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ABSTRACT

Multibody kinematics optimization (MKO) aims to reduce soft tissue artefact (STA)
and is a key step in musculoskeletal modeling. The objective of this review was to identify
the numerical methods, their validation and performance for the estimation of the human
joint kinematics using MKO.

Seventy-four articles were extracted from a systematized search in five databases
and cross-referencing. Model-derived kinematics were obtained using either optimization
or Kalman filtering to minimize the difference between measured (i.e., by skin markers,
electromagnetic or inertial sensors) and model-derived positions and/or orientations.
While hinge, universal and spherical joints prevail, advanced models (e.g., parallel and
four-bar mechanisms, elastic joint) have been introduced, mainly for the knee and
shoulder joints. Models and methods were evaluated using: (i) simulated data based,
however, on oversimplified STA and joint models; (ii) reconstruction residual errors,
ranging from 4 mm to 40 mm; (iii) sensitivity analyses which highlighted the effect (up to
36° and 12 mm) of model geometrical parameters, joint models, and computational
methods; (iv) comparison with other approaches (i.e., single body optimization and non-
optimized kinematics); (v) repeatability studies that showed low intra- and inter-observer
variability; and (vi) validation against ground-truth bone kinematics (with errors between
1° and 22° for tibiofemoral rotations and between 3° and 10° for glenohumeral rotations).
Moreover, MKO was applied to various movements (e.g., walking, running, arm

elevation).



Journal of Biomechanical Engineering

Additional validations, especially for the upper-limb, should be undertaken and
we recommend a more systematic approach for the evaluation of MKO. In addition,
further model development, scaling and personalization methods are required to better

estimate the secondary degrees-of-freedom.

KEYWORDS

Kinematic chain, joint model, skin markers, optimization, Kalman filter, validation,

state-of-the-art

1. INTRODUCTION

There is a growing use of multibody kinematics optimization (MKO) to estimate
human joint kinematics from stereophotogrammetry or other motion analysis systems,
such as electromagnetic sensors or inertial sensors. While innovative approaches are
emerging (e.g. markerless, sensorless or single camera) for motion analysis, they are not
commonly used in biomechanics because their accuracy in in-situ complex movements
has not yet been well established [1]. MKO is a key step in musculoskeletal modeling, but
it is also used in kinematic and dynamic analyses of human movement with the aim of
compensating for soft tissue artefact (STA).

Referred to as ‘global optimization’, ‘multibody optimization’, ‘inverse kinematics’

or ‘motion reconstruction’ according to the field of research, the method is referred to as
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MKO in the present study. This diversity of both terminology and research fields may
explain the lack of reviews on this topic. Note that two overviews — although not
systematic nor systematized — have recently been published regarding kinematic models
of the upper [2] and lower [3] limb used in MKO. MKO simultaneously determines the
pose of all segments while enforcing the constraints imposed by various joints in a unique
optimization process. By contrast, other kinematics optimization methods (e.g., singular
value decomposition method [4], solidification procedure [5], point cluster technique [6],
optimal common shape technique [7]) consider each segment independently. They are
referred to as single-body kinematics optimization (SKO). MKO requires a model of the
osteo-articular system as a kinematic chain, i.e. a series of rigid segments connected by
joints, allowing a specific number of degrees-of-freedom (DoFs) to the model. Several
joint mechanisms have been developed [2, 3] and combined in MKO models. An
exhaustive list with their rationale, performance and numerical implementation may help
orient the future developments.

The main principle of MKO is to minimize the difference between measured and
model-derived skin-marker trajectories (or sensor orientations and positions, velocities
etc.) which are subject to some rigid body and kinematic constraints. However, several
numerical methods can fulfill this one principle. Their relevance depends on the design
variables (i.e., inputs of the optimization problem), objective function, constraints,
resolution algorithm, initial guess, etc. Typically, both constrained optimization and
Kalman filters have equivalently been implemented as MKO. Kalman filters apply a two-

stage predictor-corrector procedure in which the system and measurement models are



Journal of Biomechanical Engineering

used to predict the expected progression of the system states, output and error
covariance matrix, which are subsequently corrected by the measurement.

The model-derived kinematics largely depend on the modelling choices and joint
kinematics accuracy is not well established. The purpose of this systematized review was
to identify the numerical methods and evaluate their performance to estimate human
upper and lower limb joint kinematics using MKO from commonly used systems
(active/passive makers, electromagnetic and inertial sensors). A secondary objective was

to identify the different fields of application of MKO.

2. METHODS

2.1. Search strategy

An electronic search was performed in October 2016 in Embase, Medline,
PubMed, Scopus, and Web of Knowledge. Logical expressions for the search included
‘optim* or kalman’, ‘kinemat* or joint’, ‘subject or human’, and ‘model* or
over*determ®*’. The search was performed on the title, keywords and abstract. The
reference lists of key studies were also cross-referenced (i.e., articles either cited in or
citing these studies) to obtain further articles. All years of publication were considered.
2.2. Inclusion and exclusion criteria

Articles retrieved from the search strategy were appraised by one author
according to the following inclusion- exclusion criteria. Only studies in English that

reported kinematic results were included. Studies published as conference proceedings,
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studies concerning single body or under-constrained optimization, estimation of joint
centers or axes, predictive simulation, studies presenting methods whose outcome is not
joint or segment angles, studies performing markerless, sensorless or single-camera
motion analysis, studies on cadaveric specimens, animals, robots or machines, studies

focusing solely on finger, foot, or spine were omitted.

