noise signal of variance o2. In (1), A(z,¢Y),
B(2,¢%),C(z,¢%) and D(z,¢°) are polynomials in the de-
lay operator 2~! and having arbitrary orders: A(z,¢%) =

14a027 +.. . +a8 2", B(2,¢%) = 2™ (b + 102~ +
.. .b%bzfnb), C(Z7CO) =1 + 0(1)271 + ...+ C%CZ*nc and
D(z,¢%) =1+dz'+.. .+dj 2™ The vector ¢° in (1)

is a column vector of dimension n 2 Ng+np+1+n.+ng
containing the coefficients of the four polynomials de-
scribing the LPV system i.e. af, ..., b] ..., d3 . All the
entries (¥ (i = 1,...,n) of (° depend on the scheduling
variable p(t) as follows:

) =5 He) i=1.n (@)
=0

where n, is an arbitrary order and f;(p(t)) (j =
0,...,np) correspond to a set of unisolvent basis
functions, e.g. fi(p(t)) = p’(t) (see e.g. [8]). In (2),
we suppose that n, is the same for each entry ¢
(i = 1,..,n) in order to simplify the notations (this
is nevertheless not a necessity). Let us define by
00 = (¢L0:Cas---5 €))7 the vector of dimension

= (np + 1)n which contains all the time-invariant
coefficients of these polynomial expansions. The rela-
tion between #° and the time-varying parameter vector
¢%(p(t)) can thus be expressed as follows:

¢“(p(1)) = T(p(t)) 0° 3)

for a given matrix T'(p(t)) of dimension n x k which is
uniquely function of f;(p(t)) (j = 0,...,np). In the se-
quel, we will assume that the structure of the LPV sys-
tem is known i.e. that n,, ny, nk, n. and ng are known
in (1) and that n, is known in (2). Under this assump-
tion, the parameter vector §° entirely describes the LPV
system.

2.2 LPYV system identification using the local approach

We will now show how we can deduce an estimate 8
of #° using the local approach for LPV system identifi-
cation and how we can evaluate the accuracy of this es-
timate 6. The first step of this local approach consists of
performing a certain number (say M) of so-called local
LTT identification experiments (m = 1,..., M) [21].

Let us describe one of these local LTI identification
experiments. We first bring the scheduling variable to
a given constant value (or operating point) ppy,. Then,
while maintaining the scheduling variable at this operat-
ing point p(t) = pm, we apply an input sequence u(t) =
um(t) (t = 1,...,N,) of spectrum ®,, . to the LPV sys-
tem (1). The duration of the experiment is thus denoted
by Np. By measuring the corresponding output y(t) =
ym(t), we obtain the data set Z,, = {um(t), ym(t) | t =
1,...,N,} 1. Since p(t) is kept constant to pm during
the local LTI experiment, the dynamics of the true sys-
tem (1) can be represented by the following LTT sys-

1 The time index is set back to one at the beginning of each

local LTT identification experiment.



tem described by the time-invariant parameter vector
Co(pm) = T(pm)HO:

y(t) = G(2,¢"(Pm)) ut) + H(z,¢°(Pm)) e(t)  (4)

with  G(z,{) = B(z()/A(2,¢) and H(z/()
= C(z,()/D(z,¢). For the sequel, it is important to
observe that, due to the independent parametriza-
tion of the four polynomials, the vectors (°(pm) and
6% can be split into a part that uniquely appears in
the plant transfer function G and one that uniquely
appears in the noise transfer function H. We will dis-
tinguish these two parts by the subscripts G and H,
respectively. Consequently, (4) can be rewritten as
y(t) = G(z, 6 (Pm)) u(t) + H(z, (Y (Pm)) e(t) with:

( %<pm>> _ <Tg<pm> 0 ) (6%) )
71 (Pm) 0 Tu(pm)) \ 0%

Based on the data set Z,,, and a full order model struc-
ture M = {G(z,{) H(z,() | ¢ € R"} for the LTI rep-
resentation (4), we determine an estimate (,, of (°(pm)
using prediction error identification [16]:

Z

A 1
(m = argmin — €2 (t,0) (6)
m ( Np - m

o
Il

with €,(t,¢) = H71(2,0)(ym(t) — G(2,)um(t)). This
estimate has the following asymptotic distribution: ¢, ~
N(C°(Pm), Pc,m) where the covariance matrix P ,,, > 0

can be estimated from the data Z,,, and ,,, [16]. Note fur-
thermore that P ,,, has the following theoretical expres-

. o2 (& -1
sion: Pem = 5 (E (Ym(t,¢"(Pm)) ¥y, (£ C°(Pm))))
with 9, (t,¢) = -2 and with Ex(t) =
limpy, 00 Nizyz”l Ex(t) (E is the expectation oper-
P

ator) [16]. Using this expression, we observe that the
covariance matrix P¢ ,, has a block-diagonal structure:
Pe o = bdiag(P.m, Peym) and the block-diagonal
elements of P ,, have the following expressions:

N, 1 (™ . )
-1 _ ‘'p w * w
PCva - 2 (271’ [w Fu,m(ej )Fu,nb(ej )(I)um (w)dw)
(7)

(V)

Pt = (g5 [ Pen @I Eite o) (5

2 J_,
. 1 0G(2,4c)
with Fy m(2) A om)) s ca=Co (Pm

_ 1 OH(z,CH)
Fem(2) = H(2,C% (Pm)) OCr ¢ =G (Prm)-

The above procedure is repeated for M different val-
ues of py (m =1, ..., M) yielding M independent esti-
mates (,, and their respective covariance matrix FP¢ .

