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Abstract

The peeling process is an algorithmic procedure that discovers a random planar map step by
step. In generic cases such as the UIPT or the UIPQ, it is known [15] that any peeling process will
eventually discover the whole map. In this paper we study the probability that the origin is not
swallowed by the peeling process until time n and show it decays at least as n−2c/3 where

c ≈ 0.1283123514178324542367448657387285493314266204833984375...

is de�ned via an integral equation derived using the Lamperti representation of the spectrally
negative 3/2-stable Lévy process conditioned to remain positive [12] which appears as a scaling
limit for the perimeter process. As an application we sharpen the upper bound of the sub-di�usivity
exponent for random walk of [4].

1 Introduction

One of the main tool to study random maps is the so-called peeling procedure which is a step-by-step
Markovian exploration of the map. Such a procedure was conceived by Watabiki [26] and then formalized
and used in the setting of the Uniform In�nite Planar Triangulation (UIPT in short) by Angel [1]. In this
paper we will use Budd’s peeling process [8] which enables to treat many di�erent models in a uni�ed
way. A peeling of a rooted map m is an increasing sequence of sub-maps with holes

e0 ⊂ e1 ⊂ · · · ⊂ m,

where e0 is the root-edge of m, and where ei+1 is obtained from ei by selecting an edge (the edge to peel)
on the boundary of one of its holes and then either gluing one face to it, or identifying it to another
edge of the same hole; in the latter case this may split the hole into two new holes or make it disappear.
When the map m = m∞ is in�nite and one-ended (a map of the plane) we usually “�ll-in” the �nite
holes of ei and consider instead a sequence of sub-maps with one hole

e0 ⊂ e1 ⊂ · · · ⊂ m∞

called a �lled-in peeling process. Obviously, the peeling process depends on the algorithm used to
choose the next edge to peel and any algorithm is allowed, provided it does not use the information
outside en (it is ‘Markovian’) see [14] for details.

In this work we will study the peeling process on random in�nite critical Boltzmann planar maps
with bounded face-degrees. More precisely, if q = (qi )i≥1 is a non-negative sequence with �nite support
we de�ne the q-Boltzmann weight of a �nite map m as

w(m) =
∏

f ∈Faces(m)

qdeg(f ).
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We suppose that q is admissible (the above measure has �nite total mass) and critical in the sense that
we cannot increase any of the qi ’s and remain admissible, see [8, 14, 24]. Under these conditions, it
was proved by Stephenson [25] (see also [7] in the case of bipartite maps, when all faces have even
degrees) that such a Boltzmann map conditioned to be large converges in distribution for the local
topology to a random in�nite map of the planeM∞ which is called the q-in�nite Boltzmann map. This
result encompasses previous ones due to Angel & Schramm [2] and Krikun [21] on uniformly random
triangulations and quadrangulations, in which caseM∞ is the UIPT and the UIPQ respectively.

Figure 1: Example of the first few steps of a (filled-in) peeling process; the next edge to peel is indicated
in fat blue, and when this edge is identified with another one, the la�er is indicated in dashed blue. The
filled-in holes are indicated in pink (we do not represent the submap they contain). At the last step, the
root-edge gets swallowed.

Let (ei ; i ≥ 0) be a (�lled-in Markovian) peeling ofM∞. The proof of [4, Theorem 1] recast below
into Proposition 2 shows that (at least in the case of the UIPQ) such an exploration cannot escape too
fast to in�nity in the sense that whatever the peeling algorithm used en cannot reach distances more
than n1/3+o(1) from the origin insideM∞. On the other hand, it is known (see [14, Corollary 27] based
on [15]) that the exploration will eventually reveal the whole map, that is⋃

n≥0
en = M∞, a.s.

Our main result gives a quantitative version of the last display. We let ∂en denote the boundary of the
sub-map en , de�ned as the edges adjacent to its unique hole.

