
Asynchronous Communications Library for the
Parallel-in-Time Solution of Black-Scholes Equation

Qinmeng Zou∗ Guillaume Gbikpi-Benissan† Frédéric Magoulès‡

Abstract

The advent of asynchronous iterative scheme gives high efficiency to numerical compu-
tations. However, it is generally difficult to handle the problems of resource manage-
ment and convergence detection. This paper uses JACK2, an asynchronous commu-
nication kernel library for iterative algorithms, to implement both classical and asyn-
chronous parareal algorithms, especially the latter. We illustrate the measures whereby
one can tackle the problems above elegantly for the time-dependent case. Finally, ex-
periments are presented to prove the availability and efficiency of such application.

Keywords: asynchronous iterative algorithms; parallel computing; parareal method;
time domain decomposition; option pricing

1 Introduction
The parareal algorithm is a time domain decomposition method aiming at solving PDEs
over a splitting of the original domain into multiple subdomains, over which the equation
could be solved independently. The algorithm is therefore suited for parallel programmin by
distributing the computational cost over several processors. The parallelization with respect
to the time variable was earlier attempted by Nievergelt [18] and by Miranker and Liniger
[17] for the ordinary differential equations. The parareal algorithm is another extension
of decomposition methods in the time direction, first introduced in [10] that has grown in
popularity as it has been successfully applied to a wide variety of problems. The algorithm
consists of two solvers with different time steps, the coarse and the fine, to produce a
convergent iterative method for parallel computations. The coarse solver solves the equation
sequentially on the coarse time step while the fine solver uses the results from the coarse
solution to solve, in parallel, over the fine time steps. The solution can therefore be obtained
from independent time subdomain, over which the algorithm will iteratively use a coarse
and a fine solver to compute the solution on the entire domain. Several extensions have
been proposed following the theoretical analysis. Bal and Maday in [6] slightly modified
the algorithm, and proposed an analysis of the convergence properties of the algorithm for
parabolic equations.

On the other hand, the asynchronous iterative scheme appeared on the horizon since
Chazan and Miranker proposed their pioneering ideas applied to the linear systems [8], lead-
ing to a prosperity to the high performance applications, such as sub-structuring methods
[16] and optimized Schwarz methods [15]. We are interested in the asynchronous iterations
of the parareal method. Compared to the classical parareal algorithm, the asynchronous
version gives further attractive properties including high efficiency and flexibility. Never-
theless, the implementation of the asynchronous iterative methods involves huge amount of
work besides the theoretical analysis, which leads to a frustrating down time for the pro-
gramming activities. Fortunately, some libraries have been developed to fill this gap. JACE
∗CentraleSupélec, Université Paris-Saclay, France.
†CentraleSupélec, Université Paris-Saclay, France.
‡CentraleSupélec, Université Paris-Saclay, France (correspondence, frederic.magoules@hotmail.com).

Preprint August 20, 2017

Figure 1: Time domain of the parareal scheme

[5] is a multi-threaded library aiming at the execution of asynchronous iterative algorithms
based on Java, followed by a centralized volatility tolerant extension named JaceV [4]. Re-
cently, they have developed some P2P and decentralized versions to enlarge the applicable
scope [3, 7]. Additionally, CRAC [9] is another library designed to build the asynchronous
applications based on C++. Finally, JACK [14] is an MPI-based C++ library, which pro-
vides many advanced properties designed for parallel iterative algorithms. A new version
called JACK2 has been released. It gives an improved user-friendly API and several new
convergence detection methods with global residual computation.

In this paper we concentrate on the implementation of asynchronous parareal solver based
on JACK2 library. Section 2 recalls the mathematical and computational framework of the
parareal algorithm. In Section 3, we presents the implementation details of such methods
by JACK2. In Section 4, we choose the option pricing models to illustrate the experimental
results of our asynchronous solver. Finally, our conclusions and remarks follow in Section 5.

2 Mathematical and Computational Framework
Consider a time-dependent problem{

∂u
∂t + Lu = f, t ∈ [0, T],

u = u0, t = 0,

where L is a second-order linear elliptic operator. After a decomposition of the time domain,
we arrive at {

∂un

∂t + Lun = fn, t ∈ [Tn, Tn+1],

un = λn, t = Tn,
(1)

where the time domain is defined in a series of [Tn, Tn+1], with Tn = n∆T , n = 0, . . . , N . It
is easily seen that the problem (1) is also an exact model. Nevertheless, we often choose an
accurate enough sub-interval δt to approximate the original problem as shown in Figure 1.
We note here that the limit of each subproblem satisfies

λn+1 = lim
ε→0

un(Tn+1 − ε),

which enables us to execute a continuous computation. A well known model proposed in
[10] can be described as the following