) and

We will assume that the durations of these M local LTI
experiments will be all equal to N,, but that the spec-
trum @,,  of the input signal can be chosen differently in
these M experiments. Indeed, the LTI representation (4)
will be different for each py, and it makes thus sense
to use a different input spectrum for these different LTI
systems. In the sequel, we will use the shorthand nota-

tions PM 2 {pP1,...,pm} for the set of M operating
points at which the local LTT identification experiments

are performed and ®(PM) £ { @y, Py,, } for the
set containing the input spectra used in these local LTI
identification experiments.

The M local LTT identification experiments constitute
the first step of the local approach for LPV system identi-
fication. The estimates C, of C°(pm) (m = 1, ..., M) ob-
tained in this first step will then be used in a second step
to determine an estimate 6 of the time-invariant param-
eter vector % using the mapping (3). In the literature,
the estimate 6 is generally deduced using an ordinary
least-squares criterion [15,20,24]. This simple approach
is not optimal since it does not take into account the rel-
ative accuracy of the different estimates ém (i.e. the co-
variance matrices P ,,,). Since, in this paper, the accu-
racy of 0 is a central aspect, we propose to instead use a
generalized least-squares (or weighted least-squares) cri-
terion (see the following theorem). Even though such an
estimator is quite classical in estimation theory, it has,
to the best of our knowledge, never been used before for
the second step of the local LPV identification approach.
Theorem 1 Consider expression (2) with unisolvent
basis functions f;(p(t)) and the mapping (3). Suppose
that M local LTI identification experiments have been
performed at the operating points PM = {pP1,...,PMm}
yielding M independent estimates Cp, of C(Ppm) =
T(Pm)0°® (m = 1,..,M). Suppose furthermore that
these M independent estimates have the following dis-
tribution: G ~ N(C%(Pm), Pe.m). Then, if and only if
the set PM contains at least ny + 1 different operating
points, we can deduce the following estimate 6 of °:

M -1/ wm
0= <Z T7 (Pm) Pim, T(pm)> (Z T" (Pwm) P, §m>
m=1 m=1
) (9)
and this estimate 6 has the following properties:
(1) 6 ~ N(0° Py) with a strictly positive-definite co-
variance matriz Py given by:

M -1
P0 = <Z TT(pm)Pg_JlnT(pm)> ) (10)

(2) the estimator (9) is the one leading to the smallest
variance among all unbiased estimators using the

given set of observations Cum, (m=1,..,M).



¢8 ()T and
T 2 (TT(p1),...,T"(pm))T, we can write that
¢ ~ N(T° P;) with Ps a strictly positive definite
block-diagonal matrix given by bdiag(P¢ 1, ..., Pe ).
We can also equivalently write that f = T6° + 6 with
§ ~ N(0,FP). By multiplying this equation on both
sides by the square root S of the inverse of P (i.e.
PC_1 = STS), we obtain:

Proof.  Denoting

SC=ST0° +6 (11)

with § 2 $6 having a distribution 6 ~ A(0, Inar) (Inas
denotes the identity matrix of dimension nM). Due to
the distribution of #, the best linear unbiased estima-
tor (BLUE) for #° is the ordinary least-squares estima-
tor based on the observation Sf and the regressor ST
[12,16]. This estimator is given by

6= (T78"sT) " (T7575¢) (12)

and we observe that this estimator is equivalent to (9).
In [16, Appendix 2], it is shown that, since J is nor-

mally distributed, the estimate § has also a normal dis-
tribution. By inserting (11) in (12), we see that the ex-
pected value of 0 is equal to 69 and that its covariance
matrix Py is equal to (77 STST) ~! Which is equivalent
to (10) in the statement of the theorem. The condition
that PM contains at least ny + 1 different operating
points py, is an important condition since it guarantees
that 6 can effectively be determined. Indeed, this condi-
tion is a necessary and sufficient condition for 7 to be
full column rank when (2) is constructed with unisol-
vent basis functions. A full column rank 7 in turn en-
sures that 77 ST ST = TTPC_LT is strictly positive def-
inite and thus invertible in (12). This also equivalently
ensures that Py is strictly positive definite.