2.3. Quality assessment

A customized checklist of 15 questions was developed based on previous reviews
in the field of biomechanics [8-10] to assess the quality of the methods proposed by the
studies included in the present review (Appendix, Table S1). Each question was rated zero
(no information), one (limited details) or two (satisfying description or justification) or
indicated non-applicable (this applies only to questions Q5, Q6, Q7, Q8 and Q10 about
experimental setup, evaluation and statistics). Each study was independently evaluated
by one of three reviewers (no reviewer evaluated articles he co-authored). Conformity
was previously obtained using a sample of 20 articles evaluated by all three authors

followed by a discussion to understand and mitigate the difference.

2.4. Information extraction

To answer the two aforementioned questions (what are the numerical methods?
and what is the type of validation of the MKO?), the following themes were listed and
each was addressed by one reviewer: design variables and objective function, constraints

and model geometric parameters, resolution algorithm and initial guess, evaluation
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strategy, reference data, and degree of agreement. In order to meet the secondary

objective, an additional theme was the field the application of the MKO.

3. RESULTS

3.1. Search yield

The search results were in Embase: 865 articles, Medline: 803, PubMed: 187,
Scopus: 940, Web of Knowledge: 688. After removing duplicates, the number of articles
was 1577. After applying the exclusion criteria, 52 articles were selected for the review
and 22 additional articles were obtained by cross-referencing. With all our attempts of
logical expressions of keywords, the variety of expressions used in the literature for
describing the “multibody kinematics optimization” made the search incomplete without

cross-referencing.

3.2. Quality assessment

The scores of quality ranged from 13 (43.3%) to 30 (100%), with a mean score of
23 (76.7%). N/A was occasionally indicated for questions Q5, Q6, Q7, Q8 and Q10 for
studies not performing any evaluation, evaluating MKO on simulated data only (i.e., no
participants involved), or that did not perform statistical analyses. A score of 0 was
indicated in 22 articles for the question Q13 about the quality of the stated limitations.
Substantial variability was reported in writing style and article structure between journals

dealing with different fields such as biomechanics, robotics, ergonomics, computer
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animation, etc. The relevant information may, therefore, sometimes be difficult to

retrieve and subject to the reviewer interpretation.

3.3. Numerical methods

Two categories of methods were found in the included studies, namely
constrained optimization and Kalman filters. In this review, we consider unconstrained
optimization as a special case of constrained optimization. For sake of clarity and
comparison between the two categories, the references for the design variables and the

constraints of the optimization are grouped in Tables 1 and 2.

3.3.1. Constrained optimization

As stated in the introduction, the main principle of MKO is to minimize the
difference between measured and model-derived skin-marker trajectories (or sensor
orientations and position, velocities, etc.). The next subsections describe the design
variables, the objective function, the constraints and initial guess of the optimization

problem used in MKO.

3.3.1.1 Design variables

In most cases, the design variables optimized by MKO are joint angles (Table 1).
As when using Kalman filters (see section 3.3.2), the number of joint angles and the
number of DoFs are the same (i.e., generalized coordinates) and no rigid body or

kinematic constraints are required except in the case of additional closed loops [11-13].
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Nevertheless, quaternions and rotations matrices were also proposed for numerical
convenience as well as natural coordinates (i.e., Cartesian coordinates of points and
components of axes describing the segments). The design variables can also include the
model’s geometric parameters (i.e., segment lengths, position of joint centers and

orientation of joint axes, position of markers embedded in the segments).

Table 1: Design variables of the MKO problems

Variables Occurrence Constrained Kalman filter
optimization
Generalized coordinates 20+6 [12-32] [11, 18, 33-38]
Velocities 2+6 [32,39] [11, 33-38]
Accelerations 2+6 [32,39] [11,33-37]
Jerk 1 [40]
Rotation matrices 9+1 [41-49] [37]
Natural coordinates 8 [50-57]
Quaternions 5 [32,58-61] [37]
Model parameters 4+3 [14,62 ]* [33-35]
[16, 22]t

* within a large-scale optimization (one vector that concatenates time-varying coordinates at all sampled
instants of time and constant model parameters)
T two-level optimization

3.3.1.2 Objective function

Unless inertial [59] and magnetic [21] sensors are used, the objective function
used in all studies is the sum of the squared distances between measured and model-
derived skin-marker positions. One study replaced the measured skin-marker by virtual
markers representing the segment coordinate systems obtained by a SKO [31]. In many
studies, some marker weights are introduced in the objective function [14, 23, 29-32, 41-

9
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43, 45, 48, 50, 61]. The weights are generally defined according to the marker residuals
resulting from a first optimization performed without weights or based on reported
amount of STA. In two studies [29, 31], marker weights were chosen so that every
segment had an equal weighting. Another rationale for the estimation of marker weights
was introduced by [27 ], considering the projection of the markers onto a selected axis to
cancel the marker (and corresponding STA) effect on this DoF.

Alternative objective functions include the sum of the squared errors between
measured (i.e., computed from skin markers without optimization) and model-derived
joint angles [12, 63], the sum of the squared errors between measured (i.e., obtained
from inertial sensors) and model-derived attitude vectors [59], or the weighted sum of
the squared errors between measured (i.e., obtained from magnetic sensors) and model-
derived positions and attitude vectors [21].