Theorem 1 (The peeling swallows the root). LetM∞ be an in�nite Boltzmann planar map with bounded
face-degrees and let (en)n≥0 be any (�lled-in Markovian) peeling process ofM∞. If R denotes the root-edge
ofM∞ then we have as n →∞:

P(R ∈ ∂en) ≤ n−2c/3+o(1),

where c ≈ 0.1283123514178324542367448657387285493314266204833984375... is the positive solution to

4π
3
=

∫ 1

0
xc−1(1 − x)1/2dx ·

∫ 1/2

0
xc+1/2(1 − x)−5/2dx .

Of course, a given peeling process may swallow the root-edge much faster, but our upper bound
holds for any peeling algorithm, and it is sharp for the worst algorithm, in which we always select the
edge which is at the opposite of the root-edge on ∂en . Theorem 1 holds with the same proof for Angel’s
peeling process on the UIPT or UIPQ. The intriguing constant c ≈ 0.1283... comes from a calculation
done on the Lévy process arising in the Lamperti representation of the 3/2-stable spectrally negative
Lévy process conditioned to stay positive. Theorem 1 should hold true for any critical generic Boltzmann
map. Let us note that the proof of Theorem 1 actually shows that for any sub-map e with a unique hole
and any edge E ∈ ∂e, if ` denotes the length of the hole, then if we start the peeling process with e0 = e,
we have

P(E ∈ ∂en) ≤ (n/`)
−2c/3+o(1).
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Application. A particular peeling algorithm was designed in [4] to study the simple random walk on
the UIPQ and show it is sub-di�usive with exponent 1/3: the maximum displacement of the walk after
n steps is at most of order n1/3+o(1). The proof in [4] actually does not use much of the random walk
properties since it is valid for any peeling algorithm (see Proposition 2 below). It shows in fact that the
maximal displacement of the walk until the discovery of the nth pioneer point is n1/3+o(1). To improve
it we give a bound on the number of pioneer points. For convenience we state the result for the walk
on the dual of the UIPQ which is more adapted to Budd’s peeling process but the proof could likely
be adapted to the walk on the dual or primal lattice of any generic in�nite Boltzmann map. A pioneer
edge is roughly speaking a dual edge crossed by the walk, such that its target is not disconnected from
in�nity by the past trajectory; we refer to Section 3 and Figure 3 for a formal de�nition.

Proposition 1. Let ( ®En)n≥0 be the oriented dual edges visited by a simple random walk on the faces of the
UIPQ started from the face adjacent to the right of the root-edge. There exists γ > 0 such that if πn is the
number of pioneer edges of the walk up to time n then we have

E [πn] = O(n
1−γ ).

We deduce that (
n−(1−γ )/3 max

0≤k≤n
dgr( ®E0, ®En)

)
n≥0

is tight.

The basic idea is to use reversibility to convert the discovery of a pioneer edge at time n into the
event in which the root-edge is still exposed after n steps of the walk as in [13, Lemma 12] and then
use Theorem 1. Our proof gives a rather low value γ = c/(12 + 2c) ≈ 0.01046881621... with c from
Theorem 1; it could optimised, but it cannot exceed γ = 2c/(3 + 2c) ≈ 0.07880082179... and this would
require a longer argument to yield a sub-di�usivity exponent slightly larger than 0.3, which is still far
from the conjectural value of 1/4 for the simple random walk on generic random planar maps. We
therefore restricted ourselves to this weaker exponent which still improves on the very general upper
bound on sub-di�usivity exponent for unimodular random graphs discovered by Lee [23, Theorem 1.9].
In the case of the UIPT (type II) Gwynne & Miller [19, Theorem 1.8] have proven that the exponent is at
least 1/4 and an ongoing work of Gwynne & Hutchcroft [18] shall yield the corresponding upper bound
(still in the case of the UIPT). We do not think that our methods can lead to this optimal exponent.

The results of this paper can also be adapted to the case of peeling processes (and random walks on
the dual and primal) on Boltzmann maps with large faces [16].

Acknowledgement. We thank the anonymous referee for a swift report. We acknowledge the
support of the grants ANR-15-CE40-0013 ‘Liouville’ and ANR-14-CE25-0014 ‘GRAAL’, the grant ERC
‘GeoBrown’, the Institut Universitaire de France and of the Fondation Mathématique Jacques Hadamard.