We still have to prove that the best linear unbiased
estimator (9) is also the best unbiased estimator i.e.
the estimator leading not only to the smallest variance
among all linear unbiased estimators, but, in fact, among
all unbiased estimators. For this purpose, we prove that
the covariance matrix (10) of (12) corresponds to the
Cramer-Rao bound which is the lower bound for the
covariance matrix of all unbiased estimators. For this
purpose, we recall that the Cramer-Rao bound is given

by J°! with J = E (—%log f(9)|9=90) with E the
expectation operator and f(6) the probability density

function of the observation vector S¢. In our case, since

g ~ N(O, InM)a f(@) = ln]\/l e—O.S(f—TH)TSTS(é—Té‘).
(2m) "2~

Thus, J = E(T"P7'T) = ﬂP{lT since T is fully

deterministic. We thus effectively see that J~! is given

by (10) and thus that the second property given in the
statement of the theorem holds. ]

Remark 1. For the properties of Theorem 1 to hold, N,
must be chosen sufficiently large since these properties
require ém to be normally distributed and the latter is
an asymptotic property in N,

Remark 2. It follows from the proof of Theorem 1 that, if
the basis functions in (2) are not unisolvent, the result in
Theorem 1 will still hold, but then under the condition
that the considered set PM yields a full column rank ma-

trix 7 2 (TT(p1),...,TT(pm))T. In this case, choosing
a set PM with n, + 1 different operating points will not
necessarily be sufficient to guarantee this property of 7.

The estimate 6 in (9) and its covariance matrix Py have
some interesting structural properties that will be used
for the design of the optimal experimental conditions.
The first structural property is the following one. Sup-
pose that, based on M; local LTT identification experi-
ments at operating points {p1, ..., pm, } (containing at
least n, + 1 different values), we have obtained, via (9),

an estimate él for 6y with a certain covariance matrix Py,
that can be computed with (10). Suppose also that,
subsequently, we have performed additional local LTI
identification experiments at {pPm;+1;--->PM;+Ms}
(those operating points should not be necessarily dif-
ferent from the ones in {pi1,...,pm,}). Then, the
expression (10) for the covariance matrix Py of the
estimator (9) corresponding to the M = M; + Ms op-

erating points {pP1,..., PM;, PMy+1s- - s PM;+M, } €an
be rewritten as:

My+Ms

P9:<ng+ 3 TT<pm)Pg,LT(pm>> (13)

m=M-;+1

where F¢ ,, is the covariance matrix of the estimate CAm
of the m'" experiment (such as in Theorem 1).

The second property pertains to the structure of Py
(see (10)). First, observe that its inverse P, ' is the sum-
mation of a contribution of each local LTI experiment.
Moreover, Py has, like P¢ ,,, a block-diagonal structure.
Indeed, using (5), Py = bdiag(Py,,, Py, ) with:

_ M P 1 m

Poit = Xomet T& )P T (Pm) (14)
B M T P:" Ta(Pm

Payl - ZTYL:l }’Z;(p ) émlyH (p )

with Peym and Py, . as defined in (7) and (8), re-
spectively. The matrix Py, Cl; is, via (7), a linear function
of @, (m=1,...,M). This property will be important
to formulate the optimal experiment design problem in
a convex way.

Remark 3. As already mentioned, in the above iden-
tification procedure, we have supposed that we know
the structure of the LPV system. For this purpose, we
not only have to know the order of G(z,¢) and H(z,()
in (4), but we also have to correctly know the order n,
in (2). Like for the choice of the orders of G(z,()



and H(z,(¢) [16], the choice of n, can be validated a-
posteriori by testing the whiteness of the residual signals
em(t, T(pm)0) (m = 1,..., M) and/or the whiteness of
the residual vector S(C — T6) (see the notation of (11)).

3 Optimal experiment design for LPV system
identification using the local approach

3.1 Definition of the optimal experiment design problem

The local approach for LPV system identification
presented in Section 2.2 involves a number of (impor-
tant) experimental choices. Firstly, we have to deter-
mine the number M and the set of operating points
PM = {py,...,pm} at which local LTI identification
experiments will be performed. Second, we have also to
determine the set ®(PM) = {®,,,...®,,,} of spectra
that will be used in these local LTI experiments. The
duration IV, of the local experiment will be considered
fixed a-priori (note nevertheless that N, will have to be
chosen larger that a given threshold (see Section 3.2)).

