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Abstract

Experimental testing on dry woven fabrics exhibits a complex set of evidences that are difficult to
be completely described using classical continuum models. The aim of this paper is to show how the
introduction of energy terms related to the micro-deformation mechanisms of the fabric, in particular
to the bending stiffness of the yarns, helps in the modeling of the mechanical behavior of this kind
of materials. To this aim, a second gradient, hyperelastic, initially orthotropic continuum theory is
proposed to model fibrous composite interlocks at finite strains. In particular, the present work explores
the relationship between the onset of wrinkling appearing during the simulation of the deep drawing of a
woven fabric and the use of a second gradient model. It is shown that the introduction of second gradient
terms accounting for the description of in-plane and out-of-plane bending rigidities, decreases the onset
of wrinkles during the simulation of deep-drawing.

In this work, a quadratic energy, roughly proportional to the square of the curvature of the fibers, is
presented and implemented in the simulations. This simple constitutive assumption allows to clearly show
the effects of the second gradient energy on both the wrinkling description and the numerical stability
of the model. The results obtained in second gradient simulations are descriptive of the experimental
evidence of deep drawing whose description is targeted in this work. The present paper provides additional
evidence of the fact that first gradient continuum theories alone cannot be considered fully descriptive of
the behavior of dry woven composite reinforcements. On the other hand, the proposed second gradient
model for fibrous composite reinforcements opens the way both to the more accurate simulation of complex
forming processes and to the possibility of controlling the onset of wrinkles.
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1 Introduction
Composite materials may possess very good characteristics due to the fact that they are obtained assembling
two or more constituent materials. This kind of architectured materials can be optimized to obtain excellent
resulting properties such as high strength, lightness, cost-effectiveness, thermal and electrical conductivity,
insulation and many others.

In particular, the fibrous composite materials are a class of composites that is manufactured using strong
fibers aligned in unidirectional sheets, non-crimped fabrics or woven fabrics (bidirectional), impregnated
with a thermoset or thermoplastic resin. Woven composite materials are the most widespread choice in the
case of mechanical reinforcement, due to their great formability and the subsequent possibility of designing
rather complex mechanical pieces. The forming processes, such as the Resin Transfer Moulding, (RTM), have
received a great deal of attention in the literature (see e.g. [46, 50, 52]). The most current forming processes
consists basically of two stages:

• the dry woven fabric is preformed to obtain the desired geometry for the final part

• a thermoset resin is injected into the woven fabrics filling the pores of the fibrous reinforcement.

The process used in the forming stage is thus followed by the injection and curing of a resin in the woven
fabrics, after which the finished material, union of the reinforcement and the matrix, is obtained. The quality
of the obtained piece is greatly influenced by several factors, such as the characteristics of the preformed
woven fabric and, in particular, its permeability, the characteristic of the resin and the temperature at which
the injection process takes place. In the literature, it is possible to find a great number of articles studying
in detail the injection processes and the characteristic of the resins (see [46, 50, 52]) and also the preforming
processes of thin woven reinforcements (see [11, 8, 9, 10, 13, 18, 19, 28, 31, 59, 60]). Nonetheless, few research
work concern 3D composite reinforcement forming simulation [15, 38, 47]. The focus of this paper will be on
the first stage of the forming process, namely the preforming of 3D dry reinforcements. The understanding of
this step is very important to determine if the preforming process is even possible. Indeed, the woven fabrics
can withstand only a certain amount of shear deformation between the fibers without dissociating and an
accurate modeling thus becomes crucial for optimal design.

The process of preforming can become fairly intricate when the geometries are complex (e.g. double
curved geometries) and the prediction of the entirety of the properties of the deformed fabrics is, therefore,
challenging. Several experimental devices have been set up to investigate the deformation modes and the
possible occurrence of defects during forming of textile reinforcements [14, 35]. Among them, the hemispher-
ical punch and die systems (Fig. 1) were especially studied because of their simple shape, double curvature
and large shear angle variations between the yarns in the final state.

