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Abstract— Moore’s law and two equations allow to explain the 
main trends of CPU evolution since MOS technologies have been 
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I. INTRODUCTION  

A new era started when MOS technologies were used to 
build microprocessors. After pMOS (Intel 4004 in 1971) and 
nMOS (Intel 8080 in 1974), CMOS became quickly the leading 
technology, used by Intel since 1985 with 80386 CPU.  

MOS technologies obey an empirical law, stated in 1965 and 
known as Moore’s law: the number of transistors integrated on 
a chip doubles every N months. Fig. 1 presents the evolution for 
DRAM memories, processors (MPU) and three types of read-
only memories [1]. The growth rate decreases with years, from 
a doubling every 12 months to every 18 months then every 24 
months. The semi-log scale clearly highlights the exponential 
growth of the number of transistors per chip. It turns out that this 
law and two basic equations allow to explain the main trends in 
the development of CPU and computer architectures since the 
mid’s 70. 

The CPU Performance Equation (1) is probably the most 
significant equation of the “quantitative approach” promoted in 
the different editions of Hennessy and Paterson’s books [2]. 

 

Fig. 1. Moore’s Law until 2005 

 CPU time = IC x CPI x Tc = IC / (IPC x F) (1) 

a) IC is the instruction count. 
b) CPI is the clock cycles per instruction and IPC = 1/CPI is the 

Instruction count per clock cycle. 
c) Tc is the clock cycle time and F=1/Tc is the clock frequency. 

The Power dissipation of CMOS circuits is the second 
equation (2). CMOS power dissipation is decomposed into static 
and dynamic powers. For dynamic power, Vdd is the power 
supply, F is the clock frequency, ΣCi is the sum of gate and 
interconnection capacitances and α is the average percentage of 
switching capacitances: α is the activity factor of the overall 
circuit 

Pd = Pdstatic + α x ΣCi x Vdd
2 x F  (2) 

II. CONSEQUENCES OF MOORE LAW 

A. Technological nodes 

The increase of the number of transistors by chip results 
from the relatively regular launching of a new generation of 
CMOS technologies, called a technological node. The different 
successive nodes are shown in Fig. 2. The nodes were first 
defined according to the transistor channel length. The last 
nodes are more defined according to marketing criteria. 
However, every new node leads to reduced transistor sizes. 

 

Fig. 2. CMOS technological nodes. 

Moving from one technological node to the next one  
a) Decreases the delays of logical gates and allows increased 

clock frequencies.  
b) Increases the number of transistors per unit of area. 
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Discussing scaling rules is out of the scope of this paper. As 
a first approximation, the number of transistors per unit of area 
doubles and the gate delays are divided by 1.4 from one 
technological node to the next one, but with an increasing impact 
of the interconnection delays. 

B. Exponential growth and mismatch between exponentials 

Fig. 3 shows the increase in transistor count with the 
successive nodes. Figures are shown for three types of 
components: microprocessors, graphics processors (GPUs) and 
FPGAs. The numbers of transistors are those of the first 
components that use each node. The trend of the three curves is 
an exponential progression. Unfortunately, not all the 
characteristics of the DRAMs used for the main memories have 
the same growth rate, as shown in Fig. 4: if the surface of the 
memory cells depends directly on the dimensions of the nodes, 
the latency only decreased by 20% from 2000 to 2011. 

All the exponential characteristics don’t have the same 
growth rate, as shown in Fig. 5. The big issue is the mismatch 
between the CPU growth rate (clock frequency and 
performance) and the DRAM growth rates (bandwidth and 
latency) The huge difference between CPU and DRAM growth 
rates led to the increased complexity of microprocessor memory 
hierarchies. Different levels of caches are needed to balance the 
differences in the bandwidth and latency needs of the CPU with 
those of the DRAM main memory. Fig. 6 shows the evolution 
of cache hierarchies from Intel 80386 (1986) to IBM Power8 
(2014): 

a) The number of cache levels increases: 1 then 2 then 3 
then 4 cache levels. From the first to the last cache level, the 
cache capacity and the cache access time both increases. 

b) The larger cache is first in a different chip than the CPU 
chip and then integrated within the CPU chip. The single cache 
is external in the 80386. Then the L2 cache is external 
(Pentium). L3 for Power6 and L4 for the Power8 are located in 
a separated chip. 

 
Disposing of more and more transistors on a chip allows to 

move from several chips to one chip for different features: 
a) From external to internal caches. 
b) From floating point coprocessors to integrated FP units. 
c) From multiprocessors to multicores.  
d) Etc. 
 