In the sequel, we will develop a method in order to
make these experimental choices in an optimal way. An
objective of this optimal design will be to guarantee that
the estimate 0 satisfies some accuracy constraint(s). Like
in [5,17,10,18], the considered accuracy constraint(s) will
be of the form P, Y'> Rugm where Ragm > 0is a given
matrix of dimension k. If R,4, is chosen as the diagonal

1

matrix diag (ﬁ, ..., 2= ), we impose that the standard
1

deviation of each entry 6; of 0 is smaller than ;. We
can also impose constraints on the accuracy of the lo-
cal LTT system corresponding to an arbitrary operating
point p. This local LTT system is described by (4) with a
parameter vector (°(p) = T(p)#°. The estimate of this
parameter vector is ép = T(p)é and its covariance ma-
trix is equal to T(p)PyT7 (p). We can e.g. impose an
accuracy constraint on the frequency response of this lo-
cal LTT model by slightly modifying the result in [5], but
a constraint on the accuracy of ép can also be formu-
lated as (T'(p)PyT" (p)) ™' > Radm,c where Rogm,¢ > 0
is a given matrix of dimension n. This accuracy con-
straint can be rewritten, using Schur complements [7],
as P, ' > Ryam with Rogm = TT(P)Radm,cT(p) > 0.
Such a constraint can of course be imposed for differ-
ent values of p. We may thus have multiple constraints
Pgl >R, (j=1,...,J). We will assume that all

R > 0 have a block diagonal structure like Py i.e.

adm
R]

adm

curacy constraints that 6 will have to satisfy are:

= bdiag(Ridm’G, Ridm’H). Consequently, the ac-

Pl >Ry o d=1,....0 (15)

Ppl>RL, yoi=1,...,] (16)
with Py, and Py,, as defined in (14).
We are now ready to formalize our optimal experi-

ment design problem for the local LPV identification
approach.

Optimal experiment design problem: determine the
experimental conditions M, PM, and ®(P™) in such
a way that the corresponding LPV identification exper-
iment is the emperiment that uses the least input en-

ergy J = Np Zm 127 f_ um

ing that the covariance matriz Py of the estimate 0 sat-
isfies the accuracy constraints (15) and (16).

Like in the LTT case, the solution of the above opti-
mal experiment design problem requires the knowledge
of the true parameter vector §° and the true noise vari-
ance o2 since Py, and Py, in (15)-(16) depend on §°
and o2 (via (7)-(8)). These unknown quantities have thus
to be replaced by initial guesses obtained e.g. via an ini-
tial LPV identification experiment. We will discuss this
further in Section 4.

It is also to be noted that, since Ra dm
bdiag(R) 4, s Rigm.r) > 0, the constraints (15)
and (16) imply that P‘g_1 is strictly positive-definite.
The set PM solving the above optimal experiment
design problem will therefore contain at least n, + 1
different operating points since the latter is a necessary

(and sufficient) condition for (10) to be strictly positive
definite (see Theorem 1).

3.2  Determination of the optimal spectra for fixed op-
erating points

As we will see in the sequel, it is interesting to first
consider the above optimal experiment design problem
for the particular case where M and PM have been de-
termined a-priori. The optimal spectra ®,,;(P™) can
then be determined as the solution of the following op-
timization problem:

w)dw while guarantee-

bject to (15) and (16 17
@r(rllgn)j subject to (15) and (16) (17)

The properties of this optimization problem will be given
in Theorem 2. Note beforehand that, in order to sat-
isfy (16), the duration N, of each local LTI identification
experiment must in any case satisfy:

—1
M
Np > mjax Amaz (ZXH(pm)> szdm,H

(18)
with Apas (A) the largest eigenvalue of A and X (py) 2

TZ (Drn) (% I7 Fopn(e®)Er (efw>dw) Trr (pm) (m =
1,...,M).

Theorem 2 Suppose that both M and the set PM =
{p1,...,PMm} are fized. Suppose also that this set PM
contains at least n, + 1 different operating points (see
Theorem 1). Consider the optimization problem (17) and
denote by Topt (M, PM) the optimal cost of this optimiza-
tion problem for the fited M and PM. Then, a necessary
and sufficient condition for (17) to have a solution is the
condition (18). When (18) holds, the optimization prob-
lem (17) is equivalent to the following convex optimiza-



tion problem:

(I’I(nln J  subject to (15) (19)

If (18) holds, the optimal cost Jopt(M,PM) of (17) is
thus also the optimal cost of (19) and the value of this
optimal cost does not depend on the chosen value for Np.
Proof. The constraints (16) do not depend on the deci-
sion variables ®,, (m =1,..., M) and have thus only to
be satisfied. A necessary and suPﬁc1ent condition for (16)
to be satisfied is that (18) holds [18]. Consequently,
when (18) holds, the optimization problem (17) is equiv-
alent to (19). Note that both J and P_1 are linear
in the products N,®,,, (m =1,...,M). Consequently,
for fixed Np, the optlmlzatlon problem (19) is convex.
Moreover, if we make, in (19), the changes of variables
®,,, = Np®,,, (m=1,..., M), we obtain an optimiza-
tion problem that is independent of IV,. Consequently,
the value of the optimal cost Jop: (M, PM) will not de-
pend on the chosen value for N,,. [ |

The fact that the optimal cost Jo,¢ (M, PM) does not
depend on the choice of IV, justifies why N, is not con-
sidered as a design variable in this paper.

