
HAL Id: hal-01719766
https://hal.science/hal-01719766

Submitted on 28 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

45-year CPU evolution: one law and two equations
Daniel Etiemble

To cite this version:
Daniel Etiemble. 45-year CPU evolution: one law and two equations. Second Workshop on Pioneering
Processor Paradigms, Feb 2018, Vienne, Austria. �hal-01719766�

https://hal.science/hal-01719766
https://hal.archives-ouvertes.fr

45-year CPU evolution: one law and two equations

Daniel Etiemble
LRI-CNRS

University Paris Sud
Orsay, France

de@lri.fr

Abstract— Moore’s law and two equations allow to explain the
main trends of CPU evolution since MOS technologies have been
used to implement microprocessors.

Keywords—Moore’s law, execution time, CM0S power
dissipation.

I. INTRODUCTION

A new era started when MOS technologies were used to
build microprocessors. After pMOS (Intel 4004 in 1971) and
nMOS (Intel 8080 in 1974), CMOS became quickly the leading
technology, used by Intel since 1985 with 80386 CPU.

MOS technologies obey an empirical law, stated in 1965 and
known as Moore’s law: the number of transistors integrated on
a chip doubles every N months. Fig. 1 presents the evolution for
DRAM memories, processors (MPU) and three types of read-
only memories [1]. The growth rate decreases with years, from
a doubling every 12 months to every 18 months then every 24
months. The semi-log scale clearly highlights the exponential
growth of the number of transistors per chip. It turns out that this
law and two basic equations allow to explain the main trends in
the development of CPU and computer architectures since the
mid’s 70.

The CPU Performance Equation (1) is probably the most
significant equation of the “quantitative approach” promoted in
the different editions of Hennessy and Paterson’s books [2].

Fig. 1. Moore’s Law until 2005

 CPU time = IC x CPI x Tc = IC / (IPC x F) (1)

a) IC is the instruction count.
b) CPI is the clock cycles per instruction and IPC = 1/CPI is the

Instruction count per clock cycle.
c) Tc is the clock cycle time and F=1/Tc is the clock frequency.

The Power dissipation of CMOS circuits is the second
equation (2). CMOS power dissipation is decomposed into static
and dynamic powers. For dynamic power, Vdd is the power
supply, F is the clock frequency, ΣCi is the sum of gate and
interconnection capacitances and α is the average percentage of
switching capacitances: α is the activity factor of the overall
circuit

Pd = Pdstatic + α x ΣCi x Vdd
2 x F (2)

II. CONSEQUENCES OF MOORE LAW

A. Technological nodes

The increase of the number of transistors by chip results
from the relatively regular launching of a new generation of
CMOS technologies, called a technological node. The different
successive nodes are shown in Fig. 2. The nodes were first
defined according to the transistor channel length. The last
nodes are more defined according to marketing criteria.
However, every new node leads to reduced transistor sizes.

Fig. 2. CMOS technological nodes.

Moving from one technological node to the next one
a) Decreases the delays of logical gates and allows increased

clock frequencies.
b) Increases the number of transistors per unit of area.

 2

Discussing scaling rules is out of the scope of this paper. As
a first approximation, the number of transistors per unit of area
doubles and the gate delays are divided by 1.4 from one
technological node to the next one, but with an increasing impact
of the interconnection delays.

B. Exponential growth and mismatch between exponentials

Fig. 3 shows the increase in transistor count with the
successive nodes. Figures are shown for three types of
components: microprocessors, graphics processors (GPUs) and
FPGAs. The numbers of transistors are those of the first
components that use each node. The trend of the three curves is
an exponential progression. Unfortunately, not all the
characteristics of the DRAMs used for the main memories have
the same growth rate, as shown in Fig. 4: if the surface of the
memory cells depends directly on the dimensions of the nodes,
the latency only decreased by 20% from 2000 to 2011.

