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Characterisation of limit measures

of higher-dimensional cellular automata

Martin Delacourt · Benjamin Hellouin de Menibus

Abstract We consider the typical asymptotic behaviour of cellular automata of higher dimen-
sion (≥ 2). That is, we take an initial con�guration at random according to a Bernoulli (i.i.d)
probability measure, iterate some cellular automaton, and consider the (set of) limit probabil-
ity measure(s) as t → ∞. In this paper, we prove that limit measures that can be reached by
higher-dimensional cellular automata are completely characterised by computability conditions,
as in the one-dimensional case. This implies that cellular automata have the same variety and
complexity of typical asymptotic behaviours as Turing machines, and that any nontrivial prop-
erty in this regard is undecidable (Rice-type theorem). These results extend to connected sets of
limit measures and Cesàro mean convergence. The main tool is the implementation of arbitrary
computation in the time evolution of a cellular automata in such a way that it emerges and
self-organises from a random con�guration.

Keywords Symbolic dynamics · Cellular automata · Limit measure · Multidimensional ·
Computability

Cellular automata are discrete dynamical systems de�ned by a local rule, introduced in the
40s by John von Neumann [14]. They model a large variety of discrete systems and are linked with
various areas of mathematics and computer science, in particular computation theory, complex
systems, ergodic theory and combinatorics.

One of the main catalysts of the study of cellular automata was their surprisingly complex
and organised behaviours, even when iterated on con�gurations with no particular structure
(e.g. chosen at random). To formalise these observations, many authors tried to describe their
asymptotic behaviour by considering the limit set, which is the set of con�gurations that can
be reached after arbitrarily many steps. These sets were shown to have potentially high com-
putational complexity [13,1], and any nontrivial property on them is undecidable [10]. These
observations built a bridge between the variety of dynamical behaviours and the computational
content of the model. Nevertheless, the problem of characterising which sets can be limit sets of
CA remains open.
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In 2000, K·rka and Maass argued that limit sets did not provide a good description of
empirical observations and introduced instead a measure-theoretical version of these sets [12]. The
idea of µ-limit sets is to choose the initial con�guration at random, according to some probability
measure µ, to iterate the cellular automaton on this con�guration and to consider all patterns
whose probability to appear does not tend to 0. In the one-dimensional case, this approach yielded
similar results of high complexity and undecidability [4,3,5,2]. Although these two families of
results appear similar and both require sophisticated constructions inside cellular automata,
they provide insight about di�erent kinds of dynamics (topological vs. measure-theoretical) and
computational power (deterministic vs. probabilistic).

In [9], H. and Sablik extended this approach to consider the limit probability measure(s).
Still in the one-dimensional case, they provided a computational characterisation of the limit
measures reachable by cellular automata, generalising the previous results.

This article is an extended version of [6]. In op.cit, we aimed at extending the previous results
to the two-dimensional setting. More precisely, we characterised all subshifts that can be µ-limit
sets of CA when µ is the uniform Bernoulli measure. The proof works by an explicit construction
inspired by the one-dimensional constructions of [2,9], although the higher dimensional setting
has many speci�c challenges. In the present article, this two-dimensional construction is gener-
alised to a d-dimensional space for any d > 2; furthermore, through a more careful analysis, we
are able to characterise reachable limit measures, which is a more general result. As a corollary,
we obtain an undecidability result on properties of limit measures, and cover as well Cesàro mean
convergence and the case where the limit measure is not unique.

Section 1 is devoted to general de�nitions. In Section 2, we introduce more speci�c com-
putability tools, and in particular computability restrictions on possible limit probability mea-
sures. In Section 3, we describe, process by process, the main technical construction that is the
core of the proof of our results. Section 4 contains the main results that are the corollaries of
this construction, mainly:

Theorem 1 (Main result) The measures ν ∈Mσ(AZd

) for which there exist:

� an alphabet B ⊃ A,
� a cellular automaton F : BZd → BZd

, and

� a non-degenerate Bernoulli measure µ ∈Mσ(BZ
d

)

such that F tµ −−−→
t→∞

ν, are exactly the limit-computable measures.

This result holds even when the initial measure is chosen to be uniform. As a corollary,
we show that any nontrivial property on limit measures is undecidable. These result extend to
connected sets of limit measures and convergence in Cesàro mean.

1 De�nitions

1.1 Symbols, con�gurations and cellular automata

Let A be a �nite set of symbols called alphabet. For d > 0, let AZd

be the space of d-dimensional
con�gurations.

On Zd, we de�ne the basis vectors ei = (δi(k))0<k≤d (Kronecker deltas), that is, the vector
worth 0 on all coordinates except the i-th where it is worth 1. Denote Unit(d) = {

∑
1≤j≤d δjej 6=

0 : ∀j, δj ∈ {−1, 0, 1}} and Hyp(d) the set of hyperplanes that have a normal vector in Unit(d);
these hyperplanes have a basis of d− 1 vectors in Unit(d).
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We will use the following distances between points of Zd:

∀x, y ∈ Zd, d∞(x, y) = max
1≤i≤d

|xi − yi| and d1(x, y) =
∑

1≤i≤d

|xi − yi|.

An∞-path is a sequence of points z1, . . . , zk such that d∞(zi, zi+1) = 1 for any i. An∞-connected
set is a subset of Zd such that any pair of points are connected by an ∞-path. De�ne similarly
1-paths and 1-connected subsets.

If we endow AZd

with the product topology of the discrete topology on A, then AZd

is a
Cantor set (compact, perfect and totally disconnected). This topology is also metrisable, for
example using the Cantor metric:

∀x, y ∈ AZd

, dC(x, y) = 2−δx,y where δx,y = min{||i||∞ : xi 6= yi}.

For a subset U ⊂ Zd, denote xU ∈ AU the restriction of x to U . Denote A∗ =
⋃
U⊂Zd

finite

AU the

set of �nite patterns. For a pattern w ∈ AU , denote its support supp(w) = U , and its dimension
is the smallest d such that supp(w) is isomorphic to a subset of Zd. We say a pattern is cubic,
respectively rectangular, if its support is a d−cube, resp. a d−box (Cartesian product of intervals).

The cylinder de�ned by a pattern u ∈ A∗ and a position i ∈ Zd is [u]i = {x ∈ AZd

:
xi+supp(u) = u}. For simplicity we sometimes write [u] for [u](0,...,0).

The shift map, or shift, is de�ned as:

∀i ∈ Zd, σi(x) = (xi+j)j∈Zd .

A subshift is a closed subset of AZd

invariant under all shifts. Given a cubic pattern u ∈
A[0,n−1]d , de�ne the periodic con�guration ∞u∞ by ∞u∞[0,n−1]d = u and σnek(

∞u∞) = ∞u∞ for

every k ∈ [1, d].

A cellular automaton (or CA) is a continuous function F : AZd → AZd

that commutes with
all shifts (F ◦ σek = σek ◦ F for every k). By the Curtis-Hedlund-Lyndon theorem [7], it can
be de�ned equivalently as a function F (x) = (f((xj)j∈(i+N )))i∈Zd where N ⊂ Zd is a �nite set
called neighbourhood and f : AN → A is called a local rule.

1.2 Probability measures on AZd

Let B be the Borel σ-algebra of AZd

andM(AZd

) the set of probability measures on AZd

de�ned

on the σ-algebra B. In this article, we focus on Mσ(AZd

) the set of σ-invariant probability

measures on AZd

, that is to say, the measures µ such that µ(σ−1k (B)) = µ(B) for all B ∈ B and
k ∈ Zd. Cylinders corresponding to �nite patterns form a base of the topology. Since µ([u]i) =

µ([u]) for any i ∈ Zd and µ ∈ Mσ(AZd

), µ is entirely characterised by {µ([u]) : u ∈ A∗};
actually, considering only cubic patterns is enough.

We endowMσ(AZd

) with the weak∗ (or weak convergence) topology:

µn −−−→
n∈∞

µ ⇐⇒ ∀u ∈ A∗, µn([u]) −−−−→
n→∞

µ([u]).

In the weak∗ topology,Mσ(AZd

) is compact and metrisable. A metric is de�ned by

dM(µ, ν) =
∑
n∈N

1

2n
max

u∈A[0,n]d
|µ([u])− ν([u])|.
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De�ne the ball centred on µ ∈Mσ(AZd

) of radius ε > 0 as

B(µ, ε) =
{
ν ∈Mσ(AZd

) : dM(µ, ν) ≤ ε
}
.

Let us de�ne some examples that we use throughout the article.
The Bernoulli measure µλ associated to some vector λ = (λa) ∈ [0; 1]A satisfying

∑
a∈A λa =

1 is de�ned by
µλ([u0 . . . un]) = λu0

· · ·λun
for all u0 . . . un ∈ A∗.

The Dirac measure supported by x ∈ AZd

is de�ned as δx(A) = 1x∈A. Generally δx is not

σ-invariant. However, for any cubic pattern w ∈ A[0,n]d , it is possible to de�ne the σ-invariant
measure supported by ∞w∞ by taking the mean of the Dirac measures on the orbit under σ:

δ̂w =
1

(n+ 1)d

∑
i∈[0,n]d

δσi(∞w∞).

The set of measures
{
δ̂w : w ∈ A∗

}
is dense inMσ(AZd

) [15].

1.2.1 Action of a cellular automaton onMσ(AZd

) and limit measures

Let F : AZd → AZd

be a cellular automaton and µ ∈ Mσ(AZd

). De�ne the image measure F∗µ
by F∗µ(A) = µ(F−1(A)) for all A ∈ B. Since F is σ-invariant, that is to say F ◦ σ = σ ◦ F , one
deduces that F∗(Mσ(AZd

)) ⊂Mσ(AZd

). This de�nes a continuous application F∗ :Mσ(AZd

)→
Mσ(AZd

).

We consider in particular F t∗µ the iterated image of µ by F∗. Since Mσ(AZd

) is compact
in the weak∗ topology, the sequence (F t∗µ)t∈N admits a set of limit points denoted V(F, µ) and
called the µ-limit set of measures of F . When V(F, µ) is a singleton, i.e. when F t∗µ −→

n→∞
ν, we

say ν is the limit measure of F starting on µ.
This name stems from the standard µ-limit set of F de�ned as

⋃
ν∈V(F,µ) supp(ν).