Some penalty terms were also appended to the objective function in order to
consider ‘soft’ kinematic constraints, especially for defining deformable ligaments [12, 51,
54, 56] or an elastic joint [43, 57]. A unique study also introduced the sum of the length
variations of the musculo-tendon elements as a penalty term [14]. Another study
penalizes the knee adduction-abduction [16]. Generally speaking, all terms of the
objective function can be considered as ‘soft’ constraints, i.e. the skin-marker positions
(or sensors orientation) defining a set of so-called driving constraints to be minimized [24,

50, 56, 61].

10
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3.3.1.3 Constraints

According to the choice of the design variables, in case they are not independent
of one another, some rigid body constraints must be considered such as the norm of the
quaternions, the orthogonally of the rotation matrix, and the constant distances and
angles between points and axes describing the rigid segments in case of natural
coordinates (Table 2). When the design variables are joint angles, their choice implicitly
defines the DoFs of kinematic chain in accordance with the Denavit-Hartemberg
convention or Euler/Cardan angles. This means that the joint models are typically defined
as spherical, universal or hinge. In this case, the joint angles are sometimes bounded in a
physiological range. Otherwise, the kinematic constraints must be defined explicitly as it
is specifically done for complex joint models such as parallel or four-bar mechanisms.
These kinds of joint models typically include constant length of various ligaments. Other
kinematic constraints for complex joints include sphere-on-plane, sphere-on-sphere and
point-on-ellipsoid contacts. These kinematic constraints for ligaments and articular
contacts are used to model the shoulder, knee and ankle joints. Another possibility is to
prescribe coupling equations between the DoFs. Additional kinematic constraints can
represent closed loops not within the kinematic chain itself, but with accessories like
paddles or footrests [11]. All the aforementioned kinematic constraints stand for ‘hard’
(deterministic) constraints. As previously explained, the definition of ‘soft’ constraints
relies on the introduction of penalty terms in the objective function. This was typically
proposed for some ligaments [12, 51, 54, 56], some scapulothoraric and glenohumeral

articular contacts [12, 43] and closed loops with the environment [11].

11
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The absence of kinematic constraints was implemented as a marginal case of MKO

equivalent to a SKO. When the model geometrical parameters are part of the design

variables, in the same way as the joint angles, they are sometimes constrained and/or

bounded within a physiological range.

Table 2: Constraints in the MKO problems

Constraints Occurrence Constrained optimization Kalman filter
Spherical, universal or hinge 26 + 5T [13, 14, 16-19, 21-23, 25-27, [11, 18, 33, 35,
32,48, 49, 58, 60, 62, 64-71] 36, 40]
7% [18, 42, 43, 46, 47, 58, 61]
Joint Parallel or 4-bar mechanisms 5 [52, 53, 55, 70, 72]
Sphere-on-plane 6 [51, 52, 54-56, 72]
Sphere-on-sphere 1 [53]
............... Pointon-ellipsoid 3. .. 022051
chr:Straints N Norm of quaternion 2 (32, 61]
Rigid body Matrix orthogonality 1 [45]
,,,,,,,,,,,,,,, Segment distances/angles* 2 BosA
Conoid 2 (12, 20]
Cruciate 7 [51, 52, 54-56, 70, 72]
Ligament  Collateral 6 [51, 52, 54-56, 72]
Patellar 1 [72]
Tibiocalcaneal and calcaneofibular 3 [52, 70, 72]
Norm of quaternion 1 [37]
Ligament length 4 [12, 51, 54, 56]
S,Oft cons.tra?nts Elastic joint 2+1 (43, 57] [37]8
(in the objective
function) Musculo-tendon length 1 [14]
Knee abduction 1 [16]
Closed-loop with accessories 1 [11] (11
Bounds Joint range 4 [11, 19, 26, 73]
Model parameters 2 [16, 62]
Equations Joint Coupling motion 12+1 i:ire[?62,6754,77t]80]; Knee [40]
No constraints 5 [51, 52, 54, 75, 81]

T implicit constraints defined through generalized coordinates
¥ explicit constraints (e.g. combined with natural coordinates)
* in case of natural coordinates

§ spherical joint with penalties on the translation
Note: some references can be cited in different categories since the model includes several joints and
authors may have implemented different models.

12



Journal of Biomechanical Engineering

3.3.1.4 Initial guess and model geometric parameters

The definition of the initial guess of the optimization process is rarely detailed in
the reviewed studies, particularly when the design variables are the joint angles.
Nevertheless, the solution for each sampled instant of time can be used as the initial guess
for the next one [25]. In MKO based on quaternions or rotation matrices, the initial guess
at each sampled instant of time is often defined as the kinematics resulting from SKO
applied to the skin markers [44, 58]. MKO based on natural coordinates reported an initial
guess of the points and axes describing the segments similarly obtained from the skin
marker positions at each sampled instant of time [52, 56, 72]. As these natural
coordinates enclose additional information about the segment geometry, the definition
of the model geometrical parameters is also commonly derived from this initial guess by
averaging segment lengths, position and orientations of joint centers and axis over all the
sampled instants of time. Alternatively [11, 13, 15, 17, 23, 24, 27, 31, 47, 48, 63], optimal
joint centers and axes can be defined using functional methods (e.g., SARA and SCoRE
algorithms [82, 83]) from dedicated movements. When segment geometry is part of the
design variables [14, 16, 22, 62], the geometry is optimized for the movement of interest.
Nevertheless, most of the model geometrical parameters are generally defined using the
skin marker positions put on bony landmarks in a static posture [23, 41, 42, 47, 49, 69].
Interestingly, one study compared two static postures and demonstrated that the model-
derived kinematics is highly affected by the chosen posture [49]. It is, however, in a static

posture that generic models are generally scaled to fit the subject anthropometry. Scaling