2 Peeling estimates

The proof of Theorem 1 relies on the perimeter process associated with a peeling process. We �rst brie�y
recall from [8] the law of this process, a random walk conditioned to stay positive which converges once
suitably rescaled towards a 3/2-stable spectrally negative Lévy process conditioned to stay positive; the
quantities that we will consider do not depend on scaling constants so we shall not need to know the
precise characteristic exponent of this Lévy process and we shall refer to it as the 3/2-stable spectrally
negative Lévy process. Throughout this section,M∞ denotes a random q-in�nite Boltzmann map, where
q is an admissible and critical weight sequence with �nite support.
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2.1 Peeling of a Boltzmann planar map

Let us give a brief description of the peeling process of Budd [8], with a point of view inspired by [9, 14]
to which we refer for more details. Fix an in�nite one-ended mapm∞; a sub-map e ofm∞ is a map with a
distinguished simple face called the hole, such that one can recover m∞ by gluing inside the unique hole
of e a planar map with a (not necessarily simple) boundary of perimeter matching that of the hole of e
(this map is then uniquely de�ned). Then a (�lled-in) peeling exploration ofm∞ is an increasing sequence
(ei )i≥0 of sub-maps of m∞ containing the root-edge. Such an exploration depends on an algorithm
A which associates with each sub-map e an edge on the boundary of its hole; this algorithm can be
deterministic or random, but in the latter case the randomness involved must be independent of the rest
of the map. Then the peeling exploration of m∞ with algorithm A is the sequence (ei )i≥0 of sub-maps of
m∞ constructed recursively as follows. First e0 always only consists of two simple faces of degree 2 and
an oriented edge, the hole is the face on the left of this root-edge; this corresponds to the root-edge of
the map m∞ that we open up in two. Then for each i ≥ 0, conditional on ei , we choose the edge A(ei )

on the boundary of its hole, and we face two possibilities depicted in Figure 2:

(i) either the face in m∞ on the other side of A(ei ) is not already present in ei ; in this case ei+1 is
obtained by adding this face to ei glued onto A(ei ) and without performing any other identi�cation
of edges,

(ii) or the other side of A(ei ) inm∞ actually corresponds to a face already discovered in ei . In this case
ei+1 is obtained by performing the identi�cation of the two edges in the hole of ei . This usually
creates two holes, but since m∞ is one-end, we decide to �ll-in the one containing a �nite part of
m∞.

Figure 2: Illustration of a (filled-in) peeling step in a one-ended bipartite map. The peeling edge is
depicted in blue. In the first case we add a new face adjacent to this edge, and in the second case we
identify two edges on the boundary of the hole, this splits the hole into two components and we fill-in
the finite one.

We de�ne the perimeter of a sub-map e ofM∞ to be the number of edges on the boundary of its
simple hole, we denote it by |∂e|. If (en)n≥0 is a peeling exploration ofM∞, we consider its perimeter
process given by (|∂en |)n≥0; note that |∂e0 | = 2 from our convention. Budd [8] de�nes in terms of q
a probability measure ν ; we shall denote by S = (Sn)n≥0 a random walk started from 2 and with step
distribution ν . When q is admissible, critical and �nitely supported, the support of the law ν is bounded
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above, furthermore this law is centered and belongs to the domain of attraction of a stable law with
index 3/2; precisely,

ν (−k) ∼ Cν · k
−5/2 as k →∞, for some constant Cν > 0. (1)

Lemma 1 (Budd [8]). Let (en)n≥0 be any peeling exploration ofM∞. The perimeter process (|∂en |)n≥0 is
a Markov chain whose law does not depend on the peeling algorithm A. More precisely, it has the same
law as S↑, a random walk with step distribution ν conditioned to stay positive (see e.g. [6]). Moreover, the
convergence in distribution

(n−2/3 |∂e[nt ] |)t ≥0
(d )
−−−−→
n→∞

(ϒ↑t )t ≥0,

holds in the sense of Skorokhod, where ϒ↑ is a version conditioned to never hit (−∞, 0) of a 3/2-stable
spectrally negative Lévy process (see e.g. [11]).