2 Computability

We now introduce the computability notions that are needed to state our main results. This
exposition is very similar to the one found in [9], which was later expanded in [8], for the one-
dimensional case. Indeed, most of the de�nitions and proofs only rely on the fact that the space
is metric and separable, properties for which the increase in dimension is irrelevant. We omit

those proofs that can be obtained by a straightforward substitution (AZ → AZd

) from the proofs
found in these references.

2.1 Turing machines

Turing machines are a standard and robust tool to de�ne the computability of mathematical
operations. In the usual model, they have access to a one-dimensional, one- or two-sided in�nite
memory tape. In order to simplify some constructions, we consider in this article that the tape
is d-dimensional and in�nite in all directions. This does not a�ect the computing power of the
model.

A Turing machine TM = (Q,Γ,#, q0, δ, QF ) is de�ned by:
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� Γ a �nite alphabet, with a blank symbol # /∈ Γ . Initially, a d-dimensional in�nite memory
tape is �lled with #, except for a �nite region (the input), and a computing head is located
at coordinate (0, . . . , 0);

� Q a �nite set of states, with an initial state q0 ∈ Q;
� δ : (Q∪#)×Γ → (Q∪#)×Γ ×{±ei}1≤i≤d the transition function. Given the current state
and the letter it reads on the tape � which depends on its current position � the function
returns the new state, the letter to be written on the tape at current position, and the vector
by which the head moves.

� QF ⊂ Q the set of �nal states � when a �nal state is reached, the computation stops and
the output is the contents of the tape.

A function f : A∗ → A∗ is computable if there exists a Turing machine working on an alphabet
Γ ⊃ A that, on any input w ∈ A∗, eventually stops and outputs f(w).

2.2 Computability of functions mapping countable sets

To generalise this de�nition to functions mapping arbitrary countable sets X → Y , we need to
de�ne an encoding, that is, an alphabet AX together with a bijection between X and some subset
of A∗X , and similarly for Y . Then the computability of a function X → Y is de�ned up to some
encoding. However, in practice, reasonable encodings yield the same notion of computability. To
simplify notations, we �x some canonical encodings for the rest of the paper :

Z (or N): Take AZ = {0, 1} and encode an element k ∈ Z as its binary expansion surrounded by
blank symbols.

Product X × Y : Take AX×Y = AX × AY and encode (x, y) as the product of encodings for x
and y.

Using this last case, we de�ne a canonical encoding for Q as the canonical encoding for N × Z,
up to the bijection p

q 7→ (p, q) (with p, q irreducible).
Furthermore, we de�ne the computability of a set K ⊂ X as the computability of the function

1K : X → N.

2.3 Computability of probability measures

As we mentioned above, a probability measure µ ∈Mσ(AZd

) is entirely described by the value of

µ([u]) for all u ∈ A∗. In other words, an element ofMσ(AZd

) is described by a function A∗ → R.
Since R is not countable, the standard ways to de�ne notions of computability is to consider
approximations by elements of Q.

A measure µ ∈Mσ(AZd

) is computable if there exists a computable function f : A∗×N→ Q
such that

|µ([u])− f(u, n)| < 2−n for all u ∈ A∗ and n ∈ N.

It is limit-computable if there exists a computable function f : A∗ × N→ Q such that

|µ([u])− f(u, n)| −→
n→∞

0 for all u ∈ A∗.

Additionally we de�ne the notion of a uniformly computable sequence. Informally, it means
that a sequence of objects can be computed by a single algorithm which, given n ∈ N as input,
returns a description of the n-th object of the sequence.
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Formally, a sequence of measures (µi)i∈N is uniformly computable i� there exists a computable
function f : N×A∗ × N→ Q such that:

|µi([u])− f(n, u, i)| < 2−n for all u ∈ A∗ and n, i ∈ N2.

It is easy to see that the limit of a uniformly computable sequence of measures is limit-computable
(but not necessarily computable since the rate of convergence of µi to µ is not known).

Proposition 1 (Approximation by measures supported by periodic orbits)
These notions can be de�ned in another equivalent way:

(i) A measure µ ∈ Mσ(AZd

) is computable if and only if there exists a computable function

f : N→ A∗ such that dM

(
µ, δ̂f(n)

)
≤ 2−n for all n ∈ N.

(ii) A measure µ ∈Mσ(AZd

) is limit-computable if and only if there exists a computable function

f : N→ A∗ such that lim
n→∞

δ̂f(n) = µ.

Notice the parallel with the de�nition of the computability of a real: in both cases, an object
is computable if it is approximated by a uniformly computable sequence of elements taken from
a dense subset (Q and the measures supported by periodic orbits, respectively) with a known
rate of convergence.

2.4 Action of a cellular automaton on computable measures

Proposition 2 (First computability obstruction) Let F : AZd → AZd

be a cellular au-

tomaton and µ ∈Mσ(AZd

) be a computable measure. Then (F t∗µ)t∈N is a uniformly computable
sequence of measures. In particular, if F t∗µ −→

t→∞
ν then ν is limit-computable.

In general, F t∗µ does not have a single limit point, but a compact set of accumulation points.
To obtain a similar obstruction, we extend our computability de�nitions to those objects.

2.5 Compact sets in computable analysis

Extending naively the de�nition for countable sets using the characteristic function does not
work since the set of inputs would not be countable. Instead, we use a general de�nition for

metric spaces that possess a countable dense subset, (δ̂w)w∈A∗ in the case ofMσ(AZd

).

A closed set K ⊂ Mσ(AZd

) is computable if the set
{
(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅

}
is computable (as a countable set), that is, if its characteristic function is.

However, the set of limit points of the sequence (F t∗µ)t∈N, where µ is computable, is not
necessarily computable (or even limit-computable). We extend our de�nitions to the �rst steps of

the so-called arithmetical hierarchy, �rst on countable spaces, then on closed subsets ofMσ(AZd

).
Let X,Y be two countable sets, with Y being ordered.
A sequence of functions (fi : X → Y )i∈N is uniformly computable if (i, x) 7→ fi(x) is com-

putable.
A function f : X → Y is Π2-computable (resp. Σ2-computable) if f = infi∈N supj∈N fi,j (resp.

f = supi∈N infj∈N fi,j), where (fi,j)(i,j)∈N2 is a uniformly computable sequence of functions.

A closed set K ⊂Mσ(AZd

) is Π2-computable if the set{
(w, r) ∈ A∗ ×Q : B(δ̂w, r) ∩ K 6= ∅

}
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is Π2-computable, that is, its characteristic function is.

Remark 1 The symmetric notions of Π2- and Σ2-computability come from an analogy with
the real arithmetical hierarchy [16,17]. These de�nitions extend naturally to Πn- and Σn-
computability. Other equivalent de�nitions exists, see for example [9] for Π2-computability or [8]
for a more general result.

∆1

Σ1

Π1

∆2

Σ2

Π2

· · · ∆n

Σn

Πn

∆n+1 · · ·

Fig. 1 Representation of the computability hierarchy of closed subsets of Mσ(AZd
). Arrows indicate strict

inclusion relations [16].

Proposition 3 (Second computability obstruction)

Let F : AZd → AZd

be a cellular automaton and µ be a computable measure. Then V(F, µ) is
a nonempty Π2-computable compact set.

Aiming at a reciprocal, notice that Π2-computable compact sets can be all be described

as the set of limit points of a sequence of measures (δ̂wn
)n∈N, where the sequence of patterns

(wn)n∈N is uniformly computable. However, our construction cannot do better that following

such a sequence along a polygonal path, that is, along segments of the form
[
δ̂wi

, δ̂wi+1

]
={

tδ̂wi + (1− t)δ̂wi+1 : t ∈ [0, 1]
}
. The following proposition shows that this corresponds to con-

nected limit sets of measures (not necessarily path-connected).

Proposition 4 (Technical characterisation of Π2-CCC sets)

Let K ⊂ Mσ(AZd

) be a non-empty Π2-computable, compact, connected set (Π2-CCC for
short). Then there exists a uniformly computable sequence of cubic patterns (wn)n∈N such that
K is the limit of the polygonal path de�ned by (wn)n∈N, that is,

K =
⋂
N>0

⋃
n≥N

[
δ̂wn , δ̂wn+1

]
.

As we mentioned before, the proof of these statements can be found in [9] or [8] for an
extended version.

3 Construction

To obtain the results announced in the introduction, we prove the following result in conjunction
to Proposition 4.
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Theorem 2 For any uniformly computable sequence (wn)n∈N of cubic patterns of B∗ of dimen-

sion at most d, there exists a larger alphabet A ⊃ B and a cellular automaton F : AZd → AZd

such that for any Bernoulli measure µ ∈Mσ(AZd

):

V(F, µ) =
⋂
N>0

⋃
n≥N

[
δ̂wn , δ̂wn+1

]
.

In the rest of the article, assume some �xed alphabet B and some uniformly computable
sequence (wn)n∈N of patterns of B∗. We present the construction of the alphabet A and cellular
automaton F .

3.1 Sketch of the construction

We detail the construction of A and F by describing the tasks to be performed on the initial
con�guration. Each letter of A is a product of seven layers separated in three groups, each
group representing some information needed to perform a given task. The alphabet of each layer
contains a special blank symbol # to denote the absence of information.

� The �rst group is dedicated to the colonising of the con�guration. Since we have no control
over the contents of the initial con�guration, we want to erase (almost) all symbols present
initially in favour of various processes that we can control and synchronise. To do this, the
birth layer contains a seed symbol * that can only appear in the initial con�guration. Each
seed gives birth to a stationary heart r on the same layer, and to a membrane on the growth
layer which grows in every direction. As it grows, the membrane erases everything in its path,
except for other membranes issued from a seed with which it merges.