 
Fig. 3. Transistor count for the different nodes 

 

 

Fig. 4. Evolution of DRAM features 

 

Fig. 5. Annual growth rate of different features 

 

Fig. 6. Cache hierarchies from 1986 to 2014 

The increased number of transistor also allows to add more 
and more features on a chip. On current SoC circuits can be 
found CPUs, DSP, GPU, Memory controllers, crypto 
components, specialized interfaces for the different standards of 
transmission, graphics, media, etc. 

III. CPU PERFORMANCE EQUATION 

According to Equation (1), reducing the execution time of a 
program can be obtained by reducing either IC or CPI or Tc or 
both of them. Reducing CPI is increasing IPC and reducing Tc 
means increasing F. Since the first microprocessor, the relative 
impact of each term has evolved during the different periods and 
led to the major shift from mono-processors to multicore CPU 
with the “heat wall”. While the different terms have evolved 
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simultaneously, we present them separately for the clarity of the 
presentation. 

A. Increasing clock frequency 

Increasing clock frequency is the simplest way to increase 
performance. The successive nodes of CMOS technologies lead 
to x1.4 decrease of the gate delays. It led to a 25% increase per 
year of clock frequencies from 740 kHz (Intel 4004) to 3 GHz 
(Intel Xeons with 45-nm nodes). 

For a given node, performance is more than just Megahertz. 
By the end of 90’s. A 200-MHz MIPS R10000 and a 400-MHz 
Alpha 21164 had approximately the same performance when 
running the same programs, while they differ by a factor up to 2 
in clock speed. More, a 135-MHz Power2 had better FP 
performance than a 400-MHz 21164. It comes out that 
performance comes from CPI/F and not only F. Higher F can 
lead to higher CPI, and CPI could be quite different for Int and 
FP programs. Brainiac CPUs did more work during each clock 
cycle, while Clock Demon CPUs [3] used more pipeline stages 
that allow higher clock frequencies, each pipeline stage doing 
less work. 

Without any change in micro-architectural features, moving 
from one node to the next one allows the frequency gain and the 
subsequent performance gain without any CPI change. 
Techniques to decrease CPI are discussed in the next section. 

In 2017, with the only exception of the water cooled IBM 
z14 CPU (5.2 GHz), clock frequencies are limited in the 3-4 
GHz range. However, 45-nm nodes (2008) provided 3-GHz 
clock frequencies. With 2017 10-nm technologies, it is quite 
obvious than tens of GHz would be available. The CPU 
frequency limitation is related to the “heat wall” [4] illustrated 
by Fig. 7. According to equation (2), the dynamic power 
dissipation is proportional to the clock frequency. The highest 
clock frequencies are limited just to keep the energy budget 
limits compatible with a safe operation of the components, and 
the typical IC packages and cooling techniques. This is the main 
reason for the shift towards multicore architectures, more cores 
replacing bigger cores, discussed in Section III-D, while 
intrinsic limitations of mono-processors is another reason. 

 

Fig. 7. Power density for successive nodes 

B. Reducing CPI and increasing IPC 

CPI has two components:  

a) The CPU CPI is the clock count per instruction assuming 
that there is no cycle during which the CPU is waiting for 
memory data. This component mainly relies on exploiting 
the instruction parallelism in sequential programs. 

b) The Memory CPI is the clock count per instruction during 
which the CPU is waiting data from memory. This 
component mainly relies on the structure of the memory 
hierarchy. 

1) CPI and instruction parallelism 

Pipelining has been the first step to reduce the processor CPI. 
The most famous example is the MIPS R2000 5-stage pipeline 
for integer and memory instructions. It overlaps the execution of 
several successive instructions. The minimum value is CPI=1, 
which cannot be obtained due to data and control hazards. 
Superpipelining consists in pipelining some stages of the simple 
pipeline to increase the clock frequency up to the technology 
capability. However, more pipeline stages increase the impact 
of data hazards for memory loads and control hazards for taken 
branches. In both cases, integer multiplications and divisions 
and all FP operations complicate the pipeline operations and 
need software techniques such as loop unrolling to keep CPI 
close to the minimal value. 

Superscalar execution consists in issuing several instructions 
per clock with different approaches:  

a) In-order superscalar CPUs issue a group of instructions 
obeying defined rules per clock cycle. A first part fetches 
and decodes several instructions, and test resources and 
dependencies to form a group of instructions ready to be 
issued. From the group buffer, the instructions are launched 
in the different pipelines.  

b) Out-of-order CPUs fetch instructions into an instruction 
buffer from which instructions are issued and executed 
according to the data flow. Instructions are retired in 
program order. 

c) VLIW execution is another approach relying on the 
compiler. The CPU executes a pipeline of very long 
instruction words that consist of several normal 
instructions. The compiler uses specific techniques such as 
loop pipelining to generate the VLIW instructions. 