All the exponential characteristics don’t have the same
growth rate, as shown in Fig. 5. The big issue is the mismatch
between the CPU growth rate (clock frequency and
performance) and the DRAM growth rates (bandwidth and
latency) The huge difference between CPU and DRAM growth
rates led to the increased complexity of microprocessor memory
hierarchies. Different levels of caches are needed to balance the
differences in the bandwidth and latency needs of the CPU with
those of the DRAM main memory. Fig. 6 shows the evolution
of cache hierarchies from Intel 80386 (1986) to IBM Power8
(2014):

a) The number of cache levels increases: 1 then 2 then 3
then 4 cache levels. From the first to the last cache level, the
cache capacity and the cache access time both increases.

b) The larger cache is first in a different chip than the CPU
chip and then integrated within the CPU chip. The single cache
is external in the 80386. Then the L2 cache is external
(Pentium). L3 for Power6 and L4 for the Power8 are located in
a separated chip.

Disposing of more and more transistors on a chip allows to

move from several chips to one chip for different features:
a) From external to internal caches.
b) From floating point coprocessors to integrated FP units.
c) From multiprocessors to multicores.
d) Etc.

Fig. 3. Transistor count for the different nodes

Fig. 4. Evolution of DRAM features

Fig. 5. Annual growth rate of different features

Fig. 6. Cache hierarchies from 1986 to 2014

The increased number of transistor also allows to add more
and more features on a chip. On current SoC circuits can be
found CPUs, DSP, GPU, Memory controllers, crypto
components, specialized interfaces for the different standards of
transmission, graphics, media, etc.

III. CPU PERFORMANCE EQUATION

According to Equation (1), reducing the execution time of a
program can be obtained by reducing either IC or CPI or Tc or
both of them. Reducing CPI is increasing IPC and reducing Tc
means increasing F. Since the first microprocessor, the relative
impact of each term has evolved during the different periods and
led to the major shift from mono-processors to multicore CPU
with the “heat wall”. While the different terms have evolved

 3

simultaneously, we present them separately for the clarity of the
presentation.

A. Increasing clock frequency

Increasing clock frequency is the simplest way to increase
performance. The successive nodes of CMOS technologies lead
to x1.4 decrease of the gate delays. It led to a 25% increase per
year of clock frequencies from 740 kHz (Intel 4004) to 3 GHz
(Intel Xeons with 45-nm nodes).

For a given node, performance is more than just Megahertz.
By the end of 90’s. A 200-MHz MIPS R10000 and a 400-MHz
Alpha 21164 had approximately the same performance when
running the same programs, while they differ by a factor up to 2
in clock speed. More, a 135-MHz Power2 had better FP
performance than a 400-MHz 21164. It comes out that
performance comes from CPI/F and not only F. Higher F can
lead to higher CPI, and CPI could be quite different for Int and
FP programs. Brainiac CPUs did more work during each clock
cycle, while Clock Demon CPUs [3] used more pipeline stages
that allow higher clock frequencies, each pipeline stage doing
less work.

Without any change in micro-architectural features, moving
from one node to the next one allows the frequency gain and the
subsequent performance gain without any CPI change.
Techniques to decrease CPI are discussed in the next section.

In 2017, with the only exception of the water cooled IBM
z14 CPU (5.2 GHz), clock frequencies are limited in the 3-4
GHz range. However, 45-nm nodes (2008) provided 3-GHz
clock frequencies. With 2017 10-nm technologies, it is quite
obvious than tens of GHz would be available. The CPU
frequency limitation is related to the “heat wall” [4] illustrated
by Fig. 7. According to equation (2), the dynamic power
dissipation is proportional to the clock frequency. The highest
clock frequencies are limited just to keep the energy budget
limits compatible with a safe operation of the components, and
the typical IC packages and cooling techniques. This is the main
reason for the shift towards multicore architectures, more cores
replacing bigger cores, discussed in Section III-D, while
intrinsic limitations of mono-processors is another reason.