In order to solve the convex optimization problem (19)
in an efficient manner, we need a parametrization for
the spectra &, (m =1,...,M). Here, we will use the
following parametrization [11] that corresponds to the
spectrum of a signal that is generated by a white noise
filtered by an arbitrary FIR filter of degree L (L is a
user-chosen parameter):

L

O, (W) =cmo+2 Z Cm,i cos(iw) (20)
i=1

The positivity of (20) for all w can be imposed by a Linear
Matrix Inequality (LMI) constraint on the coefficients
¢m,i (i = 0,...,L) [11]. These coefficients will become
the decision variables of the optimization problem (19).
With (20), the objective function J in (19) is given by
N, Z%Zl Cm,0 [6,11] which is a linear function of the
decision variables. Moreover, P;_ ' (see (7)) can also be
expressed as a linear function of the decision variables
¢m,i (i = 0,...,L) [6]. This property in turn makes of
P, ! (see (14)) a linear function of the decision variables
¢m,i (1 =0,..,L) (m = 1,...,M). Consequently, with
the parametrization (20), the optimization problem (19)
can be solved using LMI optimization techniques [7].
3.8 Selection of the operating points

Let us now consider the original optimal experiment
design problem of Section 3.1. For simplicity, we will as-
sume that the local identification experiments can only
be performed at the Mg, points in a fine grid perid —
{P1,. -, PM,uq} Of the continuous scheduling interval
[Prmin, Pmaz]- In other words, we assume that the set

PM can only be chosen as a subset of P84, Under the
above assumption and using the notation of Theorem 2,
the cost J,p: of the optimal LPV identification exper-
iment is the minimal value of J,,:(M,PM) among all
subsets PM of P&rid that contains at least n, + 1 op-
erating points (see Theorem 1). We have then the fol-
lowing result: J,,: can be obtained by solving (19) with
M = Mgriq and with PM — perid Ty other words,
Topt = Topt(Myria, PE4). This result follows from the
facts that the quantities which depend on the experi-
ment in (19) are J and P, ! and that, for each LPV
experiment with local LTI experiments at the points in
a strict subset of P& we can find a (mathematically
equivalent) experiment with local LTI experiments at all
points in P84 that exactly lead to the same 7 and Pe

Indeed, let us consider an arbitrary experiment charac-
terized by spectra ®% (m =1,..., M) and a set PM*
which is a strict subset of Pgml (i.e. M < Mgy,;q) and
which contains at least n, + 1 different operating points.
The equivalent experiment with local LTI experiments
at all points in P84 and that leads to the same J and
Pe_Gl is e.g. an experiment with input spectra equal to

®*  for the py, that are also in PM* and equal to 0 for
the other M ;g — M points.

Since Topt = Topt(Mgrid, Perid) 4 solution of the op-
timal experiment design problem of Section 3.1 is an
experiment characterized by M = Mgiq4, PM — perid
and the spectra obtained as the solution of (19) with
M = Mgyiq and PM — perid Thig gaid, it is never-
theless important to observe that, due to the particular
structure of the optimization problem (19), its solution
when M = Mg,;q and PM — perid i) generally be
sparse i.e. many of the spectra ®,, will be identically 0.
Indeed, since J must be minimized, power will only be
injected at those operating points that allow to obtain
the maximum information on #°. This phenomenon can
presumably also be explained by the fact that the cost
function J has a [1-norm structure and it is frequently
observed that such cost functions, when minimized un-
der convex constraints, generate a sparse solution (see
e.g. [22]).

Suppose for further reference that the spectra @, of
the solution of (19) when M = Mg,;q and PM — Pgrld

are nonzero for the M operating points in the subset
pM 2 {P1,...,Pm} of P& and denote by ®(Py)
the set of these M nonzero spectra (M < M, grid)- Ob-
serve that local LTT identification experiments for which
®,,.. = 0 neither contribute to the cost J nor to the
accuracy P !, Consequently, the LPV identification ex-
periment characterized by M, Py and ®(PM) is also
a solution of the optimal experiment design problem of
Section 3.1 i.e. this experiment has also a cost Jop+ and
satisfies the constraints (15). Since it will always be pre-
ferred to perform an LPV identification experiment with
a small number of local LTI identification experiments
and that performing local identifications with ®,,, =0
does not make sense, the LPV experiment character-



ized by M, PM and ®(PM) will be the experiment that
will be deemed optimal and that will eventually be per-
formed. L L

Remark 4. To determine M, PM and ®(PM), we thus
solve the optimization problem (19) with M = My,q
and PM = Perid, This optimization problem has a so-
lution for all values of IV,,. However, as shown in Theo-
rem 2, this solution is also the solution of (17) only if (18)
holds. We can thus follow the above procedure for the se-
lection of M, PM and ®(P™) with an initial value of N,,.