� The second group is used to divide the colonised space into mostly independent areas called
organisms, each organism having at its centre a heart issued from a seed. The borders between
organisms are rede�ned regularly by processes on the organism layer. Furthermore, organisms
need to grow in size regularly, which is achieved by merging organisms whose hearts are close
using the evolution layer.

� The third group deals with the internal metabolism of the organisms. The goal is �rst to
compute each wn in succession, which is achieved by simulating a Turing machine in the
computing layer ; then, the main layer of the whole body of the organism is �lled with con-
catenated copies of wn by using a copying process taking place on the copying layer. The
above is done synchronously in all organisms, at some time tn for each wn.

Copies of wn are written on the main layer, which implies that the corresponding alphabet
is B ∪ {#}. To sum up, the global alphabet is A = Abirth ×Agrowth ×Aorga ×Aevol ×Acomp ×
Acopy × (B ∪ {#}). We check that B ⊂ A up to the bijection b 7→ (#,#,#,#,#,#, b). Denote
pbirth, pgrowth, porga, pevol, pcomp, pcopy, pmain the projections on each coordinate.

During the description of F , we will treat each layer successively. The layers were introduced
in order of dependency, in the sense that the time evolution of symbols in a given layer only
depends on the contents of layers in the same group and the one immediately preceding it.
Furthermore, the main layer is only a�ected by the copying layer.

3.2 Space colonisation: Seeds and membranes

In this section, we describe the cleaning of the con�guration through the seeds and the birth,
growth and fusion of membranes. We deal only with the birth layer and alphabet Abirth for
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the moment. Section 3.2.1 gives the general ideas of the process, while Section 3.2.2 focuses on
technical di�culties of the cellular implementation.

3.2.1 Creation myth: a sketch

Seeds and hearts The alphabet Abirth contains the seed symbol * , which can only appear in the
initial con�guration and cannot be produced by the local rule of F . At the �rst step, each seed
spawns a number of processes and turns into a heart r ∈ Abirth. This heart and those processes
(and those spawned from them) are called initialised, which means that their behaviour is well
controlled and synchronised (since they are all born at time 1). All other symbols are uninitialised.

If two seeds are too close from each other (d∞ less than 5), the largest (in lexicographic
order) is erased to give enough space to the other seed to spawn its processes. A seed that is not
destroyed at time 1 in this way is called viable. By abuse of notation we write pbirth(cx) = *

V

to mean that the con�guration c has a viable seed at coordinate x.

Birth of membranes Each occurrence of * triggers the birth at time 1 of a living membrane. The
membrane consists in membrane symbols and (and all their rotations) that form initially
the surface of an hypercube of edge length 5 centred on the seed. The membrane is oriented,
being able to distinguish inside from outside through orientation vectors.

De�nition 1 A membrane m at time t is a maximal 1-connected set of coordinates containing
membrane symbols or at time t with consistent outward orientation; i.e., orientation of
neighbouring membrane symbols di�er in at most one coordinate, and at most by 1.

When a membrane m forms a closed curve (which is the case for initialised membranes), we
denote Supp(m) its support. In this case, Supp(m) partitions Zd into a �nite set Int(m) and
an in�nite set Ext(m) which are ∞-connected. We also denote Int(m) = Int(m) \ Supp(m).
By "outward" in the previous de�nition, we mean that the orientation vectors of m are directed
towards Ext(m).

If a membrane has a malformation that can be detected locally around a symbol (e.g. no
neighbours, inconsistent orientations), a death process is spawned. Since uninitialised membranes
can be locally well-formed, this is not enough to discriminate them from initialised membranes.

Breathing, growing, getting older Each membrane symbol is associated with an age counter,
which is a binary counter initialised at 0 and increasing at each step, whose aim is to keep track
of the value of t. Notice that in an initialised membrane all age counters are equal. Figure 2
represents some part of a membrane with arrows and counters.

From time 1 onward, the membrane grows slowly towards the outside, erasing the content of
other layers as it progresses with the exception of other membranes (see next paragraph). This
is governed by the respiration process: each time the age stored in its counter is the square of
an integer, the membrane grows to the outside, making one step in every direction. Technical
details related to the implementation of age counters and the respiration process are the object
of the next section.

Fight for survival and death When the growing membranes meet other membrane symbols, they
try to determine locally whether they are part of an initialised membrane (in which case the two
should merge), or some uninitialised symbols which should be erased. We call dead an unini-
tialised group of membrane symbols that present some locally detectable malformation, such
as non-connexity, the absence of or inconsistencies between age counters/respiration processes,
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Fig. 2 A corner of a membrane in dimension 2. The arrows give the orientation and the counters store the age
of the membrane.

inconsistencies between inner and outer orientation for neighbours, etc. In this case, the mal-
formation generates a death signal A that spreads through the whole membrane erasing it.
However, such a group can also form a zombie membrane, that is apparently well-formed though
uninitialised. Initialised (living) and zombie membranes are distinguished through age counters.

Fact 1 At time t, all age counters associated with a well-formed membrane have value at least
t− 1, the minimum being reached only for initialised membranes.

Indeed, age counters of initialised membranes are initialised at 0 at time 1, while age counters
of zombie membranes were already present (with a positive value) at time 0, and both are
incremented by 1 at each step.

3.2.2 Implementation of age counters

This section is dedicated to the details of the cellular implementation of the age counters in the
growth layer. First we show how to implement age counters with binary counters using loga-
rithmic space. Agrowth contains membranes symbols and age counter symbols. Each membrane
symbol or contains an outward orientation label consisting of a vector of Unit(d).

Basis and carry propagation We use a redundant binary basis in all counters. Let c = cn−1 . . . c0 ∈
{0, 1, 2, 1}n be a counter. The value of c is

∑n−1
i=0 ci2

i (reverse order) where 1 has value −1. Since
2 = 10, 2 can be seen as a 0 with a carry, and 1 as a 0 with a "negative" carry.

At each time step, carries are propagated along the counter, which can be done in a local
manner (02 → 10, 12 → 20,#2 → 10, 11 → 01, 01 → 11). Additional zeroes at the beginning of
the counter are erased (#11→ #1).

In order to increment or decrement the counter by one, which is the case for age counters, the
rule is adapted at the least signi�cant bit of the counter (for incrementing: 0→ 1, 1→ 2, 2→ 1).

Age counters The age counters are implemented as follows. The least signi�cant bit of each
counter is next to its corresponding membrane symbol, and the following bits lie on a line
directed towards the inside of the membrane. To each possible direction (corresponding to some
±ej) corresponds a di�erent sublayer, which allows counters to cross near the corners. Thus the
age counters use 2d sublayers, each sublayer containing symbols {#, 1, 0, 1, 2}.
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Recall that any inconsistency � the absence of an age counter for some membrane symbols,
parallel counters containing di�erent symbols, etc. � spawns a death process, which spreads in
the whole membrane and erases all layers of these cells.

3.2.3 The respiration process

The goal of the respiration process is to govern a slow growth of the membrane.

Breathing counters Along with the age counter, on two other sublayers of Agrowth, two counters
A and B are initialised at time 0 with values 1 and 0, respectively. From there on three phases
alternate, the current phase being labelled on the membrane symbol:

Phase +: A is decremented while B is incremented. When A reaches 0, the phase passes to −;
Phase −: A is incremented while B is decremented. When B reaches 0, the membrane breathes;
Breath: For one step A is incremented while B is unchanged, then the phase passes to +.

The value of A + B is constant during a cycle (1 for the �rst cycle) except for the last step
where it is incremented by one. The cycle takes a total time 2(A + B) + 1. Therefore a breath
occurs at each time t2 for t > 1. In Figure 3 we represent the update operation of all three
counters, that is, incrementing the age and updating A and B according to the phase.

t phase A B age 5 + 2b
√
tc

1 + 1 0 0 5
2 − 0 1 1 5
3 − 1 0 2 5
4 breath 2 0 11 7
5 + 11 1 12 7
6 − 0 2 21 7
7 − 1 11 102 7
8 − 2 0 111 7
9 breath 11 0 112 9
10 + 10 1 121 9

Fig. 3 Values of the three counters for t ≤ 10.

Lemma 1 The counter update can be performed locally with radius 2.

Proof The incrementations and decrementations described above can be achieved with radius
1. The least signi�cant bit can be distinguished by being next to the membrane symbol which
contains the information on the current phase and the most signi�cant bit is next to a blank
symbol (on its layer).

We show that the fact that a counter is worth 0 is detectable with radius 2 (to see why
this is nontrivial, consider the update #111 . . . 1 → #00 . . . 0). During a decrementation the
least signi�cant bit alterns between 0 and 1. Since carries progress at "speed" one, two negative
carries can never be next to each other. Therefore the only possible representations of 1 are #1
and #11, and both yield #0 at the next step. Therefore detecting when the counter is worth 0
requires radius two, in order for the membrane symbol to "see" the word #0. ut
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Breathing process Each breath makes the membrane progress by one cell on every direction, a
process we detail below. If such a symbol is not produced synchronously by the whole membrane,
then A signals spawn and spread to erase the membrane.

Recall that each membrane symbol at coordinates x is labelled with an outward growth
direction, which is a vector v =

∑
εjej ∈ Unit. The membrane symbol is the border between

Int(m) and Ext(m), with the orientation vector indicating which part Ext(m) is. When a breath
symbol appears, the membrane symbol is removed and new symbols are created on all cells of
Ext(m) that were ∞-adjacent to any membrane symbol of m. The new orientation vectors are
determined by remaining coherent with the old orientation.

The remaining task is to reproduce the counters for the new symbols.
First consider the case of a face symbol x and orientation ej . Right after a breath, when a new

symbol is created at coordinate x+ ej , the symbol at x is replaced by a placeholder symbol slim.
This symbol progressively shifts the counters of x by one cell in direction ej , marking at each
step the limit between the part which is to be shifted and the part already shifted. The counters
keep updating by ignoring this symbol, which increases the radius to 3. Figure 4 illustrates the
shift.

From this section we deduce the following:

Fact 2 Each initialised membrane forms an hypercube of edge length 5 + 2b
√
tc at time t.