Fig. 7. Power density for successive nodes

B. Reducing CPI and increasing IPC

CPI has two components:

a) The CPU CPI is the clock count per instruction assuming
that there is no cycle during which the CPU is waiting for
memory data. This component mainly relies on exploiting
the instruction parallelism in sequential programs.

b) The Memory CPI is the clock count per instruction during
which the CPU is waiting data from memory. This
component mainly relies on the structure of the memory
hierarchy.

1) CPI and instruction parallelism

Pipelining has been the first step to reduce the processor CPI.
The most famous example is the MIPS R2000 5-stage pipeline
for integer and memory instructions. It overlaps the execution of
several successive instructions. The minimum value is CPI=1,
which cannot be obtained due to data and control hazards.
Superpipelining consists in pipelining some stages of the simple
pipeline to increase the clock frequency up to the technology
capability. However, more pipeline stages increase the impact
of data hazards for memory loads and control hazards for taken
branches. In both cases, integer multiplications and divisions
and all FP operations complicate the pipeline operations and
need software techniques such as loop unrolling to keep CPI
close to the minimal value.

Superscalar execution consists in issuing several instructions
per clock with different approaches:

a) In-order superscalar CPUs issue a group of instructions
obeying defined rules per clock cycle. A first part fetches
and decodes several instructions, and test resources and
dependencies to form a group of instructions ready to be
issued. From the group buffer, the instructions are launched
in the different pipelines.

b) Out-of-order CPUs fetch instructions into an instruction
buffer from which instructions are issued and executed
according to the data flow. Instructions are retired in
program order.

c) VLIW execution is another approach relying on the
compiler. The CPU executes a pipeline of very long
instruction words that consist of several normal
instructions. The compiler uses specific techniques such as
loop pipelining to generate the VLIW instructions.

Out-of-order superscalar CPUs are the most efficient mono-
processors, but using instruction parallelism has quickly been
faced to the law of “diminishing return”, as shown in Fig. 8. Intel
(and AMD) superscalar CPUs decompose IA-32 and Intel64
CISC instructions into µops, which are simpler instructions
similar to the RISC instructions of RISC ISAs. For Intel CPUs,
from 1995 to 2013, the hardware resources (physical registers,
ROB, reservation stations) have grown significantly, while the
maximal µop count per cycle has only increased from 3 to 4. The
additional resources are used to enlarge the number of µops
considered for simultaneous launching without changing the
maximum number of µops per clock. Obviously, the difficulties
to extract instruction level parallelism from sequential programs
also contribute to the IPC limits of the mono-processors.

2) CPI and memory wall

To reduce the memory CPI component, the cache hierarchy
has evolved towards a larger number of levels, as it has been

 4

shown in Fig. 6. Similarly, the DRAM structures and interfaces
have evolved to avoid a “memory wall”. However, even with a
reduced memory CPI component, pipeline stalls due to memory
waits still exist when executing a single program.

Fig. 8. IPC limits in Intel out-of-order CPUs

Memory CPI can be further reduced at the CPU level.
Equation 1 can be used to determine the execution time of
multithreaded execution of several programs on a CPU. There is
no change in clock frequency and the instruction count is now
the sum of the instruction count of the different programs.
However, the overall CPI for these programs can be reduced
with a hardware support for multithreading. The physical CPU
has different architectural states (PC, architectural and state
registers), several functional units and a cache hierarchy. There
are several logical processors that share the functional units and
the memory hierarchy. There is no reduction of the execution
time of each individual program, but increase in the number of
instructions from different programs executed per time unit.

Two types of multithreaded approaches have been used more
and more since the early 2000s.

a) Fine grain multithreading: the CPU switches from one thread
to another one in one clock cycle, either when there are
pipeline hazards (multi-cycle operations or cache misses) or
according to an algorithm for a fair distribution of resources
to the different threads. Sun Niagara architecture [5] or the
Oracle Sparc servers are typical examples of this approach.
Overall CPI is reduced by suppressing most hazards in the
different pipelines.

b) Simultaneous multithreading is used with out-of-order
superscalar CPUs. Instructions from different threads are
issued at each clock and executed. Intel hyperthreading with
2 threads [6] and IBM Power CPUs with 2 to 8 threads are
typical of this approach. Again, overall CPI is reduced by
suppressing hazards that would occur in individual
execution of each thread.