Figure 1: Experimental setup and deformation for a deep-drawing preforming with a hemispherical punch
[15].
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Reliable models for the preforming process should include information about the fiber directions and
densities in the deformed state, so aiding the simulation of the resin injection and of the structural behavior
of the final composite part. Indeed, the permeability of the 3D interlock fabric is strongly influenced by some
deformation states that can alter or even close the interstices in the micro-structure affecting profoundly the
resulting material properties. Furthermore, the direction and positioning of the yarns, that are determined
solely by the preforming process, have a predominant role in the resulting mechanical properties of the
composite structure (stiffness, damage and fracture, etc.).

Different approaches have been proposed to model the raw fibrous composite materials that can be
found in the literature (see [8, 10, 13, 18, 19, 28, 31]). The most widespread approach to the simulation of
fibrous composite materials is, nowadays, the finite element model that needs the determination of specific
constitutive laws, to be able to describe the complex experimental evidences shown by woven composites.
The interest of using second gradient theories for the more realistic description of the mechanical behavior of
fibrous composite reinforcements has already been established in previous contributions (see [6, 27, 36, 37]).

In the present paper, additional evidence is provided regarding the fact that neglecting the bending
rigidities of the yarns in the modeling phase can produce inaccurate results of the simulation of 3D woven
fabrics (thickness ∼1 cm) during the modeling phase. In order to support this statement, a 3D FEM is
implemented and a rather simple constitutive form of the strain energy density is introduced, accounting for:

1. initial orthotropy,

2. geometric non-linearities,

3. in-plane and out-of-plane bending of the yarns (through the introduction of suitable second gradient
terms).

This second gradient model is implemented in COMSOLr looking for solutions that are continuous, as it is
usual in FEM, but that also grant continuity of the first derivatives of the displacement field.

In this way, the following desirable results are obtained:

• the solution is in agreement with the observed experimental shapes (Fig. 1),

• the second gradient energy has a beneficial effect on the mesh-dependency of the solution,

• the presence of suitable second gradient terms which are descriptive of the yarns’ bending allows to
control the onset and evolution of wrinkles during the deep-drawing process. More particularly, if the
second gradient parameter (viz the bending stiffness of the yarns) is sufficiently high, no wrinkling is ob-
served during the simulation. This result is in agreement with the common observations of experimental
results.

The results presented in this paper should be used as a guide towards the throughout implementation
of FEM codes including second gradient constitutive laws for the complete modeling of the mechanical
behavior of fibrous composite reinforcements during their forming process.

2 Second gradient 3D modeling of the deep drawing
The description of woven composites’ mechanical behavior demands important efforts. Through the analysis
of the deformation patterns during experimental testing, it is easy to notice that the condition of material
continuity is not always strictly fulfilled, due for example to some relative slippage of warp and weft. However,
if the amount of slippage between the fibers is low, a continuous model can still be used (see for example
[15, 16]). This is the approach adopted in this paper, but it must be noted that the possibility of modeling
each fiber as a single detached element still exists, even if it is of difficult applicability for big mechanical
pieces [23]. Continuum models with “fictive” elongations have been also introduced to account for a certain
amount of slipping while remaining in a continuum framework [36].

The composite reinforcement described in the present paper is a 3D interlock fabric. It is 1 cm thick and
it is composed of two yarn directions that are woven together and through the thickness. This 3D fabric will
be analyzed with 3D Finite Elements.

The most crucial part of the continuous modeling is the definition of proper constitutive relationships that
realistically reflect the mechanical properties of the analyzed material. Traditionally, the energy used in the
simulation of continuous media comprises only deformations defined as first derivative of the displacement,
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so giving rise to so called first gradient theories. However, in various papers dealing with woven composites,
it is shown how the addition of energies related to the local stiffness of the yarns is useful, if not necessary,
to describe the macroscopic deformation behavior of the interlocks (e.g. [6, 15, 27, 37, 36]).