λk+1
n+1 = G(λk+1

n) + F (λkn)−G(λkn),

where G is a coarse propagator, and F is a fine propagator. Accordingly, ∆T represents a
coarse time step, whereas δt is a fine time step. We notice that this is a synchronous parareal
iterative scheme, over which one can come up with the algorithmic model forthwith

Algorithm 1. (Classical Parareal Algorithm)
n := rank of current processor
λ0 = u0
for i = 0 to n− 1 do

2

λ0 = G(λ0)
end for
w = G(λ0)
while not convergence do
v = F (λ0)
wait for the update of λ0 from processor n− 1
w̃ = G(λ0)
λ = w̃ + v − w
send λ to processor n+ 1 as λ0
w = w̃

end while

Evidently, the first processor has only successor, whereas the last one has none but prede-
cessor.

We now turn to the asynchronous mode. Formally, we view parareal as a two-stage
problem which can be formalized carefully using the asynchronous scheme, illustrated as
below

λk+1
n+1 =

{
G(λ

µn(k)
n) + F (λ

ρn(k)
n)−G(λ

ρn(k)
n), n ∈ P k,

λkn+1, n /∈ P k,

where P k ⊆ {1, . . . , p} and P k 6= ∅, with the conditions 0 ≤ µij(k) ≤ k+1, 0 ≤ ρij(k) ≤ k. We
assume that each processor keeps updating rather than resting permanently. Furthermore,
the elements used by this processor will be renewed from time to time. Similarly, such
computational model can be written as

Algorithm 2. (Asynchronous Parareal Algorithm)
n := rank of current processor
λ0 = u0
for i = 0 to n− 1 do
λ0 = G(λ0)

end for
w = G(λ0)
while not convergence do
v = F (λ0)
if detect λ0 from processor n− 1 then
update λ0

end if
w̃ = G(λ0)
λ = w̃ + v − w
send λ to processor n+ 1 as λ0
w = w̃

end while

It is seen that Algorithm 2 has no waiting process in the internal loop, whereas Algorithm 1
requires a latency time, which might cause a waste of time on coordination, but gain through
the number of iterations.

3 Implementations

3.1 Preprocessing
The parareal algorithm is indeed a special case of domain decomposition methods, since each
time frame only depends upon its predecessor, and essentially needed by its successor. We
separate the neighbors into the outgoing links and the incoming links, and thus write the code
as Listing 1. It is seen that sneighb_rank and rneighb_rank have respectively one element

3

in the communication graph. Take note that the first processor has no predecessor, therefore
numb_rneighb = 0; while the last one has no successor, obviously, with numb_sneighb = 0.

Listing 1: Communication graph
/* template <typename T, typename U> */
// T: float, double, ...
// U: int, long, ...
U numb_sneighb = 1;
U numb_rneighb = 1;
U* sneighb_rank = new U[1];
U* rneighb_rank = new U[1];

The key idea behind this project is that there exist two levels over the computation pro-
cess. The upper object is the instance of Parareal, which provides the interface of JACK2’s
power, whereas the lower level is the PDESolver, used to solve the equations. We notice
that it is easy to enlarge the number of solvers without changing the code of Parareal. Ac-
cordingly, we need two instances of PDESolver in Parareal to obtain respectively the coarse
results and the fine results, illustrated in Listing 2.

Listing 2: PDE solver in Parareal
/* template <typename T, typename U> */
PDESolver<T,U> coarse_pde;
PDESolver<T,U> fine_pde;
Vector<T,U> coarse_vec_U;
Vector<T,U> fine_vec_U;
Vector<T,U> vec_U; // solution vector.
Vector<T,U> vec_U0; // initial vector.

coarse_vec_U is the solution of coarse_pde, while fine_vec_U is the solution of fine_pde.
vec_U is the final solution, which is also the output of Parareal solver. Finally, vec_U0 is
the incoming value for both coarse_pde and fine_pde.

3.2 Overview of the Iterations
We now present the iterative process of parareal algorithm. Notice that the beginning parts
of Algorithm 1 and Algorithm 2 are the same, we can therefore write in a unified scheme in
Listing 3.

Listing 3: Initialization of parareal iterative process
/* template <typename T, typename U> */
for (U i = 0; i < rank; i++) {
coarse_pde.Integrate();
vec_U0 = coarse_vec_U;

}
coarse_pde.Integrate();
vec_U = coarse_vec_U;

Let us mention here that Listing 3 gives us the exact position of vec_U0 and the initial
estimation of G(λ0n). Nevertheless, we need to distinguish the synchronous and the asyn-
chronous parareal algorithm afterwards.

3.2.1 Synchronous mode

We follow the scheme of Algorithm 1 except for the convergence detection mode, since there
is a rule of thumb to lighten the communication. It is easily seen that the processor n will
stop updating after (n+ 1)th iteration. Hence, we can apply a supplementary condition to
the judging area in the synchronous mode, with the final code shown as Listing 4.