Out-of-order superscalar CPUs are the most efficient mono-
processors, but using instruction parallelism has quickly been 
faced to the law of “diminishing return”, as shown in Fig. 8. Intel 
(and AMD) superscalar CPUs decompose IA-32 and Intel64 
CISC instructions into µops, which are simpler instructions 
similar to the RISC instructions of RISC ISAs. For Intel CPUs, 
from 1995 to 2013, the hardware resources (physical registers, 
ROB, reservation stations) have grown significantly, while the 
maximal µop count per cycle has only increased from 3 to 4. The 
additional resources are used to enlarge the number of µops 
considered for simultaneous launching without changing the 
maximum number of µops per clock. Obviously, the difficulties 
to extract instruction level parallelism from sequential programs 
also contribute to the IPC limits of the mono-processors. 

2) CPI and memory wall 

To reduce the memory CPI component, the cache hierarchy 
has evolved towards a larger number of levels, as it has been 
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shown in Fig. 6. Similarly, the DRAM structures and interfaces 
have evolved to avoid a “memory wall”. However, even with a 
reduced memory CPI component, pipeline stalls due to memory 
waits still exist when executing a single program. 

 

Fig. 8. IPC limits in Intel out-of-order CPUs 

Memory CPI can be further reduced at the CPU level. 
Equation 1 can be used to determine the execution time of 
multithreaded execution of several programs on a CPU. There is 
no change in clock frequency and the instruction count is now 
the sum of the instruction count of the different programs. 
However, the overall CPI for these programs can be reduced 
with a hardware support for multithreading. The physical CPU 
has different architectural states (PC, architectural and state 
registers), several functional units and a cache hierarchy. There 
are several logical processors that share the functional units and 
the memory hierarchy. There is no reduction of the execution 
time of each individual program, but increase in the number of 
instructions from different programs executed per time unit.  

Two types of multithreaded approaches have been used more 
and more since the early 2000s. 

a) Fine grain multithreading: the CPU switches from one thread 
to another one in one clock cycle, either when there are 
pipeline hazards (multi-cycle operations or cache misses) or 
according to an algorithm for a fair distribution of resources 
to the different threads. Sun Niagara architecture [5]  or the 
Oracle Sparc servers are typical examples of this approach. 
Overall CPI is reduced by suppressing most hazards in the 
different pipelines. 

b) Simultaneous multithreading is used with out-of-order 
superscalar CPUs. Instructions from different threads are 
issued at each clock and executed. Intel hyperthreading with 
2 threads [6] and IBM Power CPUs with 2 to 8 threads are 
typical of this approach. Again, overall CPI is reduced by 
suppressing hazards that would occur in individual 
execution of each thread. 

C. Decreasing IC 

For mono-processors, until mid90’, the instruction count IC 
was determined by the execution of the code generated by the 
compiler. The “fight” between RISC and CISC instruction sets, 
mainly x86, focused on the IC x CPI product. For RISC ISA, IC 
was higher, but CPI was lower. With the dynamic translation of 
x86 instructions into RISC-like instructions called µops used 
from the Pentium Pro (1995), there are no significant differences 
between the numbers of executed µops or instructions (IC) for 
the different instruction sets.  

Until mid90’, the only way to significantly reduce IC was to 
use a parallel architecture, for which the instruction count is 
allocate to the different processors using either data parallelism 
or control (thread) parallelism. The two main types of parallel 
architectures are shown in Fig. 9. Left part shows the shared 
memory architectures (multiprocessors) for which Pthread or 
OpenMP are the most commonly used programming models. 
The right part of the figure shows the distributed memory 
architectures (multi-computers) for which message passing is 
used to communicate between CPUs. MPI is the commonly used 
programming interface for this type of architecture. Clusters can 
combine the two approaches. Except for simple cases, the 
dispatch of instructions to the different cores is not trivial. As 
soon as the architecture includes clusters, communication times 
must be considered. However, the IC of the most loaded 
processor is reduced compared to the overall IC. 