Considering the specific case of deep-drawing preforming, one of the phenomena which is most difficult
to control with a first gradient energy is the onset of wrinkling in the deformed 3D fabric. In first gradient
simulations, it is possible to observe the presence of wrinkles in the deformed configurations when a certain
amount of in-plane shear stiffness is present (see for example [12]). Nevertheless, the number and amplitude
of such wrinkles is a mesh-dependent phenomenon and such wrinkling is not descriptive of the experimental
results. This result will be obtained again in the present paper for a traditional first gradient finite element
model with linear shape functions (subsection 3.4.1).

In the remainder of the paper, it will be shown how the necessary description of the local bending
effects can be performed via generalized continuum theories, such as higher order gradient or constrained
micromorphic theories. More precisely, a second gradient energy, approximately proportional to the square
of the yarns’ curvature, is introduced and the obtained results are used to model the deep-drawing of woven
fabrics.

The generalized continuum theories are still perceived as pure theoretical abstractions, even if their
background was laid down in detail since the historic works of Piola [49], Cosserat [17], Midlin [42], Toupin
[58], Eringen [26], Green and Rivlin [30] and Germain [29]. With the hope of a more widespread consciousness
of the potential of generalized continuum theories, the authors attempt in this paper to show how some
microstructure-related effects in microscopically heterogeneous mechanical systems can be still modeled by
means of continuum theories.

2.1 Second gradient modeling
In the remainder of the paper, the following notations will be used:

• BL ⊂ R3 is the Lagrangian or reference configuration of the considered continuum and each point
X ∈ BL is called a material point,

• χ(X, t) : BL × [0, T ]→ R3 is a suitably regular kinematic field which associates to any material point
X its current position x at the time t,

• u(X, t) := χ(X, t)−X is the displacement field at the time t given by the difference between the current
and the reference position of each material point X,

• BE(t) is the current shape of the body at any instant t, usually called the Eulerian configuration, given
by the image of the function χ(BL, t) ,

• the tensor F := ∇χ is the gradient of the map χ with respect to the reference position X ,

• C := FT · F is the Right Cauchy-Green deformation tensor5,

• the third order tensor field ∇C is the gradient of the Cauchy-Green deformation tensor.

Compared to the first gradient models, an additional third order tensor field ∇C is introduced in the xon-
stitutive expression of the strain energy density. This tensor field makes it possible to decribe effects related
to the macro-inhomogeneity due to micro-deformations in the micro-structure of the continuum, such as the
curvature of the yarns. Since second gradient theories can be readily obtained as limiting cases of micro-
morphic ones, it is possible to derive the second gradient contact actions in terms of the micromorphic ones
following the procedure used in [7]. Some of the possible types of constraints, that could be included in such a
micromorphic model which, for example, impose inextensibility of yarns so giving rise to so-called micropolar
continua, are presented in [3, 24, 25, 26, 48].

A hyperelastic, initially orthotropic, second gradient model can be applied to the case of thin fibrous
composite reinforcements at finite strains. For the strain energy density W (C, ∇C), which will be used
to simulate the mechanical behavior of the fibrous materials in the finite strain regime, it is assumed a
decomposition such as:

W (C, ∇C) = WI(C) +WII(∇C), (1)
5A central dot indicates simple contraction between tensors of order greater than zero. For example if A and B are second

order tensors of components Aij and Bjh respectively, then (A ·B)ih := AijBjh, where Einstein notation of sum over repeated
indexes is used.
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where WI is the first gradient strain energy and WII is the second gradient one. The specific constitutive
forms of the first and second gradient strain energy densities used to model fibrous composite reinforcements
are explicitly presented in the following subsections.

2.2 Hyperelastic initially orthotropic first gradient strain energy density
Even at finite strains, well-known expressions for isotropic strain energies descriptive of the behavior of
isotropic materials are available in the literature (see e.g. [44, 56]). Quite the opposite happens in the case
of orthotropic materials, for which suitable specific strain energies, well descriptive of real material behaviors
are more difficult to be found. Some results are provided in [34], where some polyconvex energies are
proposed to describe the deformation of rubbers in uniaxial tests. Explicit anisotropic hyperelastic potentials
for soft biological tissues are also proposed in [33] and reconsidered in [5, 53], in which their polyconvex
approximations are derived. Other examples of polyconvex energies for anisotropic solids are given in [57].