Listing 4: Synchronous iterative process
// -- synchronous parareal iterations

4

res_norm = res_thresh;
numb_iter = 0;
while (res_norm >= res_thresh &&

numb_iter < m_rank) {
fine_pde.Integrate();
comm.Recv();
coarse_vec_U_prev = coarse_vec_U;
coarse_pde.Integrate();
vec_U_prev = vec_U;
vec_U = coarse_vec_U + fine_vec_U - coarse_vec_U_prev;
comm.Send();
// -- |Un+1<k+1> - Un+1<k>|
vec_local_res = vec_U - vec_U_prev;
(*res_vec_buf) = vec_local_res.NormL2();
comm.UpdateResidual();
numb_iter++;

}

We note that it is necessary to copy the values of recv_buf to vec_U0 and the values of
vec_U to send_buf whenever needed. However, we can also ease the process by setting
directly the two vectors as communication buffers. In practice, the choice relates to the
mathematical library used throughout the project. Moreover, using the results of Listing 4,
it is also shown in Listing 5 that we need to finalize the fine solution and wait for the global
termination.

Listing 5: Synchronous finalized process
// -- computes sequential fine solution
if (res_norm >= res_thresh) {
fine_pde.Integrate();
vec_U = fine_vec_U;
comm.Send();
// -- wait for global termination
(*res_vec_buf) = 0.0;
while (res_vec_norm >= res_thresh) {
comm.UpdateResidual();
numb_iter++;

}
}

3.2.2 Asynchronous mode

The asynchronous parareal scheme can be implemented similarly with Listing 4 except for the
matching conditions. There is no more facile code in practice, and we present the process as
Listing 6. From the entry of lconv_flag, JACK2 can interact with the asynchronous process
and give back results as res_norm.

Listing 6: Asynchronous iterative process
// -- asynchronous parareal iterations
res_norm = res_thresh;
numb_iter = 0;
while (res_norm >= res_thresh) {
fine_pde.Integrate();
comm.Recv();
coarse_vec_U_prev = coarse_vec_U;
coarse_pde.Integrate();
vec_U_prev = vec_U;
vec_U = coarse_vec_U + fine_vec_U - coarse_vec_U_prev;
comm.Send();
// -- |Un+1<k+1> - Un+1<k>|
vec_local_res = vec_U - vec_U_prev;
(*res_vec_buf) = vec_local_res.NormL2();
lconv_flag = ((*res_vec_buf) < res_thresh);
comm.UpdateResidual();

5

numb_iter++;
}

4 Experimental Results
In this section, we give the experiments for the asynchronous parareal scheme, based on the
Black-scholes equation, which is a well-known time-dependent equation in the domain of
option pricing. Consider the following problem

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2 ∂

2V

∂S2
= rV,

where V is the option price, depending on stock price S and time t. Volatility σ and risk-
free interest rate r are the constant parameters. Then, we employ some trivial variable
substitutions to obtain the heat equation

∂u

∂τ
=
∂2u

∂x2
, x ∈ R, τ ∈ [0,

Tσ2

2
], (2)

where T is the time to maturity, with initial and boundary conditions{
u(x, 0) = max(eβx − eαx, 0), x ∈ R,
u(x, τ) ∼ 0 as x→ ±∞, τ ∈ [0, Tσ

2

2].

where α = 1
2 (κ − 1), β = 1

2 (κ + 1), κ = 2r
σ2 . Obviously, equation (2) can be applied to the

classical and the asynchronous parareal scheme. We note here that the input variables are
the current stock price S and the exercise price E. Finally, we broaden the spatial domain
and let the dimension correspond to the precision of our problem.

The mathematical operations are supported by Alinea library [11], which is implemented
in C++ for both central processing unit and graphic processing unit devices. It includes
several linear algebra operations [1] and numerical linear algebra solvers [13], [2], [12].

The experiments are exercised on a SGI ICE X cluster connected with InfiniBand. Each
node consists of two Intel Xeon E5-2670 v3 2.30 GHz CPUs with SGI-MPI 2.14 installed.
We assume that σ = 0.2, r = 0.03, δt = 0.001 with 250 sub-intervals. Given S = 100,
E = 80, N = 16, several average results are reported in Table 1 with Approximate Option
Prices Va, Exact Option Prices Ve, Absolute Error εa and Relative Error εr. It is seen that

Table 1: Results of Asynchronous Parareal Scheme (σ = 0.2, r = 0.03, δt = 0.001, S = 100,
E = 80, m = 250, N = 16)

∆T Va Ve εa εr Time
0.05 23.9476 23.9426 0.0050 0.0002 0.547
0.15 31.5512 31.5477 0.0035 0.0001 1.663
0.25 37.7225 37.7192 0.0033 0.0001 2.881
0.35 42.9995 42.9960 0.0035 0.0001 3.830
0.45 47.6375 47.6339 0.0036 0.0001 4.814

the asynchronous parareal algorithm implemented by JACK2 is efficient and accurate.