Once PM determined, we can verify whether this initial
N, satisfies the condition (18). If that is not the case, N,
will have to be increased to a value N, o satisfying (18)

and the spectra in ®(PM) scaled with a factor ]\J,\;”Q .
Remark 5. When solving (19) with M = My,;q and
PM = perid 45 proposed above, it can be of interest to
add the following constraints to the optimization prob-
lem: N, ¢mo < o (Mm = 1,..., Mgriq) with a,, some
user-chosen scalar constants. These constants a,, > 0
(m=1,..., Mgy;q) can reflect the maximal energy that is
allowed to apply at each operating point py,. Moreover,
choosing a relatively small «,, at operating points pm
that are difficult to reach will favour the choice of other
operating points. Note that, if we want to absolutely
avoid some operating points, we can also remove those
operating points from P89, It is also to be noted that
the additional constraints Np, ¢m,0 < uy, will (generally)

modify the obtained solution M, PM and ®(PM).

Remark 6. If, for a specific situation, the spectra of the
solution of (19) with M = Mg,;q and PM — psrid ¢
nonzero at all My,;q operating points (i.e. we obtain a
non-sparse solution), it is important to stress that the
corresponding LPV experiment with Mg, ;q local LTT ex-
periments is nevertheless the solution of the optimal ex-
periment design problem of Section 3.1 (under the as-
sumption that PM must be chosen as a subset of P&id).

4 Dependence of the solution on §° and o2

As in all experiment design problem, the optimal LPV
identification experiment can only be determined using
the procedure in the previous section if we know the true
parameter vector # and the true noise covariance o2.
Indeed, the covariance matrix Py depends on 6% and o2
(via (7)-(8)). Since #° and o2 are of course unknown,
they must consequently be replaced by some estimates
in the expression for Py.

Suppose for this purpose that we have performed a
first LPV identification experiment using an arbitrary
set PM1 and arbitrary spectra ®(PM1). From the M;

estimates ém deduced from this initial LPV experiment,
we can deduce an initial estimate 62, of o2 using the

estimator 62, = - M (ﬁ SN 2 (¢, ém)) as well
as an initial estimate 6; of 6° via the estimator (9). We
can therefore also deduce an estimate of the covariance

7 ¥j, no need to proceed

matrix Py, of ;. If Pe_l1 >R,
with optimal experiment design. However, if it is not

Fig. 1. Optimal power spectrum ®,,,, for pm = 0 (blue solid),
for pm = 1.5 (red dashed) and for pm = 8 (black dashdot)

the case, we will perform a second LPV experiment and
we will design the local LTI identification experiments
of this second LPV experiment in an optimal way. For
this purpose, we will replace §° by 6, and o? by &5’1 in
the expression for Py and we will replace the constraints
P;/Y>R, by Pt >R, — Pgll in the procedure
of Section 3. Recall indeed that the covariance matrix
Py corresponding to the combination of the initial LPV

experiment (i.e. the one yielding 61, 62, and Py,) and
the additional LPV experiment is given by (13).

Remark 7. The initial LPV experiment will also be gen-
erally used to determine optimal values for the orders
Na, M, Ne, Mg and n, of the LPV model structure (us-
ing e.g. the procedure of Remark 3). Consequently, it is
good practice to distribute the operating points in PM1
over the entire scheduling space and to choose M; not
too small. Indeed, M; should be larger than n,, + 1 with
the actual value of n, in (2), value that remains uncer-
tain when designing the initial LPV experiment.

5 Numerical example

We will now illustrate our results by considering a
true LPV system having the form (1) and described
by the following polynomials: A(z,¢") = 1 + af271,
B(z%) = 8§ 2L, C(2,¢%) = 1 and D(z, (p(1))) =
1+ dY 2!, We further assume that the variance o2 of
e(t) in (1) is equal to 0.5 and that we have a linear depen-
dence of the parameters on the scheduling variable p(t)
(np = Land f;(p(t)) = p’()): a} (p(t)) = —0.9+0.1p(t),
b3(p(t)) = 10—1 p(t) and df(p(t)) = —0.7+0.08 p(t). We
have thus ¢O(p(t)) = [a%(p(t)), W3(p(t)), d9(p(t))]? and
0° = (-0.9, 0.1, 10, —1, —0.7, 0.08)T. The scheduling
interval [Pmin DPmaz] is here given by [0 8].

In this example, we wish to determine an estimate 6 of
0% with a guaranteed standard deviation for each entry

of §. We therefore choose Roqgm = diag (%, . %) with
1 6

o1 =0.003, 03 = 3.33 x 1074, 03 = 0.0333, 04 = 0.0033,
o5 = 0.1167 and o = 0.0133 (see Section 3.1).