C. Decreasing IC

For mono-processors, until mid90’, the instruction count IC
was determined by the execution of the code generated by the
compiler. The “fight” between RISC and CISC instruction sets,
mainly x86, focused on the IC x CPI product. For RISC ISA, IC
was higher, but CPI was lower. With the dynamic translation of
x86 instructions into RISC-like instructions called µops used
from the Pentium Pro (1995), there are no significant differences
between the numbers of executed µops or instructions (IC) for
the different instruction sets.

Until mid90’, the only way to significantly reduce IC was to
use a parallel architecture, for which the instruction count is
allocate to the different processors using either data parallelism
or control (thread) parallelism. The two main types of parallel
architectures are shown in Fig. 9. Left part shows the shared
memory architectures (multiprocessors) for which Pthread or
OpenMP are the most commonly used programming models.
The right part of the figure shows the distributed memory
architectures (multi-computers) for which message passing is
used to communicate between CPUs. MPI is the commonly used
programming interface for this type of architecture. Clusters can
combine the two approaches. Except for simple cases, the
dispatch of instructions to the different cores is not trivial. As
soon as the architecture includes clusters, communication times
must be considered. However, the IC of the most loaded
processor is reduced compared to the overall IC.

Fig. 9. Multiprocessors (left) and multi-computers (right)

Due to the exponential progresses close to 60% per year of
mono-processors, until the “heat wall”, using parallel
architectures was limited to multiprocessors for servers and
more complex parallel architectures for supercomputers. For
“main stream” computing, it was the “free lunch”, the golden
age of scaling of mono-processors. For most applications, the
best and cheapest way to increase performance was to wait for
the next generation of mono-processors, which explains why
parallel architectures were limited to an important, but limited
niche until 2000’.

More, the integration capabilities of mid90’ allowed to
introduce data parallelism in mono-processors to reduce IC. This
data parallelism has been used in two types of processors, as
shown in Fig. 10.

Fig. 10. SIMD and SIMT data parallelism

In general purpose CPUs, SIMD instructions execute the
same operation on several data (higher part of Fig. 10) reducing
the number of arithmetical and logical operations by a factor
equal to the number of data per instruction. These SIMD

 5

instructions are available in nearly every ISA, from MMX with
64-bit registers to SSE (128-bit), AVX and AVX2 (256-bit),
AVX512 (512-bit) for Intel64 instruction set. There exists for
ARM (Neon variants), IBM Power, etc. SIMD instructions
support 8-16-32 integer types according to SIMD register size
and simple and double precision floating point numbers.

The graphics processors (GPU) launched by the end of 90’
use the SIMT model (Single Instruction Multiple Threads)
where one SIMT instruction execute the same instruction in
several threads (lower part of Fig. 10). However, GPU
programming model is different and uses programming
language such as CUDA (NVidia) and OpenCL.

D. The shift towards parallelism

For mono-processors, increased clock frequencies could no
longer be used to increase performance (“heat wall”) and
instruction parallelism (ILP) in sequential programs has reached
a plateau. The only possibility was to shift to multicore
processors, which are new versions of multiprocessors for which
all cores are integrated in the same chip. Fig. 11 compares the
multicore processors with multithreaded processors and
multiprocessors.

Fig. 11. Multithreaded, multiprocessor and multicore CPUs

1) Energy consumption

Fig. 12 [7] compares the performance-power for mono-
processors and multicores. Left part of the figure compares
performance of a mono-processor at frequency Fmax, with
performance of the same processor at frequency 1.2 Fmax and
performance of a dual-core at frequency 0.8 Fmax. With a higher
clock frequency, the mono-processor has a minimal increase on
performance, but a significant increase of power consumption.
On the other side, the dual core with a slightly decreased clock
frequency has a small increase in power consumption, but a
significant performance increase. The right part of the figure
compares a small core, a large core (4x larger than the small one)
and a multi-core with four small cores. As a first approximation,
power consumption is proportional to the used area, while
performance is proportional to √����. The 4-core has 2x the
performance of the 1-core with the same power consumption.
The 4-core and the 1-core have the same performance/power
ratio.