Since the counters of an initialised membrane are initialised to 0 at time 1, the maximum size
of the counters is dlog2(t − 1)e at time t and membranes have enough space to contain them.
For technical reasons that will become clear later, we need to quantify the maximal number of
breaths of any membrane symbol (not necessarily initialised) in a given time:

Lemma 2 The number of breaths triggered by any membrane symbol between times t and t+ k
is at most b

√
t+ kc − b

√
tc.

Proof Apart from time 0 (when a breath symbol could be present), a breath is only triggered
when the B counter of a membrane symbol without local malformations reaches 0. This symbol
must be issued from a seed or from a membrane symbol already present at time 0. In the �rst
case, since a breath is triggered at each step when the time t is the square of an integer (except
for 1), the number of breaths before time t is b

√
tc − 1. The lemma follows.

In the second case, the membrane symbol had at time 0 counters A and B with some positive
values a0 and b0 and some phase ε0, values which correspond to those of an initialised set of
counters at some time t0 > 0. From there on the time evolution of the membrane symbol is
similar to the evolution of an initialised membrane symbol of age t0 + t, which means that the
number of breaths between times t and t+k is b

√
t+ t0 + kc−b

√
t+ t0c ≤ b

√
t+ kc−b

√
tc. ut

Forming colonies For an initial con�guration c, de�ne Mt(c) to be the set of initialised mem-
branes at time t. Then the colonised space at time t is:

Colt(s) =
⋃

m∈Mt(c)

Int(m).

When a membrane grows, it erases the content of every other layer of the cells it encounters,
except when the birth layer contains the outer border of a membrane. In this case, the comparison
process starts, which is the topic of the next section.

To sum up, the alphabet Abirth contains seeds and hearts, and Agrowth contains the states
used for membranes (including counter sublayers). As we will see in the next section, 2d di�erent
membranes can share the same cell, so this alphabet will be duplicated this many times.



Characterisation of limit measures of higher-dimensional cellular automata 13

t

t+ 1

t+ 2

t+ 3

t+ 4

t+ 5

slim

slim

slim

slim

slim

y x′

x

x′′

Fig. 4 After a breath, a membrane corner symbol at cell y is erased and new membrane symbols appear at x,
x′ and x′′. For the sake of readability, the vertical counters are not represented, hence we draw only the new
horizontal counters in x and x′. At each step between t+ 1 and t+ 4, the red cells represent superposition of the
age, A and B counters. They are copied to the new membrane symbols, but the incrementation does not stop.

3.2.4 Survival of the youngest

As membranes grow and tend to cover the whole space, di�erent membranes eventually meet.
The result of the encounter should depend on the nature of the membranes: two initialised mem-
branes should merge while an initialised membrane should erase an uninitialised membrane (what
happens between uninitialised membrane is irrelevant). In this section, we devise a comparison
process to distinguish initialised from uninitialised membranes, using the growth layer and its
alphabet Agrowth.

From Fact 1 we know that initialised membranes have the youngest age counters, and only tie
with other initialised membranes. The value of the age counters are compared to let the younger
membrane survive, with merging occurring in case of equality.

Many membranes meeting When we say that two membranes m and m′ meet at time t in cells
x and x′, we mean that there exists 1 ≤ j ≤ d such that:
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� either x ∈ Supp(m)∩Supp(m′), x+ ej ∈ Ext(m) and x− ej ∈ Ext(m′), in which case take
x′ = x;

� or x ∈ Supp(m)∩Ext(m′) and x+ej ∈ Supp(m′)∩Ext(m), in which case take x′ = x+ej .

The two possible situations are illustrated in Figure 5.

x x′

m1 m2

x

m1 m2

Fig. 5 Depending on the parity of the distance between membranes, they will meet either when they share some
border cells (x′ = x), or when the borders are adjacent(x′ = x+ ej).

In particular, the membranes arriving from opposite directions, they have (at least) an age
counter in opposite directions, say ej and −ej . These age counters are to be copied on a dedicated
sublayer of Agrowth and compared.

Copying phase At positions x and x′, two symbols C1
j and C1

−j are written on the growth layer to
trigger the process (if x = x′, a symbol C1

±j represents the superposition of those symbols) and
progress at speed one in the corresponding direction, copying at each step one bit from the age
counter to a sublayer of Agrowth. Carries 2 are copied as 0: indeed, the copy is performed at the
same speed as the carry progresses, so it would be copied at each step otherwise (the carry is
taken into account once it turns a 0 into a 1). More generally, only carries that appeared before
the beginning of the copy can in�uence the copied counter, which is not incremented. Thus the
copied counter have the same value as the age counter at the beginning of the copy. When it
reaches the end of its counter, each copy symbol turns into a comparison symbol C2

j (resp. C2
−j ),

which triggers the comparison phase.

Comparison phase The comparison symbols return towards the meeting point, "pushing" the
copied bits in front of them in a caterpillar-like movement, starting from the most signi�cant bit.
The returning bits use another sublayer of Agrowth. The process is represented in Figure 6.

As the returning bits reach the meeting point, one of the following situations occur:

� the most signi�cant bit from one side arrives earlier than the most signi�cant bit from the
other side. In this case the age counter of the corresponding side is shorter, which means that
the membrane of this side is younger;

� both most signi�cant bits arrive simultaneously at the meeting points x and x′. Then bits
are compared as they arrive. The �rst bit that is smaller than its counterpart corresponds to
the side of the younger membrane;

� in the previous case, if all bits are equal until the end, both membranes have exactly the same
age.

Those three possibilities are tested locally at the meeting point and the result is written as a
symbol (on its own sublayer) marking the direction of the younger membrane, with = in case of
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Fig. 6 In this example, two membranes meet in cells x and x′ at time t. Their age counters are respectively abc
and αβγ of same length 3. Only the growth layer is represented. At the end (t + 6), the decision can be made
in both x and x′. In this particular case, the symbols shead have not been moved, which means neither of the
membranes did extend during the comparison.

a tie. If for some reason a symbol A (death process) reaches the symbol of one of the sides, the
comparison stops and the surviving membrane is marked as younger "by default".

If a membrane is declared younger, all auxiliary symbols used for comparison are erased and
a death process triggers in the older membrane. The younger membrane will resume its growth
naturally at the next breath. If the result is a tie, both membrane symbols are erased along with
all associated auxiliary states: the membranes are merged.

Remark 2

� In general two membranes may have more than one meeting point. In that case, comparisons
are performed simultaneously at every point and in every concerned direction. In the case of a
tie, all symbols participating in the meeting are erased simultaneously; any local discrepancy
results in the spawn of a death process.
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� At most 2d di�erent membranes can meet in the same cell x (corners of hypercubes arriving
from all possible directions). To solve this problem, we duplicate each sublayer (in Abirth and
Agrowth) used in the comparison into 2d copies, each copy being able to perform a comparison
independently of the others. If the membrane is older than at least another membrane, a death
process is spawned; it merges if it is tied for youngest.

� Let ` be the length of the shortest age counter. The previous process needs ` steps to copy
this age counter on the growth layer, and 2` steps to send them one by one to the meeting
point. Regardless of the length of the other counter, the comparison reaches a result after
the last bit of the shortest counter arrives. Therefore the whole process takes at most 3`
steps. Remember that ` = dlog t− 1e if one of the membranes is initialised (assuming the
comparison process began at time t).

Breathing during comparisons We did not take into account the possibility that one of the
membranes breathes during the comparison. For each meeting of a pair of membranes, call
instigating membrane the one whose breath has triggered the meeting (possibly both if they
moved simultaneously; this is the case for initialised membranes).

Lemma 3 Let m be a living membrane meeting another membrane at time t. During the com-
parison process, m may breath at most one time if it is not instigating, and cannot breath at all
if it is instigating.

Proof Using the above remark, we know that the comparison process takes at most k = 3dlog (t− 1)e
steps. Using Lemma 2, the number of breaths of m between times t− 1 and t+ k is at most:⌊√

t+ k
⌋
−
⌊√

t− 1
⌋
≤
⌈√

t+ k −
√
t− 1

⌉
≤
⌈
k + 1

2
√
t− 1

⌉
(since the derivative of

√
t− 1 is decreasing)

≤
⌈
3 log (t− 1) + 1

2
√
t− 1

⌉
≤ 1.

If m is instigating, then by de�nition m breathed at time t− 1 and cannot breath again before
time t+ k. Otherwise, m breathes at most one time. ut

Therefore, if one or both membranes move during the comparison because of the respiration
process, it writes a head symbol shead,j+ to recall its new position. If a membrane extends more
than twice before the end of the comparison, a death process is triggered for this membrane. As
the radius of F is more than 2, the moved membrane can still read the result of the comparison.

Lemma 4 Take any t > 0 and initial con�guration c ∈ AZd

. Then:

Colt(c) = {x ∈ Zd : ∃y ∈ Zd, d∞(x, y) ≤ 1 +
√
t, pbirth(cy) = *

V }.

In other words, the colonised space at time t is exactly the set of cells that, at time 0, are at
distance less than 1 +

√
t from a viable seed.

Proof We prove this result by structural induction. If t = 1, then the colonised space is the set
of all initialised membranes which are hypercubes of edge side 5 around each viable seed, and
the result is proved.

Now suppose that the hypothesis holds at time t. Notice than Colt(c) ⊂ Colt+1(c), and that
merging does not add any cell to the colonised space: an initialised membrane cannot be erased,
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and the colony obtained after merging two membranes is the union of the colonies de�ned by the
two merged membranes. Only the breathing process may add new cells to the colonised space.