13
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is usually based on segment dimensions [28-31, 39, 84] but more complex
transformations (i.e., affine or interpolations) based on skin marker positions can also be
used [12, 53, 60]. Other scaling strategies rely on geometric fitting of some skin marker
positions in multiple static postures [20]. Finally, scaled, generic models are increasingly
replaced by subject-specific models. Most of the time, the personalized bone and joint
geometries are obtained from magnetic resonance imaging [43, 70, 75, 78, 85], computed
tomography [66, 67, 80] or bi-plane radiography [51]. Personalization of the coupling
equations between the knee DoFs [80] and personalization of the patellar ligament length

[66] were also implemented using fluoroscopy data.

3.3.2. Kalman filters

As in constrained optimization, Kalman filtering has also been applied for
movement reconstruction. The original Kalman filter [86] was developed for optimal
estimation of the system state for linear dynamical systems subject to zero-mean,
Gaussian process and measurement noises. Advanced Kalman filter approaches have
subsequently been developed to cope with nonlinear systems [87], such as extended and
unscented Kalman filters as well as Kalman smoothing, which is an offline estimation

approach, where the measurements are filtered both forward and backwards in time.

3.3.2.1 State variables
In all reviewed papers except [37], the state variables contain the generalized joint

coordinates with their number matching the number of DoFs of the system and a

14
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specified number of time derivatives, typically up to accelerations, but there are also
studies which include up to the velocities or up to jerk (Table 1). Additionally, Cerveri et
al. [34] introduced the local coordinates of markers and joint centers (and their
derivatives) in the state variables to enable their online estimations. When the
measurements come from inertial sensors and not 2D or 3D markers, state variables were
expressed in different ways. Miezal et al. [37] included the translations and orientation of
the inertial sensors, their linear and angular velocities and linear accelerations in the state
vector. Alternatively, they included the translation and orientation of the segments plus

the angular accelerations in the state vector.

3.3.2.2 System models

The system model (or process model) is constructed from a Taylor series
expansion such that the highest order derivatives included in the state variables are
considered constant. The noise on the system model is modelled as a zero-mean,
Gaussian process noise with a specified covariance. Cerveri et al. [35] described how this
can be determined as a function of the dynamic content of the system variables, if known.

Alternatively, it can be updated online [33].

3.3.2.3 Measurement models
Depending on the measurements available, different measurement models have
been developed. When skin marker trajectories are measured, the measurement model

expresses the relationship between the state variables and the measured marker

15
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coordinates, which can either be in the 2D camera image reference frame [33-35] or the
3D laboratory reference frame [40]. As a part of the measurement model, the geometry
of the assumed underlying model must be included. This involves the determination of
the joint centers and local marker coordinates in technical reference frames. Cerveri et
al. [33-35] accomplished this using a standing reference trial and anthropometric
measurements, as it is typically accomplished in clinical marker-based analyses. Besides a
reference trial, Jackson et al. [18] performed functional trials from which joint centers
were determined. Contrary, De Groote et al. [40] used a cadaver-based musculoskeletal
model as the template and scaled it linearly to the dimensions of the subject and hereby
differences in joint alignment between the subject and the cadaver were not accounted
for. In the cases where inertial sensors are used [38] to measure the movements, the
measurement model relates the state variables to the measurements from the available
sensors such as gyroscopes, accelerometers, magnetometers etc. The measurement
model can also be used to enforce constraints which are required for the formulations
that do not use generalized joint coordinates in the state vector [37] or which include closed-loop
111). This is the typical way to implement penalty-based methods (i.e., ‘soft’ constraints)
in Kalman filters.

The measurement noise is modelled as a zero-mean, Gaussian noise with an
assumed covariance and is used to specify how confident the user is in the filter prediction
compared to the measurements. Choices for the parameters are included in some of the
reviewed papers [33-36], but the sensitivity of the predictions to these parameters have

not yet been reported.

16
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3.3.2.4 Initial condition

In the Kalman filters, an initial values of the state vector and an initial estimate of
the state covariance matrix are required. Contrary to the constrained optimization
approaches, that require an initial guess of the variables at each instant of time and use
these to search for an optimal solution, the initial conditions in the Kalman filter specify
the solution at the first frame. Subsequent frames evolve from this frame and ideally
converge to the expected state estimates within a short time period. As a result, the
estimated time evolution of the state variables depends directly on this initial condition.
However, the initial condition was only clearly defined in 4 of the 10 papers involving
Kalman filtering [11, 35-37]. In all these, the pose was determined in a starting
configuration and all required time derivatives were assumed to be zero. The initial guess

of the state covariance matrix was not detailed in any of the reviewed papers.

3.4. Evaluation and validation of the model-derived kinematics

Almost all studies, except four, include an evaluation of the optimized kinematic
results. However, the results were evaluated using different strategies. The evaluation
strategies include assessments using simulated data, reconstruction error, sensitivity
analyses, repeatability studies, comparison between various approaches or algorithms

and validation against reference data (Table 3).