We suppose that the local LTI identification ex-
periments can only be performed at the My,;q = 17
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Fig. 2. Modulus of the frequency response of G(z,(o(Pm))
for pm = 0 (blue solid), for pm = 1.5 (red dashed) and for
Pm = 8 (black dashdot)
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Fig. 3. Histogram of the optimal cost J,p+ of the second
experiment for the 500 Monte-Carlo simulations

operating points obtained by gridding the scheduling
interval [0 8] with a fixed step of 0.5 i.e. P&rid =
{0,0.5, ...,7.5, 8}. Finally, the input power spectra
®,, . of the local LTT experiments are all parametrized
as in (20) with L = 10 and the duration N, of these
local LTT identification experiments is initially posed to
N, = 1000.

In order to solve the optimal experiment design prob-
lem of Section 3.1, we first determine the spectra ®,,, of
an LPV experiment with Mg,;q local LTT identification
experiments by solving the optimization problem (19)
with M = My,;q and PM = P&"id_ We indeed know (see
Section 3.3) that this will deliver the optimal cost J,p:.
We first perform this optimization by computing the co-
variance matrices (7) using the exact values of % and
of 02 and we obtain Topt = jopt(MgMd7Pgrid) = 3511.
Moreover, we observe that the obtained spectra @,
(m = 1,...,17) are nonzero at only three values (i.e.
Pm = 0, 1.5 and 8) of the 17 operating points in P&rid,
The nonzero spectra at p,, = 0, 1.5 and 8 are given in
Figure 1. These spectra correspond to an input energy
Nps= [" @, (w)dw = 1019 at pm = 0, an input en-
ergy of 1349 at py, = 1.5 and an input energy of 1143 at

PM jopt(Mva)
PM = {0, 1.5, 8} 3511
PM = {0, 5.5} 7904
PM = {0, 8} 18388
PM = {1.5, 8} 32764
PM = {0, 1.5} 57451

Table 1
Topt (M, PM) for different choices of P™

Pm = 8. The Bode diagrams of the corresponding LTI
transfer functions G(z, (o(pm)) are given in Figure 2. We
observe that, since the dynamics of the LTI systems are
quite different for these three values of py,, the optimal
spectra ®,, are also quite different. ~

Let us thus consider the LPV experiment with M = 3
local LTI experiments at PM = {0, 1.5, 8} and with the
spectra ®(PM) given in Figure 1. Since N, = 1000 sat-
isfies (18) for PM = {0, 1.5, 8}, this LPV experiment
is the solution of the optimal experiment design prob-
lem defined in Section 3.1. This LPV experiment is thus
the experiment with the least input energy that delivers
an estimate § whose covariance matrix Py satisfies the
constraint P, LS Rudm.

It is interesting to note that the optimal LPV ex-
periment is characterized by three local LTI identifica-
tion experiments. Consequently, in this example, the op-
timal LPV experiment is characterized by more local
LTT identification experiments than strictly required by
the condition of Theorem 1. Indeed, according to Theo-
rem 1, n, + 1 = 2 experiments at different py, are suffi-
cient to obtain a strictly positive-definite Py and thus to
satisfy the accuracy constraints for some NV, and &, .
To further illustrate this, we have computed the costs
Jopt (M, PM) that are obtained by solving (19) for all
possible subsets PM of P&"d containing two operating
points (i.e. M = 2). The minimal value of this cost is
equal to 7904 and is obtained for PM = {0, 5.5}. We ob-
serve that this cost is, as expected, (much) higher than
Jopt = 3511. In Table 1, we also compare the optimal
cost Jopt = 3511 to the costs Jopi (M, PM) obtained for
some other sets PM with M = 2. We observe that the
costs Jopt (M, PM) can become very large in some cases.

Until now in this example, we have supposed that we
know 6° and o2 in order to compute the expression of the
covariance matrices. In practice, # and o2 are of course
unknown and we have instead to follow the procedure of
Section 4. This procedure starts with an arbitrary initial
LPV experiment. Here, we assume that this arbitrary
LPV experiment is characterized by M; = 4 local LTI
experiments with N, = 1000 and PM: = {0, 3, 5.5, 8}
(see Remark 7). The input spectra ®,, used at these
four operating points are all equal to ®,, (w) = 0.75
Vw. The cost J of this initial LPV experiment is thus
equal to 3000 and this initial LPV experiment delivers
an initial estimate f; of 6°, an initial estimate 62, of