Consequently, the induction step is empty if (t+1) is not a square since Colt(c) = Colt+1(c)
and d∞(x, y) ≤ 1+

√
t⇔ d∞(x, y) ≤ 1+

√
t+ 1 (distances are integers). If (t+1) is a square, then

all membrane symbols in initialised membranes take a breath and extend by one cell towards the
outside. Now, take a cell y at distance 1+

√
t+ 1 from the nearest viable seed. By the induction

hypothesis, y /∈ Colt(c), but y has a neighbour y+ v with v ∈ Unit at distance 1+
√
t from that

seed, so that y + v ∈ Colt(c). Therefore y + v must be a membrane symbol in the support of
an initialised membrane that breathes at time t + 1, and therefore y ∈ Colt+1(c). Conversely,
if a cell z is at distance greater than 1 +

√
t+ 1 from the nearest viable seed, it cannot have a

membrane symbol belonging to an initialised membrane as a neighbour, so that z /∈ Colt+1(c).
ut

3.3 Colonies: evolution of the population

From Lemma 4 we can see that only the contents of the colonised space matter asymptotically.
In this section, we describe the interaction of organisms inside colonies. In all the following,
we assume we are inside a colony, and the support of the surrounding membrane acts as an
impassable wall for any symbol in the second group layers: the organism and evolution layers.

3.3.1 Hearts and organisms

As we saw, seeds * at time 1 spawn a membrane and turn into hearts r . Each heart will be
the centre of an organism which is itself a subset of the colony. At �rst each colony have only
one heart, but as initialised membranes merge together, the colonies become multi-hearted, and
the colony space is partitioned into organisms (except possibly a negligible part). For various
reasons, the size of the organisms should grow in a controlled way, which requires some hearts
to be progressively removed.

In the present section, we present the cycle of division of colony space and life of the organisms,
and all symbols presented here belongs to Aorga.

The life of an organism consists in a succession of generations. We introduce a sequence of
times (tn)n≥1 (to be �xed later), marking the limit between the n − 1-th and n-th generation.
Time is tracked by the heart through a binary time counter similar to age counters, initialised
at 1 at time 1 (along with the heart) and remaining stationary next to the heart. Details on the
implementation and the way to determine when t = tn will be given in Section 3.4.1.

Organisms expanding At each time tn, organism-building signals spread from every heart, pro-
gressing as membrane symbols but with speed 1 (although they do not carry any counters). While
progressing, they erase the old contents of the second and third group layers except for the main
layer. When they meet a membrane or another organism-building signal, they vanish leaving
behind a neutral border symbol $ . For parity reasons, if two signals emitted by hearts in x and
x′ arrive simultaneously in two neighbour cells y and y′, they leave behind two pseudo-border
symbol $′ with an orientation vector towards the interior of their organism, that is, the direc-
tion opposite to the initial organism-building signal. Just as membrane symbols, 3d− 1 di�erent
organism-building symbols and pseudo border symbols are required (one for each orientation).

The territory of a heart is the maximal set of 1-connected cells containing the heart and no
neutral border symbol $ nor pseudo border symbol pointing towards another organism; in other
words, the set of cells reached �rst by organism-building signals emitted by this heart. At time
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tn + k (assuming tn + k < tn+1), the only cells of the colony that are not part of some organism
are either at distance more than k from the nearest heart, or were outside the membrane at time
tn (and a breath had included them since).

Fact 3 Let x be a cell containing a heart at time t with tn ≤ t ≤ tn+1, and let y be a cell in its
territory. Then the organism-building signal emitted by x reached y at time tn+d∞(x, y) and no
other organism-building signal reached a neighbour of y before that time.

The following lemma gives insight about the shape of the territories, namely, that they are a
(discrete) star domain, whether the borders are included or not.

Lemma 5 If a cell y belongs to the territory of a heart in cell x, then each cell y′ such that
d∞(x, y′) + d∞(y′, y) = d∞(x, y) is also in this territory. Furthermore, y′ can be a border only if
y is a border.

Proof For the �rst part of the lemma, suppose such a y′ is not in the territory of x. We can build
an ∞-path between y′ and y consisting of cells (y(i))0≤i≤N such that d∞(x, y(i)) + d∞(y(i), y) =
d∞(x, y). Take y(j) the �rst y(i) that belongs to the territory of x.

Denote T = tn + d∞(x, y(j−1)) the time when the organism-building signal emitted by x
should have reached y(j−1) in the absence of any other heart. Since y(j−1) is not in the territory
of x, there must exist another heart x′ that emitted an organism-building signal that arrived in
y(j−1) before time T (recall that the pseudo-borders are considered as parts of organisms).

Since y(j) is adjacent to y(j−1), y(j) is reached by some signal before time T + 1. But the
signal from x cannot reach y(j) before time tn + d∞(x, y(j)) = T +1. Therefore y(j) is not in the
territory of x, a contradiction.

For the second case, notice that y′ is a border if and only if both signals reached this cell
simultaneously. Then the same reasoning along the path (y(i))0≤i≤N shows that these cells cannot
be inside the territory of x. ut

3.3.2 Natural selection

In this section we consider the evolution layer and the alphabet Aevol.
To have enough computation space and ensure that the auxiliary symbols are in negligible

density, the minimal size of the organisms should grow regularly. More precisely, we require that
the territory of any organism during the n-th generation contains at least a hypercube of side
length 2n+1 centred at its heart. If two hearts are at distance less than 2n+1, they are said to
be in con�ict. In this section, we devise a selection process to detect this fact and to erase one
of them.

The �rst lemma is related to the quantity and position of hearts con�icting with a given
heart.

De�nition 2 For each point x and each vector R ∈ {>,<,=}d that is not =d we introduce the
corresponding quadrant de�ned as {y ∈ Zd : ∀i, yiRixi}.

For n ∈ N, each quadrant contains a unique n-extremal point, which is a point y such that
yi − xi ∈ {−n, n, 0} for all i. Denote Extn(y) = {εei : ε ∈ {1,−1}, yi − xi = nε} the set of its
directions of extremality relative to x. Notice that this notion is de�ned for any vector y such
that d∞(x, y) = n.

Lemma 6 At any given generation, a heart con�icts with at most one other heart in each quad-
rant. In particular, it con�icts with at most 3d − 1 hearts.
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Proof Let x be the position of the heart and tn ≤ t < tn+1 the current time. The heart in x
con�icts with another heart at y if and only if d∞(x, y) ∈ {2n, 2n+ 1}. If two con�icting hearts
were in the same quadrant, then they would be at distance at most 2n− 1, a contradiction. The
bound is tight and reached by the con�guration where there is a heart per quadrant at each
2n-extremal point relative to the heart in x. ut

Settling con�icts at random Each heart keeps in memory a random central bit and the winner of
each con�ict is decided through the value of these bits: if the bits are equal, destroy the largest
heart (in lexicographic order), and the smallest otherwise. As long as the central bits of all hearts
are independent of each other, this process will ensure that the probability of each heart to be
destroyed in any con�ict has a constant lower bound that only depends on the initial Bernoulli.

Remark 3 In dimension 1 [9,2], the heart in the smallest cell was systematically killed. The
reason why we adopt a more sophisticated kill choice method, similar to the one used in [6], is
that we later need to control the growth rate of the organisms. This growth rate analysis under
the simpler method proved to be more di�cult than in dimension 1 and could not be carried
out.

Independent bit harvesting In addition to its central bit, each heart maintains a collection of
3d − 1 side bits, one for each quadrant, that must remain independent of each other and of
every other central or side bits of other hearts. This is achieved by using the independence of
the initial measure. At time 0, each seed looks at its 3d − 1 adjacent cells (which are in one-
to-one correspondence with its quadrants): if a cell contains the symbol (the symbol choice
is arbitrary) then the corresponding bit in the newborn heart is put to 1, and 0 otherwise.
Remember that if two seeds are too close, one is erased, hence those bits are really independent
from one another and from other hearts.

Each time a heart kills another in a con�ict, the dying heart transmits one of his side bits to
its killer (the bit corresponding to which quadrant the killer belongs to). The new central bit of
the killer is the sum of the side bits received from its victims. As we will see, this process lets us
maintain probability bounds on the value of central bits while preserving independence.

Body building with bits In order to detect con�icting hearts, each heart in position x builds at
time tn a body : a hypercube of side length 5 centred around the heart. Each body symbol in
position y carries various pieces of information: the central bit of the heart, which quadrant
(relative to the heart) it belongs to, the corresponding side bit, and the set of directions in which
it is 2-extremal (Ext2(y)). Next to the heart, a dedicated process writes two copies of n as binary
counters from the computation layer (see next section).

The three phases of con�ict resolution are:

Body building Each heart sends n (hypercube-shaped) signals that progress at speed 1 in every
direction, one every n steps. The count is kept by decrementing the binary counters. As each
signal reaches the body, it pushes it outwards by one cell. The set of directions in which it is
k-extremal (where k is the number of steps) is kept updated.

Con�icting If two bodies intersect, the corresponding hearts are in con�ict. Body symbols at
n-extremal points determine locally the relative positions (quadrants) of the two hearts (see
next paragraph), and using the values of the central bits, the winner of the con�ict. This
phase takes only one step.

Body shrinking Each heart keeps sending (hypercube-shaped) signals every n steps, but these
signals now pull the body inwards as they reach it. The body is destroyed as it reaches size
5, transmitting its information to the heart. The heart stops sending signals.
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If a heart has fought no con�ict during a generation, nothing happens. If it loses at least
one con�ict, it self-destroys. Not being able to send border-building signals, its territory will be
occupied by other organisms at the next phase. If it wins all its con�icts, it replaces its central
bit by the sum (modulo 2) of all the bits it receives from its victims.

Quadrant determination During the con�icting phase, only the extremal points of its body settle
the con�ict. Take an extremal point of some body in position y such that there is a body symbol
in position y′ (not necessarily extremal), belonging to another body. Denote R and R′ the
respective quadrants of y and y′. The extremal point y deals with the con�ict if and only if these
properties hold:

� (I) y′ = y +
∑
v∈D v, D ⊆ Extn(y) (note that D may be empty, that is, y′ = y) ;

� (II) ∀εei ∈ Extn(y) ∩ Extn(y′), yi 6= y′i;
� (III) for each i, if Ri is = then R′i is = as well.

The �rst condition means that extremal points are only interested in directions (or sets of
directions) they are extremal in. Both other conditions are illustrated in Fig 7.

Lemma 7 A con�ict is settled exactly once by each involved heart, at the extremal point corre-
sponding to the relative position (quadrant) of the other involved heart.