Notwithstanding the research efforts devoted to the study of polyconvexity, which certainly introduce
rigorous theoretical frameworks for the study of the mechanical behaviors of hyperelastic materials, the use
of such polyconvex models is often limited due to the difficult attribution of a sensible physical meaning
to the wealth of constitutive parameters which are introduced. The approach adopted in this paper is
the Ockham’s razor approach, introducing the minimum possible number of physically sensible constitutive
parameters which are needed to describe the targeted phenomena.

In the literature, reliable constitutive models for the description of the mechanical behavior of fibrous
composite reinforcements at finite strains can be found in [1, 15, 16]. Moreover, the mechanical behavior of
composite preforms with rigid organic matrix (see e.g. [40, 41, 45]) is quite different from the behavior of
the sole fibrous reinforcements (see e.g. [15]) rendering the mechanical characterization of such materials a
major scientific and technological issue.

We start by specifying the expression of the work of internal actions which is suitable to describe the
deformation of the considered system. To do so, we start by recalling classical results for first gradient,
hyperelastic orthotropic continua which prescribe the functional dependence that the strain energy density
of an orthotropic continuum must have on the Cauchy-Green strain tensor C = FT · F (see e.g. [?, ?, 16, ?,
34, ?, 44, ?, 51, ?, 56]).

Here and in the sequel, we denote by χ : B → R3 the placement function associated to the considered
body that associates to any material particle X ∈ B its current position x in the deformed configuration and
which can be related to the displacement field by means of the relation χ = u+X. Moreover, we denote by
F = ∇χ the space gradient of the introduced placement field.

We start by assuming that the strain energy density can be given in the form

W (C,∇ϕ) = WI(C) +WII(∇ϕ). (2)

Representation theorems for 3D orthotropic first gradient materials are available in the literature (see
e.g. [51, ?, ?]), which state that the functional dependence of the strain energy density on the strain tensor
C must be given in terms of its invariants iO := {i1, i4, i6, i8, i9, i10}, where the introduced invariants are
defined in table 1 in which also their physical interpretation can be found.

Explicit expressions for the strain energy potential as function of the invariants iO which are suitable
to describe the real behavior of orthotropic hyperelastic materials are difficult to be found in the literature.
Certain constitutive models are for instance presented in [34], where some polyconvex energies for orthotropic
materials are proposed to describe the deformation of rubbers in uniaxial tests. Explicit anisotropic hypere-
lastic potentials for soft biological tissues are also proposed in [33] and reconsidered in [5, 53] in which their
polyconvex approximations are derived. Other examples of polyconvex energies for anisotropic solids are
given in [57]. It is even more difficult to find in the literature reliable constitutive models for the description
of the real behavior of fibrous composite reinforcements at finite strains but some attempts can be for instance
recovered in [1, 16]. Furthermore, the mechanical behavior of composite preforms with rigid organic matrix
(see e.g. [22, 41, 40, 45]) is quite different from the behavior of the sole fibrous reinforcements (see e.g. [15])
rendering the mechanical characterization of such materials a major scientific and technological issue.
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Invariant Expression Meaning in terms of deformation
i1 tr(C) Averaged changes of length
i4 m1 · C ·m1 Local stretch in the direction m1

i6 m2 · C ·m2 Local stretch in the direction m2

i8 m1 · C ·m2 Angle variation between the directions (m1,m2)
i9 m1 · C ·m3 Angle variation between the directions (m1,m3)
i10 m2 · C ·m3 Angle variation between the directions (m2,m3)

Table 1: Invariants of the Green-Lagrange strain tensor in the orthotropic case. The vectors m1 and m2 are
unit vectors in the two privileged directions of the material and m3 := m1 ×m2.