17
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Table 3: Types of validation of the MKO. Subcategories are explained in the notes

(*,1.%)
Type of validation Occurence Constrained optimization
and Kalman filter
Simulateddata & [22,33,37,40,44,45,48,50]
Residual error 3D positions 13 [11, 13-16, 21, 24, 32, 35, 47, 50, 61,
64]
________________________ 2Dpositions .2 ..I3333) .
Sensitivity Monte Carlo [60, 67-69, 72, 77, 85]
analysis Geometrical parameters* 7 [13, 17, 20, 60, 63]; [78, 80]
eeeeeeoee.......dointconstraints 6 (13,41,46,52,56,79] ...
Comparison MKO vs SKO and no optimization 10 [8, 23, 26, 31, 34, 45, 46, 61, 71, 74]
________________________ Constrained optim. vs Kalman filter 2 __[1L,400 .
Repeatability Intra-subject 2 [16, 29]
eereeeo_______Inter-observer 1 el
Validation against  Optoelectronic systemst 5 [36-38, 59, 88]
reference data Palpation 2 [12, 53]
Bone kinematics¥ 12 [27, 39, 54, 81] 50; [43, 49, 57, 66, 76];
_________________________________________________________________________________ (53,551
None 4 (19, 25, 42, 73]

Notes: the references are organized as follow:
* regression versus functional methods; generic versus personalized
T in case of inertial and magnetic measurement units
¥ intracortical pins; dynamic stereo-radiography; and biplanar X-rays

3.4.1 Evaluation using simulated data

Some innovative algorithms for MKO were initially tested using simulated data,

often as a proof of concept (e.g., convergence and calculation cost), where noise is added

to the reference kinematics. This noise, modelling the STA, was almost always defined as

random and continuous components initially proposed by [5]. A summary of noise

parameters for the lower limb can be found in [28]. Generally, MKO showed a good ability

to cope with this simulated noisy data, highlighting the relevance of innovative algorithms

or their superiority over conventional methods (see section 3.4.4).

18
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3.4.2 Reconstruction error

Nearly a quarter of the experimental studies reported the mean residual error on
the marker positions. This metric derives from the objective function and was used to
compare different models and methods, marker sets or levels of personalization.
Similarly, Cerveri et al. [33, 35] also reported the reconstruction error in pixels relative to
the marker 2D position in each camera image reference frame. In essence, a large range
of residual values were found (4-40 mm) according to the complexity of the kinematic
chain model (e.g., upper-limb or full body), the degree of personalization and the

movement of interest.

3.4.3 Sensitivity analyses

Most sensitivity analyses focused on uncertainties of continuous variables (e.g.,
segment length, position of joint center) and used Monte Carlo methods. Different sets
of geometrical parameters obtained by regression versus functional methods or scaled
generic versus personalized models were also compared. Additionally, the effect of
different joint constraints was widely assessed.

Although each study used different ranges of uncertainty and different metrics,
resulting standard deviation in model-derived joint kinematics reached up to 36° and 12
mm [72]. Sensitivity analyses demonstrated that STA had the most deleterious effect on
hip gait kinematics [28, 77], while errors in bony landmark location resulted in moderate

effects [69, 72, 77, 85]. Moreover, sensitivity of MKO to reduced marker sets [15, 64]

19
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showed good performance with less than three markers per body segment. Yet, MKO
cannot limit the discrepancy attributed to different marker sets [29].

In terms of model geometry, functionally located centers of rotation for the hip,
knee, and ankle gave slightly modified joint angles [63], while functionally determined
axes and centers of rotation on the upper-limb resulted in larger pronation-supination
range of motion [13, 17]. Prinold and Bull [20] showed that shoulder models without
appropriate scaling of the ellipsoid resulted in kinematics spikes during pull-ups.

Joint constraints affect the resulting joint kinematics, especially the secondary
(also called combined) DoFs like knee abduction or rotation [41, 46, 52, 79]. Joint

constraints also affect the location of the knee lateral and medial contact points [56].

3.4.4 Comparison between approaches or algorithms

Multiple comparative studies were carried out between MKO, SKO and joint
kinematics estimated without optimization. Only two studies compared constrained
optimization and Kalman filtering. Some features favoring MKO over SKO or non-
optimized kinematics were inter and intra-observer repeatability [16], robustness to
marker mislocation [71], and avoidance of joint dislocations [45, 61, 79]. Most studies
reinforced the conclusion that the effect of joint constraints is more pronounced on the
secondary DoFs of gait [23, 46, 74]. Comparisons between constrained optimization and
Kalman filtering showed that the benefit of Kalman filtering is not visible on the joint angle

time histories but, unsurprisingly, on the velocities and accelerations [11, 40].

20



Journal of Biomechanical Engineering

3.4.5 Repeatability studies

Only two studies reported the repeatability of the MKO approach [16, 29]. MKO
showed a lower intra-subject and inter-observer variability than the commonly used
Newington—Helen Hayes gait model for clinically significant output variables (joint angles,
forces and moments) [16]. Moreover, using MKO, the inter-trial variability was consistent

across different marker sets [29].