Let us mention that a jump of this process, say |∂en | − |∂en−1 | = k with k ∈ Z, corresponds in the
n-th step of the peeling exploration to the discovery of a new face of degree k +2 if k ≥ −1, that is case (i)
in Figure 2, and it corresponds to case (ii) in Figure 2 if k ≤ −2: the selected edge A(en) is identi�ed
to another one on the boundary, and ‘swallows a bubble’ of length −(k + 2), either to the left or to the
right, equally likely.

2.2 Proof of Theorem 1

We now prove Theorem 1, that is: for any peeling process, we have P(R ∈ ∂en) ≤ n−2c/3+o(1) and we
will compute the value c in the next section. We �rst consider the case of the UIPT which corresponds
toM∞ with q = (432−1/41k=3)k≥1, for which ν is supported by {. . . ,−2,−1, 0, 1}.

Proof of Theorem 1 for the UIPT. First observe that on the event {R ∈ ∂en}, for each 0 ≤ k ≤ n − 1, if we
identify the peel edge A(ek ) to another one on the boundary and swallow a bubble longer than 1

2 |∂ek |,
then this identi�cation must be on the correct side, so that the root-edge does not belong to this bubble.
If we put Pk = |∂ek | and ∆Pk = Pk+1 − Pk , then it follows from the Markov property that

P(R ∈ ∂en) ≤ E

[
n−1∏
k=0

2−11{∆Pk<−Pk /2}

]
≤ E

[
2−#{0≤k≤n−1:∆Pk<−Pk /2}

]
.

We �rst claim that appart from an event whose probability is op(n) i.e. decays faster than any polynomial,
the process P reaches values of order n2/3+o(1) in the �rst n steps: From the convergence of the process
(Pn)n≥0 in Lemma 1, we see that Pn is of order n2/3; in particular, there exists η ∈ (0, 1) such that for
every N large enough, for every integer z ∈ (0,N 2/3), we have Pz (sup0≤k≤N Pk > N 2/3) > η. Then �x
ε > 0; by splitting the interval [0,n] in n3ε/2 sub-intervals of length n1−3ε/2, we deduce from the Markov
property that for every n large enough,

P

(
sup

0≤k≤n
Pk ≤ n2/3−ε

)
≤

(
sup

1≤z≤n2/3−ε
Pz

(
sup

0≤k≤n1−3ε/2
Pk ≤ n2/3−ε

))n3ε/2

≤ (1 − η)n
3ε/2

= op(n).

We then decompose the process into scales: for every i ≥ 0, let us put τi = inf{k ≥ 0 : Pk ≥ 2i }; observe
that since the jumps of P are bounded by one, then Pτi = 2i . Using the last display and the strong
Markov property we deduce that

E
[
2−#{0≤k≤n−1:∆Pk<−Pk /2}

]
≤

log2(n2/3−ε )∏
i=0

E2i
[
2−#{0≤k<τi+1:∆Pk<−Pk /2}

]
+ op(n).
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If θ (z) = inf{t ≥ 0 : ϒ↑t ≥ z} is the �rst passage time above level z > 0, the convergence of the process
(Pn)n≥0 in Lemma 1 then implies that

E2i
[
2−#{0≤k<τi+1:∆Pk<−Pk /2}

]
−−−−→
i→∞

E1

[
2−#{0≤t ≤θ (2):∆ϒ

↑
t <−ϒ

↑
t−/2}

]
C e−c ln 2, (2)

where the last line de�nes the constant c . Putting back the pieces together, we deduce by Cesàro
summation that for n large enough we have

P(R ∈ ∂en) ≤ e−c ln(2) log2(n
2/3−ε )+o(1) = n−2c/3+o(1)

and the proof in the case of the UIPT is complete. �

For more general maps, the perimeter process does not increase only by one, so it is not true that
|eτi | = 2i a.s. and the scales are not independent. Nonetheless, if the degrees are uniformly bounded, say
by D < ∞, then |eτi | ∈ {2i , . . . , 2i + D} and the scales do become independent at the limit: one can still
use the strong Markov property to get the bound

E
[
2−#{0≤k≤n−1:∆Pk<−Pk /2}

]
≤

log2(n2/3−ε )∏
i=1

sup
2i ≤z≤2i+D

Ez

[
2−#{0≤k<τi+1:∆Pk<−Pk /2}

]
,

and sup2i ≤z≤2i+D Ez [2−#{0≤k<τi+1:∆Pk<−Pk /2}] converges as previously to e−c ln 2.