2) Intrinsic limits of mono-processors

The limited ILP in sequential programs first led to the
introduction of multithreaded mono-processors, moving from
sequential to parallel programming. However, the threads share
the same set of execution units that limit performance. Moving

to independent processors (core), possibly multithreaded, was
the next step.

As the cores of multicores are implemented by superscalar
(multithreaded or not) mono-processors, reducing IC by
increasing the number of cores is the main technique for getting
increased performance.

Shifting from monothreaded mono-processors to multi-cores
also means shifting from sequential to parallel programming.
You are now faced with Amdahl’s law… and all the issues of
parallel programming. This was outlined by D. Paterson in a
famous paper [8]: “The Trouble with Multicore: Chipmakers are
busy designing microprocessors that most programmers can’t
handle”

Fig. 12. Comparing mono-processors and multicores

IV. CMOS POWER DISSIPATION

Old CMOS circuitry had no static power consumption, but
situation has changed starting with 90-nm nodes due to leakage
currents. Vdd power supply has been reduced for a long time to
the minimum value that allows the transistors to operate with
correct “on” and “off” states. This minimum value is in the range
of 0.8 to 1V. Until hitting the “heat wall”, CMOS power
consumption was mainly due to the clock frequency on one
hand, and to �∑�� that increases with the number of transistors
and interconnections that the successive technology nodes
allow. Since the “heat wall”, power consumption has become
the major issue for which all components of Equation 2 must be
considered.

A. Reducing static power dissipation.

Technological improvements allow to reduce static power.
For instance, the “off” current of the Intel tri-gate transistors is
10-5 the “on” current instead of 10-4 for a planar transistor.

Circuitry techniques can also be used to reduce static power.
For instance, the L3 cache of the Xeon CPU [9] is decomposed
into different sub-blocks that have different operation modes by
using virtual ground levels. Compared to the active mode, there
was x2 and x4 reduction of leakage currents with sleep and
switch-off modes.

B. Reducing the circuit activity

Reducing the dynamic power means reducing the circuit
activity via α, Vdd and F parameters.

1) Vdd and clock controls

In operating mode, Vdd and clock values are bounded. But a
clock can be stopped and power supplies can be disconnected by
decomposing the chip floor plans into domains in which power
supplies and clocks are controlled. With such domains, several

 6

power supply values and several clock frequencies can be
defined and used, according to the circuit needs.

2) Several operation modes

Defining several operation modes to only activate the used
parts of a circuit is largely used to reduce the power
consumption. For instance, the 5th generation Intel Core M CPUs
have different modes and sub-modes, from the “working” mode
to the “mechanical off” mode. In complex microcontrollers,
different blocks implementing different features have different
operation modes, from the active mode down to other modes
such as sleep, deep sleep, stop and shut-off.

V. WHAT ABOUT FUTURE?

A. Moore’s law

The described evolution is based on Moore’s law, i.e. an
exponential function. As quoted by G. Moore in 2003, “No
Exponential is Forever: But “Forever” Can Be Delayed”. This
quote raises two questions: the end of the exponential and
delaying the end. P. Gardini, Intel Fellow and chairman of ITRS
[1] gives some insights.
a) First lesson: “Predictors of Engineering Limits have Always

been Proven Wrong by The Right Improvements”. Intel 3D
tri-gate transistors or FinFET technologies are good
examples of technical improvements that delay the limits.

b) Second lesson: “It Would be Wrong to Believe that the Right
Fundamental Limits Don’t Exist”. Moore’s law is now
“slowing”, as the fundamental limits are closer than ever.