3.4.6 Validation against reference data

Only 12 of the 74 studies validated the optimized kinematics against a gold
standard, which consists of ground-truth bone kinematics of upper or lower-limbs
obtained using either intracortical pins, dynamic stereo-radiography, and biplanar X-rays.
Interestingly, the study of Seth et al. [39 ] is the only one that did not assess the ability of
MKO to reduce STA but rather the bio-fidelity of the model, i.e. its capacity to replicate
errorless skeletal kinematics.

When validated against reference data on asymptomatic subjects, the typical
errors for the model-derived tibiofemoral rotations were between 1° and 22° and
between 1 mm and 8 mm during squat, stair ascent, gait and running movements and the
errors were maximal for internal-external rotation, anterior-posterior and proximal-distal
displacements [51, 54, 55, 57, 81]. A detailed outline of the errors for the model-derived
tibiofemoral kinematics can be found in [3]. Typical errors for the model-derived
glenohumeral rotations were between 3° and 10° during arm flexion and abduction and

the errors were maximal for internal-external rotation [27, 43]. Studies have highlighted
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that detailed (i.e., including ligament constraints) [54, 55] and subject-specific [51, 66]
knee joint models are required to accurately estimate the secondary knee DoF kinematics.
Indeed, hinge or spherical joint models led to larger errors than non-optimized kinematics
or double calibration [49, 81].

In terms of technologies, comparisons were performed between inertial and
magnetic measurement units and optoelectronic systems (although not a ‘gold standard’,
authors consider this as the method of reference). For the upper limb, especially for the
scapula, two studies compared the model-derived kinematics with manual palpation

(again, here, considered as a reference method).

3.5 Fields of application

MKO applications include clinical and sports biomechanics (Table 4). Gait,
especially walking in a straight line but also with changes in direction, have been the most
studied movements (~50% of the studies). Other activities of daily living involving the
lower extremities like stair descent/ascent, sit-to-stand motion, manual wheelchair
transfer, and generic reach and steering movements involving the upper limb were also
of interest. Analytical movements of the upper-limb (arm elevation and rotation as well
as elbow flexion and pronation-supination) were studied. Studies including analytical
movements of the lower-limb were less frequent. Regarding sports biomechanics, several
movements were assessed, namely running, jumping, side-cutting maneuvers, squats
and, in an isolated manner, pull-up, movements on a slideboard, in gymnastics, fencing,

and kayak.
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Table 4: Fields of MKO applications. Subcategories are explained in the notes

(*,1,%8,")
Activities Occurrence Constrained optimization and Kalman filter
Daily living Lower-Limb : Walking* 37 [16, 22, 25, 28-31, 33, 35, 38, 40-42, 45-47, 52, 56, 59-
activities 62,67-72,74,75,77-81, 85, 88]; [66]
Lower-Limb: others* 7 [46, 49, 57, 58, 70]; [49, 70]
_______________________ Upperdimb¥ 4 [6a;(35,50h[s0
Analytical Lower-limb 4 [22, 34, 49, 62]
_movements _ Upperfmbs 14 | [12, 18, 20, 21, 27, 43, 48, 53]; [13, 17,19, 36, 48, 73] _
Sports activities  Lower-limb’ 10 [54, 76]; [24, 58, 84]; [23]; [51, 55, 59, 65]
Upper-limb (pull-up) 1 [20]
Whole body” 4 [59]; [15]; [33]; [11]

Notes: the references are organized as follow:

* Straight walking; Walking with change in direction

T Stair descent/ascent; Sit-to-stand

¥ Manual wheelchair transfer; Generic reach; Steering movements

§ Arm elevation and rotation; Elbow flexion and pronation-supination
" Running; Jumping; Side-cutting maneuvers; Squats

" Slideboard; Gymnastics; Fencing; Kayak

While the main objective of the MKO has been to obtain accurate joint kinematics
by reducing the STA, a unique group of researchers focused on the dissociation of the
bone and soft tissue kinematics to estimate the movement of the wobbling mass [24].
These authors state that since the accelerations of the bones and soft tissues are
different, it influences the joint dynamics [89, 90]. Moreover, some studies explored other
benefits like the ability to use a reduced marker set [15, 64]. Indeed, compared to the
methods which model segments independently (i.e., six DoFs each), the joint constraints
reduce the number of DoF number in the model. Consequently, fewer markers are
required to estimate the joint kinematics. Limited marker sets may be useful when it is
anticipated that markers will be occluded by the movement itself (e.g., body in tuck or

pike postures).
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Only eight studies evaluated the performance of MKO on a pathological
population, namely patients with knee osteoarthritis [51, 55], knee ligament deficiency
[76, 80], knee prosthesis [49, 66], and cerebral palsy [75, 78]. Pregnant [41, 42], post-

menopausal women [67] and elderly [46] were also studied.

4. DISCUSSION

In light of the emerging development and application of MKO algorithms, this
article aimed at reviewing the MKO methods and models as well as their validation for
estimating upper and lower limb joint kinematics, and their fields of application in terms

of activities and outcomes, leading to the following synthesis.

4.1 Methods and models
4.1.1 Implementation

Constrained optimization and Kalman filters can be equivalently implemented as
MKO to obtain model-derived joint kinematics. Without joint constraints, MKO is
equivalent to SKO and Kalman filters have also already been used in this case (e.g., [91]).
However, constrained optimization seems to be more suitable for complex joint models,
and closed loops. The choice of the design variables, generalized or natural coordinates,
is based on numerical convenience and many have been proposed in the literature.
Generalized coordinates (joint angles) are commonly used with hinge or spherical joints

and natural coordinates with more advanced joint models such as parallel mechanisms.
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Still, velocities and accelerations are rarely included in the state variables [32, 39],
although their inclusion ensures that a dynamically consistent solution can be found,
which is essential for dynamics.