Proof Consider some heart in position x, and a con�icting heart x′ located in quadrant R. Since
d(x, x′) ∈ {2n, 2n+ 1}, we can check that d(y, x′) ≤ n+ 1 where y is the n-extremal point for x
in quadrant R. We check that y satis�es (I) with some neighbour y′ and they satisfy both (II)
and (III).

Since d(x, x′) = 2n+α for some α ∈ {0, 1}, there is some 1 ≤ i ≤ d such that |xi−x′i| = 2n+α.
For any such i, �x y′i − x′i = −(yi − xi) ∈ {−n, n} so that |xi − y′i| = n+ α.

For all others 1 ≤ i ≤ d:
� if Ri is > take y′i = xi + n = x′i + (n− x′i + xi) ∈ [x′i − n, x′i + n]
� if Ri is < take y′i = xi − n = x′i − (n+ x′i − xi) ∈ [x′i − n, x′i + n]
� if Ri is = take y′i = x′i.

Hence d(x′, y′) = n and y′ belongs to the body of x′.
(I) For every 1 ≤ i ≤ d such that |xi−x′i| = 2n+α, |y′i−yi| = |(y′i−x′i)+(x′i−xi)+(xi−yi)| = α.

For all others 1 ≤ i ≤ d:
� if Ri is >, then y′i − yi = (xi + n)− (xi + n) = 0.
� if Ri is <, then y′i − yi = (xi − n)− (xi − n) = 0.
� if Ri is =, then y′i − yi = (y′i − x′i) + (x′i − xi) + (xi − yi) = 0 + 0 + 0.

This proves that d(y, y′) ≤ 1 and (I) is veri�ed.
(II) Assume y and y′ share an extremality direction ei and yi = y′i. That is, yi − xi = n and

y′i − x′i = n, so that xi = x′i. Furthermore, notice that Ri is > since y belongs to quadrant R.
But since xi = x′i, x

′ wouldn't be located in quadrant R, a contradiction. The same argument
works for an extremality direction −ei.

(III) If Ri is =, since x′ is located in quadrant R relative to x, this means that xi = x′i. Since
y is extremal for x in quadrant R, we have yi = xi. Therefore y

′ is located relative to x′ in a
quadrant R′ such that y′i = x′i, i.e. R′i is =.

We show that no other extremal point handles the con�ict. Let z be another extremal point
in quadrant R” for x, next to a body symbol z′ for x′. We distinguish various cases:

� For some i, assume Ri is = but not R”i. Then xi = x′i but zi = xi ± n, i.e. z has an
extremality direction along ei. Similarly z′ has an extremality direction along ei and zi = z′i,
contradicting condition (II).
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a1 a2

a3a4

b1

b2

b3

b4

Fig. 7 Body of a heart, with quadrants and extremal points. The heart is involved in con�icts in quadrants
a1, b2 and a4. The extremal point for b4 is uninvolved because of rule (III), and extremal points for a2 and a3 are
uninvolved because of rule (II). Extremal points for b2 and a4 satisfy (II) and (III).

� For some i, assumeRi is < butR”i is >. Then x′i < xi and zi = xi+n, so that zi > x′i+n ≥ z′i
and z does not handle the con�ict according to (I).

� For some i, assume Ri is < but R”i is =. Then zi = xi > x′i and as εei /∈ Extn(z), (I) ensures
that zi = z′i. Hence z

′
i > x′i and R”i is not =, which contradicts condition (III).

ut

Lemma 8 At any time t, the values of every central and side bit are independent of each other.
Furthermore there exists a constant 0 < α ≤ 1/2 such that for any of these bits, the probability
that it is worth 1 at time t is bounded between α and 1− α.

Proof At time 0, the central and side bits of each heart are determined by the initial Bernoulli
measure, so the lemma is veri�ed and the value of α is determined by the initial measure. A side
bit is never changed and only interacts with the outside when its heart is destroyed, so we only
prove the result for central bits. Since the only opportunity for central bits to be in�uenced by
or to in�uence other bits is during con�ict resolution, we prove the result by induction on the
generation n (with the basic case of the 0-generation already proved).

Assume the result holds for some generation n and consider a heart alive at time tn+1. If the
heart is not involved in a con�ict at generation n+1, then its central bit is unchanged and doesn't
in�uence any outside process, so the property is maintained. If it is involved in k con�icts, then
it either dies (in which case there is nothing to prove) or wins them all.

Denote β1, . . . , βk the side bits it received from his victims. The value of these side bits did
not in�uence the con�ict resolution and remains independent of every other bit since they are
not sent to any other con�ict winner (there is at most one con�ict per quadrant). Furthermore:

µ

∑
i≥1

βi = 1 mod 2

 = µ(β1 = 1) · µ

∑
i≥2

βi = 0 mod 2

+ µ(β1 = 0) · µ

∑
i≥2

βi = 1 mod 2


≥ α · µ

∑
i≥2

βi = 0 mod 2

+ (1− α) · µ

∑
i≥2

βi = 1 mod 2


≥ min(α, 1− α) ≥ α

and symmetrically, using the induction hypothesis of independence between the values of all
βi. ut
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Thanks to this process we can bound the radius of an organism, which is the largest distance
from a cell of its territory to its heart.

De�nition 3 An organism is healthy if its radius is less than Kn = 2n
d− 1

2 .

Lemma 9 Any cell belongs to a healthy organism with asymptotic probability 1, i.e.:

max
tn≤t≤tn+1

µ
({
c ∈ AZd

: ∃x ∈ Zd, d∞(x, 0) ≤ Kn, porga(F
t(c)x) = r

})
−−−−→
n→∞

1.

Proof Consider a heart in x ∈ Zd at time tn. Its survival until time tn+1 only depends on the
hearts that are present at distance 2n or 2n+ 1. Inductively, the survival of an initialised heart

until the n-th generation depends only on hearts located at distance at most (2n+1)(2n+2)
2 : the

survival of distant enough hearts is independent.
Denote:

νn = max
tn≤t≤tn+1

µ
({
c ∈ AZd

: porga(F
t(c)0) = r

})
.

Take the hypercube of side length 2Kn+1 centred on 0 and cut it into λn =
(⌊

2Kn+1
(2n+1)(2n+2)+1

⌊)d
hypercubes of size (2n + 1)(2n + 2) + 1. Consider the centres of these hypercubes x1, . . . , xλn .
Then we have:

1− max
tn≤t≤tn+1

µ
({
c ∈ AZd

: ∃x ∈ Zd, d∞(x, 0) ≤ Kn, porga(F
t(c)x) = r

})
≤ (1− νn)λn

where the second step uses the last remark and the shift-invariance of µ.
For any k ∈ N, a living heart at time tk−1 survives until generation k if it wins every con�ict

it is engaged in. Using Lemma 8, we have νk ≥ α3d−1νk−1 for some �xed 0 < α ≤ 1/2. Then by

recurrence νn ≥ αn(3
d−1)µ({ * }).

We conclude that (1−νn)λn ≤
(
1− αn(3d−1)µ({ * })

)λn

→ 0 since λnα
n(3d−1)µ({ * })→∞.

ut

3.4 Individual organisms: internal metabolism

The last group of layers is used to govern the internal metabolism of the organisms. In this
section, we consider some organism and describe how it behaves during a generation.

3.4.1 Computing

In this section, we describe the computational layer using the alphabet Acomp. Let (wn)n be
the uniformly computable sequence of patterns given as an hypothesis of the theorem. Our goal
is to delimit a small computation space around the heart where each wn will be computed in
succession.

We use standard techniques to embed the time evolution of any Turing machine TM =
(Q,Γ,#, q0, δ, QF ) inside our cellular automaton. The alphabet used for the simulation is (Γ ∪
#) × (Q ∪ #): the left part contains the tape symbol, and the right part contains the current
state for the cell where the head is located, and # everywhere else. Then each step of the Turing
machine moves the head and modi�es the tape around the head according to local information,
which can be done through the local rule of a CA.
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A brain around each heart The alphabet Acomp is divided into 4 sublayers containing various
computational processes taking place in parallel next to the heart, including Turing machines
with a d-dimensional tape. Each layer can read the contents of another sublayer when indicated.
Assume that we are at time t = tn.

1. The �rst layer contains a binary counter keeping track of the current generation;
2. The second layer contains a binary counter keeping track of the current value of t, similarly

to binary age counters;
3. The machine on the third layer computes the value of tn+1, then keeps watch on the time

counter on the second layer. When it reaches t = tn+1, the generation counter is incremented
by one, which triggers many other processes.

4. The machine of the fourth layer reads the generation counter and computes the hypercubic
patterns wn along with its side length k. wn is output on the main layer.

From now on, we �x tn =
∑
k<n 2

kd−
1
4 .

Complexity analysis We want to ensure that these computations can be performed between times

tn and tn+1 without leaving a hypercube centred on the heart of side length n
d− 1

4
d , that is, that

they can be performed in time tn+1 − tn = 2n
d− 1

4 and space nd−
1
4 .

To get rid of the multiplicative constant contained in the O notation, we use the standard
techniques of linear speedup and tape compression for Turing machines. For any �xed constant
C, by grouping cubes Cd tapes cells together in a single letter and performing C computation
steps at once, we can divide required time and space by C. As downside, the tape alphabet of
the Turing machines increases exponentially (in C).

First and second layers: This is obvious for the generation counter. The time counter occupies

a space dlog te ≤ dlog tn+1e ∼ log(2n
d− 1

4 ) = O(nd−
1
4 ), and the multiplicative constant is

removed by using a base-b counter with b large enough.

Third layer: Computing the value of tn+1 =
∑
k<n+1 2

kd−
1
4 takes space and time O(2n

d− 1
4 ).

Fourth layer: Without loss of generality, wn satis�es the time and space constraints, as the
following Lemma shows.

We also assume that wn ∈ A[0,k]d for some 1
2n

d− 1
2

d < k ≤ n
d− 1

2
d , by replacing wn by concate-

nating copies of itself if necessary.