 

Fig. 9. Multiprocessors (left) and multi-computers (right) 

Due to the exponential progresses close to 60% per year of 
mono-processors, until the “heat wall”, using parallel 
architectures was limited to multiprocessors for servers and 
more complex parallel architectures for supercomputers. For 
“main stream” computing, it was the “free lunch”, the golden 
age of scaling of mono-processors. For most applications, the 
best and cheapest way to increase performance was to wait for 
the next generation of mono-processors, which explains why 
parallel architectures were limited to an important, but limited 
niche until 2000’. 

More, the integration capabilities of mid90’ allowed to 
introduce data parallelism in mono-processors to reduce IC. This 
data parallelism has been used in two types of processors, as 
shown in Fig. 10.  

 

Fig. 10. SIMD and SIMT data parallelism 

In general purpose CPUs, SIMD instructions execute the 
same operation on several data (higher part of Fig. 10) reducing 
the number of arithmetical and logical operations by a factor 
equal to the number of data per instruction. These SIMD 
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instructions are available in nearly every ISA, from MMX with 
64-bit registers to SSE (128-bit), AVX and AVX2 (256-bit), 
AVX512 (512-bit) for Intel64 instruction set. There exists for 
ARM (Neon variants), IBM Power, etc. SIMD instructions 
support 8-16-32 integer types according to SIMD register size 
and simple and double precision floating point numbers. 

The graphics processors (GPU) launched by the end of 90’ 
use the SIMT model (Single Instruction Multiple Threads) 
where one SIMT instruction execute the same instruction in 
several threads (lower part of Fig. 10). However, GPU 
programming model is different and uses programming 
language such as CUDA (NVidia) and OpenCL. 

D. The shift towards parallelism 

For mono-processors, increased clock frequencies could no 
longer be used to increase performance (“heat wall”) and 
instruction parallelism (ILP) in sequential programs has reached 
a plateau. The only possibility was to shift to multicore 
processors, which are new versions of multiprocessors for which 
all cores are integrated in the same chip. Fig. 11 compares the 
multicore processors with multithreaded processors and 
multiprocessors. 

 

Fig. 11. Multithreaded, multiprocessor and multicore CPUs 

1) Energy consumption 

Fig. 12 [7] compares the performance-power for mono-
processors and multicores. Left part of the figure compares 
performance of a mono-processor at frequency Fmax, with 
performance of the same processor at frequency 1.2 Fmax and 
performance of a dual-core at frequency 0.8 Fmax. With a higher 
clock frequency, the mono-processor has a minimal increase on 
performance, but a significant increase of power consumption. 
On the other side, the dual core with a slightly decreased clock 
frequency has a small increase in power consumption, but a 
significant performance increase. The right part of the figure 
compares a small core, a large core (4x larger than the small one) 
and a multi-core with four small cores. As a first approximation, 
power consumption is proportional to the used area, while 
performance is proportional to √����. The 4-core has 2x the 
performance of the 1-core with the same power consumption. 
The 4-core and the 1-core have the same performance/power 
ratio.  

2) Intrinsic limits of mono-processors 

The limited ILP in sequential programs first led to the 
introduction of multithreaded mono-processors, moving from 
sequential to parallel programming. However, the threads share 
the same set of execution units that limit performance. Moving 

to independent processors (core), possibly multithreaded, was 
the next step.  

As the cores of multicores are implemented by superscalar 
(multithreaded or not) mono-processors, reducing IC by 
increasing the number of cores is the main technique for getting 
increased performance.  

Shifting from monothreaded mono-processors to multi-cores 
also means shifting from sequential to parallel programming. 
You are now faced with Amdahl’s law… and all the issues of 
parallel programming. This was outlined by D. Paterson in a 
famous paper [8]: “The Trouble with Multicore: Chipmakers are 
busy designing microprocessors that most programmers can’t 
handle” 

 

Fig. 12. Comparing mono-processors and multicores 

IV. CMOS POWER DISSIPATION 

Old CMOS circuitry had no static power consumption, but 
situation has changed starting with 90-nm nodes due to leakage 
currents. Vdd power supply has been reduced for a long time to 
the minimum value that allows the transistors to operate with 
correct “on” and “off” states. This minimum value is in the range 
of 0.8 to 1V. Until hitting the “heat wall”, CMOS power 
consumption was mainly due to the clock frequency on one 
hand, and to �∑��  that increases with the number of transistors 
and interconnections that the successive technology nodes 
allow. Since the “heat wall”, power consumption has become 
the major issue for which all components of Equation 2 must be 
considered. 

A. Reducing static power dissipation. 

Technological improvements allow to reduce static power. 
For instance, the “off” current of the Intel tri-gate transistors is 
10-5 the “on” current instead of 10-4 for a planar transistor. 