In addition, with few exceptions [25, 30], constrained optimization is generally
performed off-line. Conversely, Kalman filtering is typically a real-time method except in
the case of Kalman smoothing [40]. The implementation of constraints in Kalman filters is
not trivial unless done through penalty-based methods [11, 37]. Because the state
variables include the velocities, accelerations and sometimes the jerks in addition to the
generalized coordinates, the Kalman filter provides joint kinematics without
discontinuities by integrating the time domain. Nevertheless, many gains (i.e., system and

measurement covariance matrices) must be tuned to avoid divergence.

4.1.2 Joint models

One important issue in the MKO is the definition of the joint models. This section
summarizes both constraints in the constrained optimization and state variables in the
Kalman filters. Other literature reviews, although not systematic nor systematized
reviews, have been published on this particular topic where additional upper limb joint
models have been listed [2, 92, 93]. In addition, a historical perspective for the
introduction of the different lower limb joint models as well as their anatomical

significance have been presented [3].
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4.1.2.1 Upper limb

The types of joints adopted within upper limb modelling generally include an
open-loop kinematic chain including universal sternoclavicular, elbow and wrist joints and
a spherical glenohumeral joint [17, 19, 21, 33, 64]. In this case, no acromioclavicular joint
was modelled, with only a clavicle segment linking the thorax and humerus. Alternatively,
sternoclavicular and acromioclavicular joints were modelled as spherical [13, 18, 27, 43].
Elbow and wrist joints were modelled as hinge and spherical, respectively [14, 35] or both
spherical [48, 58, 65]. Additionally, to allow for glenohumeral translations, two studies
considered six DoFs [25, 48], while another considered translations as ‘soft’ constraints
[43]. Conversely, closed loops with a scapulothoracic (point(s)-on-ellipsoid) joint [12, 20,
53], and with humeroradial (spherical), humeroulnar (linear annular) and radioulnar
(spherical) joints [13] were also proposed. Other joint models relied on the definition of

scapular and clavicular rhythms [39, 65].

4.1.2.2 Lower limb

The types of joints selected for lower limb modelling generally include spherical
hip, hinge knee and universal ankle joints [11, 22, 25, 32, 42, 60, 62, 66-69]. The universal
joint at the ankle was either modelled as concurrent or, more physiologically, non-
concurrent axes to account for both talo-crural and subtalar joints [22, 25, 40, 60, 62, 66,
69, 70]. Alternatively, spherical hip, knee and ankle joints have been also widely used in

MKO [16, 23, 46, 47, 49, 58, 61, 71], where only the translations were constrained. A
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unique study modelled the knee joint as universal [26] while another considered six Dofs
[31]. Parallel mechanisms or four-bar mechanisms were also proposed as more realistic
models for the knee [52, 55, 70, 72] and ankle joints [52, 70, 72], seldom with deformable
ligaments [51, 54, 56]. Few studies modelled the knee joint with both tibiofemoral and
patelloferomal mechanisms [60, 66, 72]. Other models of knee [40, 65, 74-80] and ankle
joints [65, 74, 79] relied on the definition of coupling equations between the flexion-
extension and the other DoFs. ‘Soft’ constraints that defined deformable ligaments with
a penalty-based method were also proposed [51, 54, 56]. The minimization of the elastic
energy defined by the knee joint stiffness matrix was another penalty implementation

[57].

4.3 Validation and performance

The performance of MKO has been assessed using various approaches that can be

sorted in six categories of relevance:
i) Algorithm reliability using simulated data: The main aim of MKO is to reduce,
using a priori knowledge of joint mechanisms, the rigid component of the STA
(i.e., the rotation and translation of the marker-cluster relative to the bone).
This rigid component is the main cause of the joint dislocations obtained in the
estimated kinematics [94, 95]. Consequently, we recommend including more
realistic STA models (e.g., [96, 97]) when the algorithm reliability is assessed

using simulated data, as recently performed by [28]. Also, simulated marker

27



i)

Journal of Biomechanical Engineering

28

trajectories that derive from models with simplified joint mechanisms, cannot
fully illustrate the benefit of MKO over SKO or non-optimized kinematics.
Residual errors of marker positions: As discussed by some authors (e.g., [61]),
marker residuals may represent the amount of STA but also the adequacy
between the kinematic chain (i.e., number of DoFs and geometrical
parameters) and the skeleton. Nevertheless, reducing the number of DoFs,
e.g., by defining closed-loops [13, 39], without increasing the marker residual
may indicate a higher biofidelity of the model. Marker residuals should not be
considered as a validation but we recommend providing the range of values
with comparison to reported STA range [10].

Sensitivity analysis: Sensitivity analyses are essential to evaluate how
uncertainties propagate to joint kinematics as well as to determine the
geometrical parameters that most affect the model output. These parameters
are typically the ones to be personalized. While geometrical parameters may
be defined based on medical images [51, 68, 70, 75, 78], this approach is time-
consuming and costly for clinical application. Moreover, descriptive anatomy
is not always consistent with functional anatomy, especially for complex joints
[98]. Development of techniques for non-homogenous scaling [12, 20, 60, 65]
and parameters identification before [17, 60] or simultaneously with the
motion of interest [14, 16, 22, 62], should be continued. Sensitivity analysis on

the numerical parameters of the MKO such as the weights of penalty terms in
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constrained optimization [56] and covariance of the process noise in Kalman
filters should also be generalized.