B. The execution time equation

Significant changes are doubtful for clock frequencies. CPI
could be further decreased if new PIM architectures with
DRAM-implemented CPUs become successful. Reducing the
number N of executed instructions per core is still going on and
will continue.

a) SIMD vector length has regularly increased and AVX-1024
is forecasted. On the other side, 16-bit FP SIMD
computation, suggested in 2005 [10], is now used in recent
NVidia GPUs and some ARM architectures.

b) While SIMD and SIMT introduced “vector” instruction
types, recent processors or coprocessors focusing on AI and
deep neural networks introduces 2D or “matrix”
instructions and computations. Tensor cores in NVidia
Volta [11], Matrix-Multiplication Unit in Google TPU [12]
and Intelligent Processing Unit [13] (Graphcore) are good
examples of the evolution towards pipelined CISC
instructions, with increased CPI, while reducing IC.

c) Increasing the number of cores in multi and many-cores
architectures reduces the IC of each core. Again, the
number of cores regularly increases, but one can hardly
predicts an exponential growth and unsolved software
issues can prevent to fully exploit these many-cores
architectures or restrict them to special applications.

C. The power dissipation equation

It will be there as long as CMOS will be there.

VI. CONCLUDING REMARKS

Since using CMOS technology, Moore's Law has been
continuously valid, even though the period of doubling the
number of transistors has grown. The exponential growth is
there, even if DRAM features lead to more and more complex
memory hierarchies.

During these years, the equation of a program execution time
is an insight to understand the factors that have been used to
increase performance: first, increasing clock frequencies until
hitting the “heat wall”, with the additional use of pipelining and
instruction parallelism, SIMD and SIMT data parallelism in
mono-processors. The exponential increase of performance in
main stream computing has limited parallel architectures to
servers and supercomputers. Then came the period of parallel
architectures as multicores and manycores are the main
technique to continue performance increase.As “heat wall” has
become the big issue, the equation for CMOS power dissipation
is important to explain the different techniques that have been
used to limit power dissipation.

Moore’s law and two equations have been able to explain the
evolution of Von Neumann architectures for more than 40 years.
When the end of the predicted end of the exponential evolution
will be real or when non-Von Neumann architectures will prove
to be more efficient for programmable applications, the situation
will be totally different. Until that point, the two equations that
have been discussed in this paper will be there to explain the
evolution.

REFERENCES

[1] GARGINI P., “The Roadmap to Success : 2013 ITRS Update”, 2014
IEEE Seminars.

[2] HENNESSY J.L et PATERSON D. – “Computer Architecture – A
Quantitative Approach”. Morgan Kaufmann, First edition.

[3] GWENNAP L., Brainiac, Speed Demon and Farewell”, Microprocessor
Report, Vol 13, Issue 17, December 1999

[4] POLLACK F., “New Microarchitecture Challenges in the Coming
Generation of CMOS Process Technologies”, Micro32 conference key
note, 1999

[5] JOHNSON (K.) and RATHBONE (M.), “Sun’s Niagara Processor, A
Multithread & Multi-core CPU”,
http://www.cs.nyu.edu/~lerner/spring10/projects/multicore-niagara.pdf

[6] MARR D.T. et al, “Hyperthreading Technology Architecture and
Microarchitecture”, Intel Technology Journal, Vol 6 – 1, February 2012,

[7] Intel Higher Education Program & Foundation for Advancement of
Education and Research (FAER).

[8] PATERSON. J.L. , “The Trouble with Multicore”, IEEE Spectrum, June
2010.

[9] RUSU S. et al, “A 65-nm Dual-Core Multithreaded Xeon Processor with
16-MB L3 Cache”, IEEE Journal of Solid-State Circuits, Vol 42, N°1,
January 2007, pp 17-24.

[10] LACASSAGNE L, ETIEMBLE D and OULD KABLIA S.A, “16-bit
floating point instructions for embedded multimedia applications”, IEEE
International Workshop on Computer Architecture for Machine
Perception (CAMP), July 2005

[11] https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

[12] JOUPPI et al, “In-Datacenter Performance Analysis of a Tensor
Processing Unit”, Proceedings ISCA 2017

[13] https://www.graphcore.ai/technology