02 and an initial covariance matrix P, that does not
satisfy the desired accuracy constraint. Consequently,
it makes sense to optimally design the additional LPV
experiment that is necessary to obtain an estimate 0
satisfying the accuracy constraint. As proposed in Sec-
tion 4, we follow almost the same procedure as in the
case where 0 and o2 known, but we now compute the
covariance matrices using the approximations #° ~ él,
66 1~ O’ and we replace Ryam by Raoam — Pp. L The
optlrnal second experiment will therefore depend on the
obtained initial estimates 6, & 62, and Py,. In order to
analyze this dependency, we have performed 500 Monte-
Carlo simulations. For each Monte-Carlo simulation, we
have performed the four initial local LTT experiments
at PM1 = {0, 3, 5.5, 8} with different realizations of
the white-noise input signals and different realizations
of the noise signal e, we have deduced the estimates él,
62, and Py, and performed the optimal design of the
second LPV experiment as presented in Section 4. We
have observed that, for these Monte-Carlo simulations,
the obtained set PM can vary, e.g. PM = {0, 1.5, 2, 8}

or PM = {0, 1.5, 8}. The optimal cost Jopt of this sec-
ond LPV experiment will also vary for different Monte-
Carlo simulations as shown in the histogram presented
in Figure 3. The obtained values for this cost have a
mean of 1741 while the maximal value is 2319. We ob-
serve that this cost is smaller than previously. The de-
sired accuracy Rggm is indeed here obtained by combin-
ing this additional LPV experiment with the initial one.
In other words, this second LPV experiment is the one
with the least input energy that guarantees that the es-
timate é, which is determined by combining both this
second LPV experiment and the initial one, has a co-
variance matrix satisfying PQ_1 > Ruam. Let us also note
that, for the worst of the 500 Monte-Carlo simulations,
the total input energy used to obtain a sufficiently ac-
curate estimate is equal to 3000 4+ 2319 = 5319. This
energy is of course larger than the cost Jop = 3511 that
we have obtained in the ideal case where ° and o2 are
known. However, it is much smaller than the cost that is
necessary to obtain P, > Rugm using the experimen-
tal conditions of the initial experiment. Indeed, in order
to satisfy P, LIS Ruqm using local LTT experiments at
PM: — {0, 3, 5.5, 8} with a white noise having the
same power for all four experiments, we have to choose
®,, (w) =247Vw (m =1, ...,4) when N, = 1000. This
corresponds to a cost J = 9880.

Finally, we have verified that, despite the use of the
initial estimate, the approach presented in Section 4
yields, in the vast majority of the Monte-Carlo simula-
tions, an acceptable estimate 6 of 6°. Recall for this pur-
pose that P, s Radm implies that (0 QO)TRadm(F) —
0%) < (9 - HO)TP 1(0 — 6°) and recall also that (6 —
00T Pyt (0 — 6°) < 12.6 with probability 95%. Conse-
quently, we can deem that 0 is an acceptable estimate of
0° if (8 —0°)T Rygm (0 —6°) < 12.6 and we have observed

that this is indeed the case in 499 of the 500 performed
Monte Carlo simulations.

Let us now return to the case where 6° and o2 are
known and recall that the solution is then character-
ized by an input energy of 1019 at p,, = 0, an input
energy of 1349 at p,, = 1.5 and an input energy of
1143 at pm = 8. Let us now suppose that, for security
reasons, the input energy cannot be larger than 1000
at any operating point. In this case, we have to con-
sider the extra constraints described in Remark 6 with
& = 1000 (m = 1,...,17) and to solve the optimiza-
tion problem (19) with M = Mg,;q and PM — perid
with these extra constraints. The obtained spectra ®,,,
(m =1,...,17) are then nonzero at five values (i.e. pm =
0, 1.5, 2, 7.5 and 8) and the corresponding input ener-
gies at those five operating points are respectively 1000,
1000, 334, 209 and 1000. As expected, the total input
energy Jopt = 3543 is larger than the original one (i.e.
3511). It is also interesting to note that the maximum
allowed energy is used at the operating points that had
been selected in the original setting (i.e. the one without
energy constraints).

Let us now also consider another situation i.e. the sit-
uation where the operating points py,, > 5 are much
more difficult to reach. In this case, the original solution
with an experiment at p,, = 8 can be problematic. Let
us therefore solve the optimization problem by removing
from P&id the operating points pm > 5. With this al-
ternative setting, we obtain PM = {0, 1, 4.5}. We thus
avoid the operating point py,, = 8 that is more difficult
to reach, but the price to pay is an important increase
in the cost i.e. J,pt = 7357. Consequently, the operating
point pm = 8 seems quite important in this example to
obtain the desired accuracy with low input energy.

6 Concluding remarks

This paper presents the first results of optimal ex-
periment design for the identification of LPV systems.
In this paper, we have restricted attention to the local
approach for LPV system identification where a single
scheduling variable is maintained constant at different
operating points. Future work will consider the case of
multiple scheduling variables. Indeed, if the approach of
Section 3.3 based on a gridding of the scheduling space
can in theory also be applied for that case, the complex-
ity will increase and it is therefore interesting to inves-
tigate whether other approaches could be developed for
the selection of the optimal operating points. We also
wish to investigate optimal experiment design for the
global approach for LPV system identification. Indeed,
the particular choice for the variations of the scheduling
variable(s) in the local approach (i.e. successive constant
values) is not guaranteed to be the optimal one in or-
der to obtain the most information on the time-invariant
parameters #° describing the LPV system. We will also
continue our work towards accuracy constraints inspired
by LPV control objectives.
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