In this work, the directions D1 and D2 denote the unit vectors in the directions of the warp and weft
yarns in the reference configuration and the direction D3 = D1 ×D2 denotes the unit normal to the plane
containing the two sets of fibers. It is possible to fully describe a first gradient orthotropic energy with an
expression of the type (see e.g. [51]):

WI(C) = WI(i11, i22, i33, i12, i13, i23), (3)

where iii = Di ·C ·Di, i = {1, 2, 3} represents the elongation strain in the direction Di and iij = Di ·C ·Dj

represents the shear strain (angle variation) between the directions Di and Dj with i, j ∈ {1, 2, 3} and i 6= j.
It is possible to develop complex non-linear energies that capture in all details the mechanical non-

linearities observable in the experimental testing, as done in [1, 15, 16], but, as already pointed out, this is
not one of the aims of the present paper. Instead, using only a simple quadratic first gradient energy, it is
possible to thoroughly analyze the influence of both meshing and additional second gradient terms on the
performed numerical simulations. Thus, the chosen constitutive expression for the first gradient energy is:

WI(C) =
1

2
K11(

√
i11 − 1)2 +

1

2
K22(

√
i22 − 1)2 +

1

2
K33(

√
i33 − 1)2 +

1

2
K12i

2
12 +

1

2
K13i

2
13 +

1

2
K23i

2
23, (4)

where Kii are the extensional stiffnesses in the direction of the yarns as well as in the orthogonal direction,
while Kij with i 6= j are the in-plane and out-of plane shear stiffnesses. The numerical values of the material
parameters were chosen to define a material in which the extensional stiffness is much higher than the shear
stiffness and the shear behavior in the plane of the fibers is stiffer than the out of plane. Moreover, the
extensional stiffness in the orthogonal plane is much lower than the in-plane ones, due to the fact that no
yarns are effectively present in the thickness of the interlock. Even if more refined hyperelastic laws can
be certainly be introduced in the spirit of [1, 15, 16], the proposed expression for the first gradient energy
density is representative of the main macroscopic deformation modes of fibrous interlocks. The parameters
chosen are the ones shown in Tab. 2.

K11 K22 K33 K12 K13 K23

5 MPa 5 MPa 0.5 MPa 50 kPa 0.5 kPa 0.5 kPa

Table 2: Parameters of the first gradient energy.

2.3 Hyperelastic orthotropic second gradient strain energy density
Considering linear elastic isotropic second gradient media, it is possible to find constitutive laws that are
able to describe a very wide set of behaviors (see for example [20]). In the case of the woven fabrics, the
bending stiffness of the yarns is the main micro-structure-related deformation mechanism which takes place
at the mesoscopic level and, therefore, it is the only one that will be considered in this paper. The modeling
of the bending stiffness of the yarns is decisive for the description of some specific phenomena, such as
shear transition layers in 2D experimental tests and wrinkling during the deep-drawing of dry woven fabrics.
A second gradient theory is potentially able to account for other effects related to the derivatives of the
elongations but, in this work, they will be disregarded. The second gradient energy considered is, thus,
function only of the derivatives of the invariants iij (i 6= j), that can be used to define rough descriptors of
the curvatures of the two sets of yarns of the fabric.

6



As a matter of fact, it can be inferred (see also [6, 21, 27, 36, 37]) that, given the family of yarns initially
oriented in the direction D1, the quantity i12,1 is a measure of their in-plane bending6. Analogously i12,2 is a
measure of the in-plane bending of the family of yarns initially oriented in the direction D2. The quantities
i13,1 and i23,2 are descriptors of the out-of-plane bending of the yarns initially oriented in the D1 and D2

directions, respectively. Since no material fibers are present in the thickness of the considered interlocks,
quantities related to their bending (i13,3 and i23,3) are not likely to play a role in the deformation of such
materials. In the light of these remarks, the following constitutive form is introduced for the second gradient
strain energy density:

WII(∇C) =
1

2
α1 i

2
12,1 +

1

2
α2 i

2
12,2 +

1

2
β1 i

2
13,1 +

1

2
β2 i

2
23,2, (5)

where with α1, α2 and β1, β2 are the in-plane and out-of-plane bending stiffnesses of the two family of
yarns, respectively. For unbalanced fabrics, i.e. fabrics whose warp and weft yarns do not have the same
characteristics, it is likely that α1 6= α2 and β1 6= β2 (see also [6, 36]). The object of this paper are interlocks
which are balanced and, hence, it is assumed that α1 = α2 = α and β1 = β2 = β. Moreover, it is possible
that the two families of yarns have different bending stiffnesses in-plane and out of plane. Nevertheless, such
difference can be rather small, so in this paper it will also be set α = β. The chosen second gradient energy
thus takes the particular form:

WII(∇C) =
1

2
α
(
i212,1 + i212,2 + i213,1 + i223,2

)
, (6)

Further investigations are needed to establish a strict theoretical relationship between the microscopic
structure of considered reinforcements and the macroscopic parameters here introduced: it is indeed well
known that the second gradient parameters are intrinsically related to a characteristic length Lc which is,
in turn, associated to the micro-structural properties of considered materials. Many identification methods
have been introduced to relate the macroscopic second gradient parameter to the microscopic properties of
the considered medium, e.g. see [2, 54]. Suitable multi-scale methods as the one introduced in [43] may
be generalized to be applied to the present case. Moreover, the description of the considered system at the
microscopic scale may exploit some of the results proposed in [4, 32, 55].

3 Numerical model and results
In this section, the implemented FEM and the consequent results for the simulation of deep-drawing are
shown.

The structure of this section will be as follows:

• in the first subsection, the numerical implementation of the contact interaction between the testing
machine and the interlock is presented,

• in the second subsection the proposed constrained shape functions, that will be here called augmented
continuity shape functions and used to perform a numerical simulation of the presented second gradient
model, will be defined,

• in the third subsection, the influence of the second gradient parameter α on the onset of wrinkles during
the simulation of the deep-drawing is studied,

• the fourth subsection presents some observed the mesh-dependency result for the first gradient model,
when using linear shape functions,

• the final subsection shows the first and second gradient solutions as functions of the adopted mesh, when
using the augmented continuity shape functions. It is concluded that second gradient simulations are
not significantly affected by the choice of the mesh, provided that the size of the elements is sufficiently
small.

6Here and in the sequel the term (·),i denotes the partial derivative of the quantity (·) with respect to the space coordinates
ξi of a reference frame oriented within the directions Di.
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3.1 Modeling geometry and contact interaction between the mold and the re-
inforcement

The object of the paper is the simulation of the deep-drawing process performed on 2.5D composite interlocks.
In particular, the focus will be on a hemispherical punch and dye system, as the one shown in Fig. 2. In such
test, a square dry woven composite interlock is formed by an hemispheric punch that, with the presence of a
horizontal plane makes the deformed shape assume a double-curvature shape.

Figure 2: Geometry of the model for a deep-drawing preforming with a hemispherical punch.

To implement the contact between the woven composite and the testing machine, a penalty function was
introduced such that, to each interpenetration, it associates a stress t normal to the surface to be applied on
the fabric, in formulas:

t = Kcontact ∆n, (7)

where Kcontact is an opportune stiffness that is set to increase in each non-linear iteration so as to obtain the
minimum interpenetration possible, ∆ is the interpenetration between the woven fabrics and the machine,
and n is the normal to the surface of the punch or of the die. The perpendicularity of the assumed stress
is equivalent to assume that no friction is present between the experimental setup and the specimen. This
could be considered a strong hypothesis, but the results seem to be qualitatively correct and this suffices for
the purposes of this paper.