Remark: The factor 2/3 coming from the lower bound sup0≤k≤n Pk ≥ n2/3−ε with high probabil-
ity cannot be improved. Indeed it is easy to check in our case of increments bounded above that
P(sup0≤k≤n Pk ≤ n2/3+ε ) = op(n). This shows that the exponent in Theorem 1 is optimal for the worst
algorithm which always peels at the opposite of the root-edge on ∂en .

2.3 Calculation of c via Lamperti representation

We now characterize the value c de�ned in (2) using the Lamperti representation of ϒ↑. We start with a
simple calculation on general Lévy processes.

Let ξ = (ξt )t ≥0 be a Lévy processes with drift a ∈ R, no Brownian part, and Lévy measure Π(dy)
which we assume possesses no atom and is supported on R− so ξ makes only negative jumps (see e.g.
Bertoin’s book [5, Chapter VII]); assume also that ξ does not drift towards −∞. We can consider the
Laplace transform of ξ and de�ne its characteristic exponent via the Lévy–Khintchine representation as

E
[
eλξt

]
= etψ (λ), for all t , λ ≥ 0, where ψ (λ) = aλ +

∫
R−

(
eλx − 1 − λx1{ |x |<1}

)
Π(dx).

Recall that θ (z) = inf{t ≥ 0 : ξt ≥ z} is the �rst passage time above level z > 0; since ξ does not drift
towards −∞ and does not make positive jumps, we have θ (z) < ∞ and ξθ (z) = z almost surely.

Lemma 2. Let F : R− → R− be a function which is identically 0 in a neighborhood of 0. If we note
∆ξt = ξt − ξt− ≤ 0 for the value of the jump at time t , then for every z ≥ 0 we have

E

exp ©­«
∑

t ≤θ (z)

F (∆ξt )
ª®¬
 = exp(−cF · z),

where cF > 0 satis�es

ψ (cF ) =

∫
R−

(
1 − eF (x )

)
ecF xΠ(dx).
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Proof. For c > 0 we consider the positive càdlàg process

Zc (t) = exp

(
cξt +

∑
s≤t

F (∆ξs )

)
.

Clearly logZc (t) has stationary and independent increments. We will choose c so that Zc is a martingale
and for this it is su�cient to tune c so that E[Zc (t)] = 1. Appealing to the Lévy–Itō decomposition and
the exponential formula for Poisson random measure (see e.g. [5], Chapter 0.5 and Chapter 1, Theorem 1
and its proof), and using the Lévy–Khintchine representation ofψ (·), we get

E

[
exp

(
cξt +

∑
s≤t

F (∆ξs )

)]
= exp

(
t

(
ac +

∫
R−

(ecx+F (x ) − 1 − cx1{ |x |<1})Π(dx)
))

= exp
(
t

(
ψ (c) +

∫
R−

(eF (x ) − 1)ecxΠ(dx)
))
.

Hence if we pick c = cF satisfying the assumption of the lemma then Zc is a positive martingale.
Furthermore by our assumptions Zc (t ∧ θ (z)) is bounded by ecz so we can apply the optional sampling
theorem and get the statement of the lemma (using also that ξθ (z) = z). �

Let us apply this result to a well-chosen Lévy process. Let (ϒ↑t )t ≥0 be the 3/2-stable Lévy process
with no negative jumps conditioned to stay positive and started from ϒ↑0 = 1. The constant c de�ned
in (2) satis�es e−c ln 2 = E[2−N] where

N = #

{
jumps before θ (2), such that |∆ϒ↑t | >

ϒ↑t−
2

}
.