Lemma 10 Given a computable sequence (wn)n of hypercubes, there exists another computable
sequence (w′n = wg(n))n such that:

� g : N→ N is surjective and non-decreasing;

� w′n is computable in time O(2n
d− 1

4 ) and space O(nd−
1
4 ).

Proof Consider a TM φ0 that computes the sequence (wn)n. We describe another machine φ on
two tapes that computes (w′n)n.

We de�ne the computation of φ on input n inductively:

� compute φ(n− 1) to obtain the value of w′n−1 and g(n− 1) (they may be respectively empty
and 0, for example when n = 0);

� draw an hypercube of side slimn = n
1
d (d−

1
4 );

� on the second tape, compute and store the value tlimn = n−d2n
d− 1

4 and initialise a counter
with value 0;
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� simulate φ0 on input g(n − 1) + 1. Between each simulated step, increment the counter and
compare it with tlimn ;

� if the counter reaches the value tlimn before φ0 halts, output φ(n− 1);
� if on the other case φ0 halts �rst, output w′n (the output of φ0) and g(n) = g(n− 1) + 1.

Hence g is surjective and non-decreasing, and (w′n)n is by construction computable in space

nd−
1
4 . Computing the value of slimn and tlimn can be done in O(2n

d− 1
4 ) operations. Since tlimn and

the counter have length less than nd, each incrementation and comparison step takes O(nd) steps

at most. Therefore we have O(ndtlimn ) = O(2n
d− 1

4 ) operations outside of the recursive call, and

the recursive call takes O(
∑n−1
i 2i

d− 1
4 ) = O(2n

d− 1
4 ) operations. ut

To conclude, the described computations are doable within these time and space constraints,
and wn is computed before time tn+1. At time tn+1 the second machine enters a special set of
states that triggers various processes: organism-building signals, body-building, and the object
of the next section, a copying process that will write concatenated copies of the pattern wn all
over the main layer of the territory of the organism.

The alphabet Acomp is thus {0, 1, 2,#}×{0, 1, 2,#}×(Q3∪#)×(Γ3∪#)×(Q4∪#)×(Γ4∪#),
where Qi, Γi are the state space and the tape alphabet of (the compressed version of) the i-th
Turing machine described above.

3.4.2 Copying

The copy layer aims at copying the pattern wn output by the computational layer on the whole
territory of the organism. In this section, auxiliary symbols belong to the copy layer Acopy but
the pattern is written in the main layer with alphabet B.

Writing grid Remember that we assume wn ∈ A[0,k]d for some 1
2n

d− 1
2

d < k ≤ n
d− 1

2
d . Assume the

central heart is located at 0 for readability, and that the borders of wn have been marked with
a special symbol G (on the copy layer) by the Turing machine. The copying process relies on an
(imaginary) cubic grid of side length k that covers the whole territory of the organism. Starting
from the cells centred on the heart, the pattern wn is copied in each cell of this grid passing from
neighbour to neighbour, through a translation of vector kej or −kej for each 1 ≤ j ≤ d.

For some coordinates i ∈ Zd, de�ne the corresponding grid element Σi = {
∑

1≤j≤d αjej :

∀1 ≤ j ≤ d, kij ≤ αj ≤ kij + k}, and Σi its border (extremal cells). Notice that the computed
pattern is supported by Σ0,...,0.

Local copy operation For u ∈ Unit(d) and i ∈ Zd, we de�ne the copy operation Ci(u) that copies
the contents of the main layer from Σi to Σi+u. It consists in simulating a Turing machine (see
previous section) that receives as input k the side length of wn and works as follows:

Reproducing the borders: The �rst step is to write G in every cell of Σi+u. It then travels to the
coordinate k(i + u) and builds an hypercube of symbols G of side length k (corresponding
to Σi+u). This takes O(kd) time steps. If the new hypercube is not entirely included in the
territory of the organism, the copy process stops.

Reproducing the pattern: The second step is to copy the pattern letter by letter. The machine
copies each letter in lexicographic order, marking with a symbol letters already copied. Each
letter needs at most O(k) steps to be copied, so the whole process takes O(kd+1) steps.
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Cleaning the auxiliary states: The third step is to remove all the auxiliary states that remain on
the tape in the original grid hypercube Σi (including G ). This is done by going through all
kd cells of Σi, taking O(kd) steps.

Selecting heirs: The process spawns new copy processes from the hypercube Σi+u, transmitting
along the value of k. The direction of the next processes are the following:

Ci(u)→
{
{Ci+u(v) : v = λjej +

∑
k 6=j λkek, λk ∈ {−1, 0,+1}} if u = λjej , λj ∈ {−1,+1}

Ci+u(u) otherwise

Those new processes are performed in parallel by duplicating the copy layer 2d times.

At the initial step, it is enough to trigger a copy process in all directions u ∈ Unit(d). The
copying operations then progressively �ll the whole organism, as can be seen in Figure 8.

r

wn

wn

wn

wn

wn

wn

wn

wn

wn

Fig. 8 In this 2-dimensional example, the pattern wn is copied from the heart of the organism towards its
boundaries in successive steps.

Each copying operation takes O(kd+1) steps, and the active copying operations expand out-
ward from the heart as a (thick) hypercube. Therefore, if the radius of the organism is r, the total

time needed to �nish the copying process is r
k · O(kd+1). We can take r ≤ 2n

d− 1
2 by Lemma 9

and k ≤ n
d− 1

2
d , which gives a total time of O(nd2n

d− 1
2 ) = O(2n

d− 1
4 ). Lowering if needed the

multiplicative constant by the linear speedup theorem, we see that the process ends before time
tn+1.

3.5 Proof of the main theorem

We �rst prove that the density of auxiliary states tend to 0 as time tends to in�nity, which
ensures they are not charged by any limit measure.

Lemma 11 Border symbols $ have negligible density asymptotically, i.e., for any nondegenerate
Bernoulli measure µ:

F tµ
({
c ∈ AZd

: porga(c)0 = $
})
→t 0.
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Proof By Lemma 4, we can consider only the cells in the colonised space, i.e. inside a living
membrane. Given a con�guration c and some time tn ≤ t < tn+1 during the n-th generation,
denote S $ (t) = {x ∈ Zd : porga(F

t(c)x) = $ } ∩ Colt(c) the set of colonised cells containing

a border, and S $ (t) the complement of the previous set. We show that there exists a constant

λ such that
|S $ (t)|

|S $ (t)| ≤
λ
n . This property being true for every initial con�guration c, the lemma

follows using Birkho�'s theorem.
To do this, we show in the next Lemma that borders between organisms can be partitioned

into (subsets of) hyperplanes. To each such hyperplane subset bordering two organisms, we
associate some volume inside the territory of one of the organisms that is n

λ times larger than
the subset itself.

Lemma 12 The common border of two hearts is included in a (�nite) union of hyperplanes of
Hyp(d). (Recall Hyp(d) is the set of hyperplanes with a normal vector in Unit(d).)

Proof Let x and x′ be two cells containing a heart each. If no other heart existed in the whole
space, any point y in the border between these two hearts would verify |d∞(x, y)−d∞(x′, y)| ≤ 1.
Taking i and j such that d∞(x, y) = |yi − xi| and d∞(x′, y) = |yj − x′j |, this border would be

included in
⋃

1≤i,j≤d
ε=±1

Hε
i,j , where H

ε
i,j are de�ned as:

y ∈ Hε
i,j ⇐⇒

{
|2yj − xj − x′j | ≤ 1 if i = j and xj = x′j
|yi − xi − ε(yj − x′j)| ≤ 1 otherwise

All these sets are unions of one or two hyperplanes ofHyp(d) (depending on the parity of xi−εx′j).
In the presence of other hearts, the border between x and x′ is a subset of this "ideal border",
which proves the Lemma. ut

Given two hearts at cells x0 and x1, denote B(x0, x1) the set of cells corresponding to their
common border. Partition this set into a �nite collection {H1, . . . ,Hk} of disjoint subset of
hyperplanes according to the previous lemma. For each such Hi, as d∞(x0, x1) ≥ 2n, we have
either d∞(x0, Hi) ≥ n or d∞(x1, Hi) ≥ n.

Take any i and any �nite subset s of Hi. Denote A(s) the area of s and V0 and V1 the
volumes of the d-polytopes limited by the surface s and the points x0 and x1, respectively. Then

Vι =
1
dd∞(xι, Hi)A(s) for each ι ∈ {0, 1}. Denote V (s) = V0 + V1, then

A(s)
V (s) ≤

d
n .

We now do this operation for every organism, that is split S $ (t) into a collection S of disjoint
hyperplanar surfaces that belong to the common border of two organisms. For every two such
di�erent surfaces, the corresponding volumes inside organisms are also disjoint, hence

|S $ (t)|
|S $ (t)|

≤
∑
S A(s)∑
S V (s)

(1)

≤ d

n
(2)

ut

Lemma 13 For any nondegenerate Bernoulli measure µ and z ∈ Zd,

µ
(
F t(c)z ∈ A \ B

)
−→
t→∞

0.

Proof We handle each layer separately.
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Uncolonised space and membranes First, by Lemma 4, we can see that c0 belongs to the un-
colonised space at time t only if the nearest viable seed at time 0 is at distance more than

√
t.

For the same reason, c0 can be part of a living membrane or a related process (age counter,
respiration process, comparison process) only if the nearest viable seed is at distance more than√
t − log t. Since a viable seed appear with a nonzero probability, the probability of this event

tends to 0 as t tends to in�nity.

It remains to handle symbols appearing inside the colonised space on the layers dealing with
internal a�airs of the colonies: organism, evolution, computing, copying and main layers. By
Birkho�'s ergodic theorem, it is equivalent to prove that the density of auxiliary states in a
con�guration tends to 0 almost surely when time tends to in�nity.

Hearts, computing symbols In the colonised space hearts r must be issued from a seed, and as
explained in Section 3.3 they each have at time tn a body, which are non-overlapping hypercubes
of side 2n + 1 centred on the heart (more precisely, they can overlap shortly but are destroyed
before the next tn). Thus the density of hearts r in c between times tn and tn+1 is less than

1
(2n−1)d . Since the computing process taking place around the heart is contained in a hypercube of

side
√
n, the density of cells with nonempty computing layer is almost surely less than 1

(2n−1)d/2
in this period.