5 Conclusions
In this paper, we illustrated the implementation of synchronous and asynchronous parareal
algorithm using JACK2, an asynchronous communication kernel library for iterative algo-
rithms. We discussed the particularity of such time-dependent problem, which leads to a
rather different configuration than the general parallel context. As expected, the experi-
mental results at the end verified the correctness of the asynchronous scheme.

6

References
[1] A.-K. C. Ahamed and F. Magoulès. Fast sparse matrix-vector multiplication on graphics

processing unit for finite element analysis. In 14th IEEE Int. Conf. on High Performance
Computing and Communications, Liverpool, UK, June 25-27, 2012. IEEE, 2012.

[2] A.-K. C. Ahamed and F. Magoulès. Iterative methods for sparse linear systems on
graphics processing unit. In 14th IEEE Int. Conf. on High Performance Computing
and Communications, Liverpool, UK, June 25-27, 2012. IEEE, 2012.

[3] J. M. Bahi, R. Couturier, and P. Vuillemin. JaceP2P: an environment for asynchronous
computations on peer-to-peer networks. In Proc. of 2006 IEEE Int. Conf. on Cluster
Computing, pages 1–10, 2006.

[4] J. M. Bahi, R. Couturier, and P. Vuillemin. JaceV: A programming and execution
environment for asynchronous iterative computations on volatile nodes. In Proc. of 7th
Int. Conf. VECPAR, Rio de Janeiro, Brazil, June 10-13, 2006, pages 79–92. Springer,
2007.

[5] J. M. Bahi, S. Domas, and K. Mazouzi. Jace: a Java environment for distributed
asynchronous iterative computations. In Proc. of 12th Euromicro Conf. on Para. Dist.
and Network-Based Proc., 2004, pages 350–357, 2004.

[6] G. Bal and Y. Maday. A “parareal” time discretization for non-linear pde’s with applica-
tion to the pricing of an american put. In L. F. Pavarino and A. Toselli, editors, Recent
Developments in Domain Decomposition Methods, pages 189–202. Springer, 2002.

[7] J.-C. Charr, R. Couturier, and D. Laiymani. JACEP2P-V2: A fully decentralized and
fault tolerant environment for executing parallel iterative asynchronous applications
on volatile distributed architectures. In Proc. of 4th Int. Conf. GPC 2009, Geneva,
Switzerland, May 4-8, 2009, pages 446–458. Springer, 2009.

[8] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and its Applications,
2(2):199–222, 1969.

[9] R. Couturier and S. Domas. CRAC: a grid environment to solve scientific applica-
tions with asynchronous iterative algorithms. In Proc. of 2007 IEEE Int. Parallel and
Distributed Processing Symposium, pages 1–8, 2007.

[10] J.-L. Lions, Y. Maday, and G. Turinici. Résolution d’EDP par un schéma en temps
“pararéel”. CRAS. Série I, Mathématique, 332(7):661–668, 2001.

[11] F. Magoulès and A.-K. C. Ahamed. Alinea: An advanced linear algebra library for
massively parallel computations on graphics processing units. The International Journal
of High Performance Computing Applications, 29(3):284–310, 2015.

[12] F. Magoulès, A.-K. C. Ahamed, and R. Putanowicz. Auto-tuned Krylov methods on
cluster of graphics processing unit. International Journal of Computer Mathematics,
92(6):1222–1250, 2015.

[13] F. Magoulès, A.-K. C. Ahamed, and R. Putanowicz. Fast iterative solvers for large
compressed-sparse row linear systems on graphics processing unit. Pollack Periodica,
10(1):3–18, 2015.

[14] F. Magoulès and G. Gbikpi-Benissan. JACK: an asynchronous communication kernel
library for iterative algorithms. The Journal of Supercomputing, 73(8):3468–3487, 2017.

[15] F. Magoulès, D. B. Szyld, and C. Venet. Asynchronous optimized Schwarz methods
with and without overlap. Numerische Mathematik, 137:199–227, 2017.

7

[16] F. Magoulès and C. Venet. Asynchronous iterative sub-structuring methods. Mathe-
matics and Computers in Simulation, (in press).

[17] W. L. Miranker and W. Liniger. Parallel methods for the numerical integration of
ordinary differential equations. Mathematics of Computation, 21:303–320, 1967.

[18] J. Nievergelt. Parallel methods for integrating ordinary differential equations. Commun.
ACM, 7(12):731–733, 1964.

8

	Introduction
	Mathematical and Computational Framework
	Implementations
	Preprocessing
	Overview of the Iterations
	Synchronous mode
	Asynchronous mode

	Experimental Results
	Conclusions