Note that, as mentioned in the introduction of this section, this quantity is scale-invariant so it does not
depend on the choice of the normalization of ϒ↑. The process ϒ↑ is a so-called positive self-similar Markov
process, and by the Lamperti representation it can be represented as the (time-changed) exponential of a
Lévy process: for every t ≥ 0,

ϒ↑t = exp(ξτt ),

where the random time change τt will not be relevant in what follows. In particular, through this
representation, for every u ∈ (0, 1), the random variable uN is transformed into the variable

exp ©­«
∑

t ≤θ (ln 2)

lnu · 1{∆ξt <− ln 2}
ª®¬

for the associated Lévy process ξ . This is of the form of the previous lemma with F : x 7→ lnu ·1{x<− ln 2}.
Caballero and Chaumont [10, Corollary 2] have computed explicitly the characteristics of ξ ; in particular
ξ drifts towards +∞ and has a Lévy measure given by

Π(dy) =
e3y/2

(1 − ey )5/2
1{y<0}dy.

Furthermore in our spectrally negative case, its Laplace exponent has been computed in Chaumont,
Kyprianou and Pardo [12, just before Lemma 2]: for every λ ≥ 0,

ψ (λ) = E[ξ1]
Γ(λ + 3/2)
Γ(λ)Γ(3/2)

.
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To compute the value of E[ξ1] we can use the asymptotic behaviour as λ→∞:

E[ξ1]

Γ(3/2)
λ3/2 ∼

λ→∞
E[ξ1]

Γ(λ + 3
2 )

Γ(3/2)Γ(λ)
= ψ (λ) = aλ +

∫ 0

−∞

dye3y/2

(1 − ey )5/2
(
eλy − 1 − λy1{ |y |<1}

)
.

It is easy to see that in the right-hand side of the last display, when λ→∞, the only contribution which
can be of the order of λ3/2 must appear in the vicinity of 0, hence we can replace the Lévy measure by
its equivalent as y → 0 and the last display becomes

E[ξ1]

Γ(3/2)
λ3/2 ∼

λ→∞

∫ 0

−∞

dy
|y |5/2

(
eλy − 1 − λy1{ |y |<1}

)
∼

λ→∞

4
√
π

3
λ3/2,

where the last asymptotical equivalence is a standard calculation. Hence we deduce that E[ξ1] = 2π
3 .We

can thus apply the last lemma and conclude that for every u ∈ (0, 1),

E
[
uN

]
= E

exp ©­«
∑

t ≤θ (ln 2)

lnu · 1{∆ξt <− ln 2}
ª®¬
 = exp(−cu ln 2),

where cu satis�es
2π
3

Γ(cu + 3/2)
Γ(cu )Γ(3/2)

= ψ (cu ) =

∫ lnu

−∞

(1 − u)ecuy
e3y/2

(1 − ey )5/2
dy.

Performing the change of variable x = ey in the second integral and using the representation Γ(a)Γ(b)
Γ(a+b) =∫ 1

0 xa−1(1 − x)b−1dx gives us the equivalent de�nition of cu by an integral equation:

2π
3(1 − u)

=

∫ 1

0
xcu−1(1 − x)1/2dx ·

∫ u

0
xcu+1/2(1 − x)−5/2dx .

The constant c de�ned in (2) and which appears in Theorem 1 corresponds to u = 1/2, and it can easily
be evaluated numerically to �nd that c = c1/2 ≈ 0.1283123514178324542...

3 Pioneer edges and sub-di�usivity

In this section we suppose that q = ( 1121k=4)k≥1 so that M∞ is the UIPQ although that there is little
doubt that everything can be extended to the more general context of generic Boltzmann maps. We
�rst recast the main result of [4] in the case of Budd’s peeling process. We denote by ρ the origin of the
root-edge.

Proposition 2 (Depth of a peeling process). Let (en)n≥0 be any (�lled-in Markovian) peeling process of
the UIPQ with origin ρ, then the sequence(

n−1/3max{dgr(ρ,x);x ∈ en}
)
n≥1

is tight.