Bodies and bodybuilding signals Body symbols form the surface of an hypercube of side 2n + 1
(when it is fully built) or less (during the construction), and therefore there are less than 2d(2n+
1)d−1 such symbols for each heart. The impulses used to grow the body being sent one at a time,
they occupy at most as much space as the body itself at any given time. Therefore all those
symbols have density less than 2d(2n+ 1)d−1 · 1

(2n−1)d = O
(
1
n

)
.

Borders and border-building signals Borders $ were handled in Lemma 11. We use a similar
argument to show that the density of symbols in signals used to build borders is asymptotically
negligible. The signal is born around the heart and progresses at speed one. Therefore, m steps
after its birth, the set of cells in the organism containing the signal is an hypercube of side 2m+1
centred on the heart (intersected with the inside of the organism). In particular, in an organism

of healthy size, the signal sent at time tn has disappeared before time tn + 2n
d ≤ tn+1, so at

most one signal appears in a given organism at the same time.
If m ≤ n, since the organism contains at least nd cells, signal symbols have density less

than 2d(2m+1)d−1

nd = O( 1n ). If m > n, notice that for each cell z of the organism satisfying
d∞(r , z) = m, the line between r and z is contained in the organism (by Lemma 5) and does
not contain other signal symbols (since its distance to the heart is less than m). For any part P
of the surface area of the hypercube which is inside the organism, the convex hull of P and r
is inside the organism as well and its interior does not contain any symbol. The proportion of
P to the total surface area is the same as the proportion of its convex hull to the total volume.

Therefore the symbol density is at most 2d(2m+1)d+1

md = O
(
1
n

)
(since m > n).

Copying processes The copying grid G is simply a grid of side length
√
n, and therefore the

density of symbols G is less than 2d(2n+1)d−1

nd = O
(
1
n

)
. Each copying operation contains symbols

in at most two squares at any given time: one from which it copies and one to which it copies.
Furthermore, because all copying operations take the same amount of time C(n) to copy one
square, the whole copying process of an organism in the time interval [tn+kC(n), tn+(k+1)C(n)]
is contained in the squares located at "distance" k and k + 1 from the heart, i.e. the cells
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whose distance from the heart is between k
√
n and (k + 2)

√
n. Furthermore, by Lemma 9,

the probability that an organism contains only one copying process tends to 1. The previous
argument (used for the border-building signals) shows that copying symbols have density at

most O
(

2
√
n
n

)
= O

(
1√
n

)
. ut

From this lemma, we see that no limit measure can assign a non-zero probability to any
pattern with a non-empty auxiliary layer.

Lemma 14

dM(F tnµ, δ̂wn
) −→
n→∞

0 and max
tn≤t≤tn+1

dM

(
F tµ, [δ̂wn

, δ̂wn+1
]
)
−→
n→∞

0.

Proof Take any �nite square pattern u ∈ A[0,`]d . From Lemma 13 and by σ-invariance, we can
see that if c is drawn according to µ then the probability that F t(c)[0,`]d has any part outside

the colonised space or with a nonempty auxiliary layer is O
(

1√
n

)
. Inside any organism at time

t = tn, the main layer contains concatenated copies of wn−1 in all directions except for those
cells at distance more than tn−tn−1

C(n)

√
n from the heart (see the last paragraph of the previous

proof), which forms an asymptotically negligible set by Lemma 9. By σ-invariance, we obtain
that:

|F tnµ([u])− δ̂wn
([u])| −→

n→∞
0.

Since this is true for any square pattern, we get the �rst part of the result.

At time tn, the copying process for wn is triggered. As explained in the last paragraph of the
previous proof, between times tn + kC(n) and tn+ (k+1)C(n) the copying process is contained
in cells at distance k

√
n to (k + 2)

√
n from the nearest heart. In particular, the main layers of

cells at distance less than k
√
n from the nearest heart contain concatenated copies of wn while

those at distance more than (k + 2)
√
n still contain concatenated copies of wn−1.

Therefore, denoting by h(c) the minimum distance between 0 and an heart in c, we have for
any tn ≤ t ≤ tn+1:

F tµ([u]) = µ

(
h(c) ≤ t− tn

C(n)

√
n

)
· δ̂wn([u]) + µ

(
h(c) >

t− tn
C(n)

√
n

)
· δ̂wn−1([u]) + o

n→∞
(1).

The second term contains µ
(
h(c) > t−tn

C(n)

√
n
)
instead of the expected µ

(
h(c) >

(
t−tn
C(n) + 2

)√
n
)

to get an actual barycentre, the di�erence between them is asymptotically negligible in n. This
equation holding for any square pattern u, we obtain:

dM

(
F tµ , µ

(
h(c) ≤ t− tn

C(n)

√
n

)
· δ̂wn

+ µ

(
h(c) >

t− tn
C(n)

√
n

)
· δ̂wn−1

)
−→
n→∞

0. (3)

The right-hand measure belonging to the segment [δ̂wn−1
, δ̂wn

], and this being true for any tn ≤
t ≤ tn+1, we obtain the desired result. ut

Proof (of Theorem 2) By the right-hand part of Lemma 14, we see that V(F, µ) is included in the

closure of the polygonal path delineated by the sequence (δ̂wn)n∈N. We prove the other inclusion.

Take any ν ∈ [δ̂wn−1
, δ̂wn

]. For tn−1 ≤ t ≤ tn, denote µt the closest point to F tµ in [δ̂wn−1
, δ̂wn

];
by Lemma 14, dM(F tµ, µt) → 0. We prove that ν is close to one of the µt. By Equation (3),



Characterisation of limit measures of higher-dimensional cellular automata 29

we have dM
(
F tµ, F t+1µ

)
≤ 2µ

(
t−tn
C(n) ≤ h(c) ≤

t+1−tn
C(n)

)
+ o
n→∞

(1) → 0. Since dM (F tµ, µt) =

o
n→∞

(1), it follows that dM(µt, µt+1) o
n→∞

(1) as well.

Since dM

(
µti , δ̂wi

)
= o
n→∞

(1) for any i and dM(µt, µt+1)→ 0, it follows that

min
tn≤t≤tn+1

dM(ν, µt) = o
n→∞

(1) and thus min
tn≤t≤tn+1

dM(ν, F tµ) = o
n→∞

(1).

This proves the other inclusion. ut

4 Statement of the results

From Theorem 2 we deduce a number of results which are our main contributions.

Corollary 1 The measures ν ∈Mσ(AZd

) for which there exist:

� an alphabet B ⊃ A,
� a cellular automaton F : BZd → BZd

, and

� a non-degenerate Bernoulli measure µ ∈Mσ(BZ
d

)

such that F tµ −−−→
t→∞

ν, are exactly the limit-computable measures.

Corollary 2 The connected sets of measures K ⊂Mσ(AZd

) for which there exist:

� an alphabet B ⊃ A,
� a cellular automaton F : BZd → BZd

, and

� a non-degenerate Bernoulli measure µ ∈Mσ(BZ
d

)

such that V(F, µ) = K, are exactly the Π2-computable, connected, compact sets of measures.

Furthermore, both corollaries hold if one requires the convergence to hold for all nondegen-
erate Bernoulli measures.

Proof Apply Theorem 2 to Proposition 4. To get Corollary 1, use the fact that ν is a limit-
computable measure if and only if the singleton {ν} is a Π2-computable set of measures (and of
course connected). ut

Following [9], we obtain a similar characterisation using convergence in Cesàro mean (Corol-
lary 5 in op.cit.) and a Rice-style theorem on µ-limit measures set (Corollary 7 in op.cit.).
Since the proofs of op.cit. only involve �nding an appropriate uniformly computable sequence
(wn) without modifying the cellular automaton, they can be carried straightforwardly to the

d-dimensional case by replacing AZ by AZd

and we do not repeat them here.

Corollary 3 The sets of measures K′ ⊂ K ⊂Mσ(AZd

) for which there exist:

� an alphabet B ⊃ A,
� a cellular automaton F : BZd → BZd

, and

� a nondegenerate Bernoulli measure µ ∈Mσ(BZ
d

)

such that V(F, µ) = K and V ′(F, µ) = K′, are exactly the Π2-computable, connected, compact
sets of measures.
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In particular we characterise all sets of measures reachable at the limit in convergence in
Cesàro mean from a Bernoulli measure, since those sets are necessarily connected (Section 1.2.3 in
op.cit.). Here again, the result holds if one requires the convergence to hold for all nondegenerate
Bernoulli measures.

Corollary 4 Let P be a nontrivial property (i.e. not always or never true) on non-empty Π2-

computable, compact, connected sets of Mσ(AZd

). There is no algorithm that can decide, given

an alphabet B, a cellular automaton F : BZd → BZd

and a Bernoulli measure µ ∈ Mσ(BZ
d

),
whether V(F, µ) satis�es P .

Here it is assumed that the Bernoulli measure is �nitely described by a list of (rational)
parameters. A similar statement follows on nontrivial properties of limit-computable measures.
This corollary would also hold if the property was required to hold, not only for one, but for
some or all nondegenerate Bernoulli measure(s).

5 Open questions

The main questions that remain open concern the characterisation of non-connected sets of limit
measures and the extension to more general sets of initial measures. In particular, the result in
the 1-dimensional case holds for a large diversity of initial measures (σ-mixing with full support),
which we could not obtain for the lack a �ner analysis of the disappearance rate of the hearts.

A longer-term research direction concerns surjective cellular automata. The construction de-
veloped here is intrinsically non-surjective, and it does not seem that it can be adapted easily
(in particular due to the key role of a time 0). Surjective cellular automata are known to be
Turing-universal in the classical sense, but surjectivity has a deep impact on the dynamics of the
model which is speci�c to the probabilistic setting [11]. In some sense, the question is whether
this dynamical restriction is strong enough to lower the computing power of the model. Even
seemingly simple questions, such that the existence of a non fully-supported set of limit measures,
remain open.
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