In the presented model, it was chosen to model the punch and the die as rigid bodies since they are
supposed to have a stiffness of various orders of magnitude higher than the specimen. Thus, the position
of the die and of the punch is known a priori in each of the steps of the test, leading to a much easier
determination of the contact stresses in Eq. (7). Indeed, considering as origin of the reference system the
center of the basis of the hemispherical punch, the Z axis as the vertical loading direction and the current
position (x, y, z) of a point of the fabric, the interpenetrations between the woven fabric and the hemisphere,
the lower plane and the die, respectively, can be expressed as:

∆1 = max
(
R−

√
x2 + y2 + z2, 0

)
, ∆2 = max

(
− z, 0

)
, ∆3 = max

(
z −H + w0, 0

)
, (8)

where R is the radius of the hemispherical punch, H0 and w0 are the initial position and the applied dis-
placement of the die in the considered step, respectively. The direction of the resulting stress is radial for the
hemispherical punch and vertical for the plane and the die. Therefore, considering once again the center of
the hemispherical punch as the origin of the reference system, it is possible to write:

n1 =
(x, y, z)√
x2 + y2 + z2

, n2 = (0, 0, 1), n3 = (0, 0,−1), (9)

The resulting stresses t1 and t2 were applied to the lower surface of the specimen, while t3 was applied to
the upper surface. Finally, the resulting contact stresses can be written as:

t1 = Kcontact max

(
R√

z2 + y2 + z2
− 1, 0

)
(x, y, z),

t2 = Kcontact max
(
− z, 0

)
(0, 0, 1), (10)

t3 = Kcontact max
(
z −H + w0, 0

)
(0, 0,−1).
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3.2 Augmented continuity shape functions
As it is well known, the usual steps followed in finite element models are as follows:

1. Discretize the considered body Ω with a mesh. Each of the obtained sub-bodies Ωe is called an element.

2. In each element Ωe, introduce a suitable number Nn of local nodes {xe1, xe2, .., xeNn
} which are needed to

define a basis of polynomials {fe1 , fe2 , .., feNn
}, of order n, which will be subsequently used to build-up

the solution. Of course, the number of points Nn to be introduced depends on the order of the chosen
polynomials (e.g. for 1D elements Nn = n+ 1). The polynomials fei are given and are built in such a
way that: 

fei (xej) = 0, j 6= i,

fei (xei ) = 1, i, j ∈ 1, 2, ..., Nn,

fei = 0, outside the element Ωe,

(11)

3. Look for a global solution that takes the form:

u =

Ne∑
e=1

Nn∑
i=1

aeif
e
i , (12)

where Ne is the total number of elements Ωe of the chosen discretization of Ω, and aei are constants to
be determined. Clearly, the number of constants aei depends both on the number of elements and on
the order n of the chosen polynomials fei .

The more common finite elements codes, such as the one used to perform the simulations in this paper, are
built in such a way that the unknown constants are determined according to the following procedure:

1. calculate some aei by means of the imposed boundary conditions (e.g. assigned displacement at a
boundary node),

2. calculate some others aei by imposing continuity of the field u through the elements Ωe,

3. calculate the remaining constants aei by means of a suitable minimization of the global action functional
A associated to the energy W.

Such elements are usually built to treat problems in classical elasticity where first gradient energiesW (∇u)
are introduced. Note that the global continuity of displacement is imposed a priori in these elements.

The physical phenomena, object of this paper, typically show deformed shapes that exhibit continuity of
displacement and also of strain (first derivatives of displacement). Indeed, from the experimental observations,
it is possible to notice that, even if there are rapid changes of the strain within the specimen, they are always
smoothened by the presence of transition layers allowing to pass from a value of strain to the other in a
continuous way (see e.g. [6, 27, 36]).

To describe the considered phenomena, namely continuous displacements and rapid but continuous vari-
ation of strain, two ingredients are needed:

1. the introduction of a second gradient energy, e.g. of the type in Eq. (6),

2. an adapted finite element which is able to assure the continuity of the first derivatives of displacement
(class of continuity C1).

Such second point can be achieved at least in two ways:

1. introducing a supplementary kinematical field P : Ω → R3, subsequently constrained to be related
to first derivatives of displacement as P → (i12, i13, i23) e.g. using Lagrange multipliers or penalty
methods (e.g. see [36, 37]),

2. keeping the same kinematics (only the standard displacement field) and try to force the finite element
to grant continuity of first derivatives of displacement.