Sketch of proof. We follow [4, Section 4.2]. Throughout the proof, if (Yn)n≥0 and (Zn)n≥0 are two positive
processes, we shall write Yn . Zn if (Yn/Zn)n≥0 is tight. Also Yn & Zn if Zn . Yn , and �nally Yn � Zn if
we have both Yn . Zn and Yn & Zn .
For every n ≥ 0, let D−n and D+n be respectively the minimal and the maximal distance to the origin ρ of
a vertex in ∂en so that

Ball(M∞,D−n − 1) ⊂ en ⊂ Ball(M∞,D+n + 1), (3)
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where Ball(M∞, r ) denotes the hull of the ball inM∞ of radius r centered at the origin ofM∞. Using
|en | � n4/3 (see [8]) and |Ball(M∞, r )| � r 4 (see [15]) the two inclusions of (3) give D−n . n1/3 and
D+n & n1/3.

We will �rst show that D+n . n1/3 or simply D+n − D
−
n . n1/3 since we already know D−n . n1/3. But

as in [4, Section 4.2] we can bound D+n − D
−
n by the aperture of M∞\en which is the maximal graph

distance between points on its (general) boundary. Since conditionally on en the later is a UIPQ with a
boundary of perimeter |∂en | we can use [17, Section 3.2] to deduce that its aperture is .

√
|∂en |. Finally

since |∂en | � n2/3 by [8] we indeed deduce that D+n − D−n . n1/3. The end of the proof is then the same
as [4, Section 4.2] and use the fact that the hull of the ball of radius r in the UIPQ has no long tentacles
of length� r . �

To prove Proposition 1 we shall use a particular peeling algorithm, introduced in [4] that we adapt
to the peeling of [8] and the walk on the faces, see also [14, Chapter 8]. We let our walk start from
the root-face on the right of the root-edge ofM∞. Every time the walk wants to cross an edge on the
boundary of the explored region, we peel this edge. We then de�ne the pioneer edges of the walk as the
peel edges. We let πn denote the number of pioneer edges amongst the �rst n steps of the walk.

Figure 3: Le�: A simple random walk on the dual map, started at the face on the right-hand side of
the root-edge, and about to reach a pioneer edge. Right: the same scenery in reverse time where the
root-edge is not swallowed a�er n steps of walk.

Proof of Proposition 1. We use the reversibility trick [13, Lemma 12]. Let ( ®Ei )i≥1 be the edges visited by
the walk. Fix n ≥ 1, since the UIPQ is a stationary and reversible random graph (see [3]) we can reverse
the �rst n steps of the path and deduce that the probability that ®En is pioneer equals the probability that
(one side of) the root-edge R ofM∞ is still on the boundary of eπn after performing n steps of random
walk, see Fig. 3. We then split this probability as follows:

P( ®En is pioneer) = P
(
R ∈ ∂eπn

)
≤ P (πn ≤ nα ) + P (R ∈ ∂enα ) ,

for some small α > 0 that we tune later on. According to Theorem 1, the second term is bounded by
n−2cα/3+o(1). Concerning the �rst term, if πn ≤ nα then the walk has been con�ned in Ball(M∞, 4nα ) for
the �rst n steps. However we claim that the probability that the walk stays con�ned in a given �nite
region G for a long time is bounded as follows:

P (Xi ∈ G for all 1 ≤ i ≤ n) ≤ exp(−nC/|G |2),

for some constant C > 0. This can be shown using the fact that the expected cover time of any �nite
planar graph G is less than 6|G |2, see [20] which also discusses lower bounds. In our context we thus
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deduce that

P( ®En is pioneer) ≤ n−2αc/3+o(1) + P(|Ball(M∞, 4nα )| ≥ n1/2+o(1)) + op(n)

≤ n−2αc/3+o(1) + n−1/2+o(1) · E[|Ball(M∞, 4nα )|]

≤ n−2αc/3+o(1) + n4α−1/2+o(1),

where the second inequality is an application of the Markov inequality, and the third one may be found
in [22, Proposition 14]. We can then pick α = (8+ 4c/3)−1 so that the last display is smaller than n−γ+o(1)

for γ = c/(12 + 2c). By summing over n this implies the desired estimate E[πn] = O(n1−γ ). The end of
the proof it then straightforward. Let us perform n steps of random walk on the dual of the UIPQ. By the
above and Markov inequality we deduce that πn . n1−γ , and so we have performed . n1−γ peeling steps.
By Proposition 2 we have thus remained within distance . n(1−γ )/3 from the origin of the map. �
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