Circuitry techniques can also be used to reduce static power. 
For instance, the L3 cache of the Xeon CPU [9] is decomposed 
into different sub-blocks that have different operation modes by 
using virtual ground levels. Compared to the active mode, there 
was x2 and x4 reduction of leakage currents with sleep and 
switch-off modes. 

B. Reducing the circuit activity 

Reducing the dynamic power means reducing the circuit 
activity via α, Vdd and F parameters. 

1) Vdd and clock controls 

In operating mode, Vdd and clock values are bounded. But a 
clock can be stopped and power supplies can be disconnected by 
decomposing the chip floor plans into domains in which power 
supplies and clocks are controlled. With such domains, several 
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power supply values and several clock frequencies can be 
defined and used, according to the circuit needs. 

2) Several operation modes 

Defining several operation modes to only activate the used 
parts of a circuit is largely used to reduce the power 
consumption. For instance, the 5th generation Intel Core M CPUs 
have different modes and sub-modes, from the “working” mode 
to the “mechanical off” mode. In complex microcontrollers, 
different blocks implementing different features have different 
operation modes, from the active mode down to other modes 
such as sleep, deep sleep, stop and shut-off. 

V. WHAT ABOUT FUTURE? 

A. Moore’s law 

The described evolution is based on Moore’s law, i.e. an 
exponential function. As quoted by G. Moore in 2003, “No 
Exponential is Forever: But “Forever” Can Be Delayed”. This 
quote raises two questions: the end of the exponential and 
delaying the end. P. Gardini, Intel Fellow and chairman of ITRS 
[1] gives some insights.  
a) First lesson: “Predictors of Engineering Limits have Always 

been Proven Wrong by The Right Improvements”. Intel 3D 
tri-gate transistors or FinFET technologies are good 
examples of technical improvements that delay the limits. 

b) Second lesson: “It Would be Wrong to Believe that the Right 
Fundamental Limits Don’t Exist”. Moore’s law is now 
“slowing”, as the fundamental limits are closer than ever. 

B. The execution time equation 

Significant changes are doubtful for clock frequencies. CPI 
could be further decreased if new PIM architectures with 
DRAM-implemented CPUs become successful. Reducing the 
number N of executed instructions per core is still going on and 
will continue. 

a) SIMD vector length has regularly increased and AVX-1024 
is forecasted. On the other side, 16-bit FP SIMD 
computation, suggested in 2005 [10], is now used in recent 
NVidia GPUs and some ARM architectures. 

b) While SIMD and SIMT introduced “vector” instruction 
types, recent processors or coprocessors focusing on AI and 
deep neural networks introduces 2D or “matrix” 
instructions and computations. Tensor cores in NVidia 
Volta [11], Matrix-Multiplication Unit in Google TPU [12] 
and Intelligent Processing Unit [13] (Graphcore) are good 
examples of the evolution towards pipelined CISC 
instructions, with increased CPI, while reducing IC.   

c)  Increasing the number of cores in multi and many-cores 
architectures reduces the IC of each core. Again, the 
number of cores regularly increases, but one can hardly 
predicts an exponential growth and unsolved software 
issues can prevent to fully exploit these many-cores 
architectures or restrict them to special applications. 

C. The power dissipation equation 

It will be there as long as CMOS will be there. 

VI. CONCLUDING REMARKS 

Since using CMOS technology, Moore's Law has been 
continuously valid, even though the period of doubling the 
number of transistors has grown. The exponential growth is 
there, even if DRAM features lead to more and more complex 
memory hierarchies. 

During these years, the equation of a program execution time 
is an insight to understand the factors that have been used to 
increase performance: first, increasing clock frequencies until 
hitting the “heat wall”, with the additional use of pipelining and 
instruction parallelism, SIMD and SIMT data parallelism in 
mono-processors. The exponential increase of performance in 
main stream computing has limited parallel architectures to 
servers and supercomputers. Then came the period of parallel 
architectures as multicores and manycores are the main 
technique to continue performance increase.As “heat wall” has 
become the big issue, the equation for CMOS power dissipation 
is important to explain the different techniques that have been 
used to limit power dissipation. 

Moore’s law and two equations have been able to explain the 
evolution of Von Neumann architectures for more than 40 years. 
When the end of the predicted end of the exponential evolution 
will be real or when non-Von Neumann architectures will prove 
to be more efficient for programmable applications, the situation 
will be totally different. Until that point, the two equations that 
have been discussed in this paper will be there to explain the 
evolution. 
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