Kinematics comparison with various noninvasive methods: Without joint
constraints, MKO is equivalent to SKO. Both differ from non-optimized
kinematics (sometimes called direct kinematics [8, 29, 30] although it
corresponds to an inverse kinematics approach stricto sensu) which is most
affected by STA. Most of the differences in the joint kinematics can be
attributed to the introduction of the joint constraints but also to the different
definition of anatomical frames that can associated to each method [31, 75].
In the comparative studies, differences are usually expressed in terms of root
mean square (RMS) differences. Robinson et al. [23] also compared the time
histories of the joint angles using statistical parametric mapping [99]. This
statistical approach may be more informative about the phases of the
movement with large differences between models. The main limitation of
comparative studies comes from the lack of a gold standard. Often, the
commonly used approach (e.g., non-optimized kinematics) serves as a
reference. However, the objective of MKO is to solve limitations coming from
commonly used approaches, such as joint dislocation and changes in segment
length.

As stated by [75], the repeatability of new model needs to be assessed before
being introduced clinically. By constraining the joint kinematics to

physiological motions, the feasible region is smaller and the solution less
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sensitive to STA. While Charlton et al. [16] showed that MKO outperforms
commonly used models (e.g., Newington—Helen Hayes gait model) in terms of
intra-subject and inter-observer repeatability, further studies are required to
confirm the clinical relevance of MKO.

Validation against ground-truth bone kinematics: While only 12 studies
assessed the MKO accuracy against ground-truth bone kinematics, other
approaches (i.e., SKO and non-optimized kinematics) also have not extensively
been validated using gold standard measurements. The main reason is the
scarcity of datasets including several makers (or sensors) and bone kinematics.
A recent initiative to provide open source benchmark data [100] should be
commended. To evaluate the degree of agreement between model-derived
and measured joint kinematics, Richard et al. [57] used a Bland and Altman
analysis [101]. Such statistical approaches of agreement may be more
informative than root mean squared errors and coefficient of determination.
Since only 3 out of the 12 validation studies deal with the upper-limb, such

validations should be multiplied in the future.

4.4 Beyond kinematics

In combination with body segment inertial parameters and ground reaction

forces, model-derived joint kinematics have been used to calculate joint moments [21,

23, 30, 40, 42, 46, 61, 68, 70, 77, 85] and variables that derive from musculoskeletal
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models (e.g., musculo-tendon forces or joint contact forces [12, 14, 25, 28, 60, 66, 68, 70,
77, 80, 84, 85]) or in combination with finite-element models (e.g. femoral strain [67]).
Joint constraints reportedly affected less joint kinetics than kinematics [46, 69] in
gait, but significant differences were found in side-cutting maneuvers [23] and upper-limb
movements [13]. Moreover, STA [28, 77] and joint constraints [70, 84] had an effect on
musculo-tendon and joint contact forces. Kalman filters compared to constrained
optimization can lead to more physiological joint moments [40]. While about 17% of the
studies reported musculoskeletal variables, additional 30% introduced or discussed the
need of MKO for musculoskeletal applications. Unless when Kalman filters are used [40]
or when wobbling masses are specifically included in the modelling [89], MKO generally
has a limited effect on joint moments. The main effect on musculo-tendon and joint
contact forces seems to come directly from the number of DoFs of the musculoskeletal
model [70, 84, 102-104] and this has to be taken into account when defining the joint

models.

5. CONCLUSION

This systematized review has highlighted a variety of MKO algorithms and of joint
models, including advanced mechanisms, especially for the knee and shoulder joints.
However, the ability of MKO to accurately estimate joint kinematics depends on both
models (e.g., joint constraints, geometrical parameters, etc.) and methods (e.g.,

weighting, initial condition, etc.) to prevent deleterious effects of STA on the secondary
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degrees-of-freedom, often associated to pathologies. Model personalization requires
further developments to better estimate these secondary DoFs. MKO has been assessed
in several ways but only 12 out of 74 studies included validation against ground-truth
bone kinematics. Additional validations, especially for the upper-limb, should be
undertaken.

We recommend a more systematic approach for the evaluation of the MKO
algorithms, in agreement with the best practices proposed for musculoskeletal models
[105, 106]: (i) Assess the biofidelity of the joint model using gold standard data of the
movement of interest when possible as in Seth et al. [39]; (ii) Test the robustness of the
model and of the method by evaluating the sensitivity of the joint kinematics to both
geometrical and numerical parameters and to STA; (iii) Ensure that the marker residuals
remain within the STA range reported in the literature [10]; (iv) Compare resulting joint
kinematics to those already available in the literature; (v) Blindly validate MKO using
datasets with both ground-truth bone and skin marker kinematics as provided in Cereatti
et al. [100] when possible; and (vi) Assess the repeatability and reliability of the method
for clinical applications.

Finally, we encourage authors to use the expression ‘multibody kinematics
optimization” to better track its evolution and benefit in future reviews and to avoid
confusion with other well-established names in various fields such as ‘global optimization’

and ‘inverse kinematics’.
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