9



In this paper, the authors chose to implement this second way of granting continuity of strain by introduc-
ing third order Lagrangian polynomials which guarantee such augmented continuity with a penalty energy
at the element interfaces of the type7:

WInterface = KPenalty ([[i12]]2 + [[i13]]2 + [[i23]]2). (13)

This energy depends only on the discontinuity of the deformations i12, i13 and i23 and it is, therefore, not
sufficient to render the entire ∇u continuous. Nonetheless, the derivatives of the deformations i12, i13 and
i23 are the only ones appearing in the presented second gradient energy and, therefore, are the only ones on
which the continuity is imposed.

Whit this workaround it was possible to obtain almost continuous deformations and, thus, to implement
directly a second gradient 3D model. The possibility of adding an energy on the interface between mesh
elements is not always granted, but it is possible in COMSOLr, the software used for the simulations
presented in the present paper.

3.3 Influence of the second gradient on the wrinkling
The model here presented implements the augmented continuity shape functions in a COMSOLr finite
element model. The energy considered was the sum of the first gradient energy presented in Eq. (4) and of
the second gradient one given in Eq. (6), for which the directions of the fibers D1 and D2 were chosen to be
parallel to the edges of the specimen. The first gradient parameters are the ones shown in the Tab. 2, while
various values of the second gradient parameter α were considered. It must be noted that, in the case α = 0,
the model reduces to a first gradient model with the energy in Eq. (4).

The results, obtained for α = 0, 0.1, 1, 10N , are shown in Fig. 3 for an imposed displacement of 90%
of the punch’s radius (9 cm). In the first gradient case, it is possible to notice the presence of a significant
number of wrinkles in the fibers direction causing a considerable out-of-plane curvature of the fibers. Instead,
the insertion of a second gradient energy depending on the curvature generates a tendency to reduce the
wrinkling effect. If the value of α increases to the value 10N all the secondary wrinkling disappears and the
only principal wrinkle remaining is due to the natural evolution of the double curvature of the macroscopic
configuration.

7The term [[·]] denotes the jump of the quantity · at the interface between two elements Ωe.
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1st gradient model (α = 0 N) α = 0.1 N

α = 1 N α = 10 N

Figure 3: Dependence of the solution on the second gradient parameter α.

As it will be shown in subsections 3.4.1 and 3.4.2, the first gradient model appears to be mesh-dependent
even after the introduction of the augmented continuity shape functions (see Fig. 6) and it is, therefore,
impossible to show a representative solution for this case (see subsections 3.4.1 and 3.4.2). Thus, it was
chosen to show the deformed shape evaluated with the thinner used mesh, even if it is reasonable to assume
that more wrinkles could appear for thinner meshes. On the other hand, even for small values of the second
gradient parameter α, a stabilization of the deformed configuration is obtained (see Fig. 6) and the deformed
shape presented can be considered a representative solution, as it will be shown in subsections 3.4.2.

The possibility of controlling the onset and evolution of wrinkling during the deep-drawing simulation via
the introduction of a constitutive parameter could be of great use in the prevision of the material behavior in
view of structure design. It must be reminded that the presented simulations are relative to an experimental
test that is meant for the characterization of the material constitutive properties. It is, therefore not enough
to correctly describe the experimental results but the final goal is to predict the behavior of the woven fabric
in generic engineering applications.

An issue that has to be covered is the determination of the second gradient parameter via experimental
testing. Considering the proposed simple energy, it could be possible to heuristically choose α in order
to have a qualitative description of the wrinkling phenomenon during a test such as the one proposed here.
Furthermore, there are several experimental phenomena whose description would be useful for the calibration
of a second gradient energy. During a Bias Extension Test, it is possible to observe the formation of some
shear boundary layers the description of which can be used to calibrate the second energy parameters, as
shown in [27]. In the case of a Bias Extension Test on strongly unbalanced fabrics, the bending stiffness
of the fibers can lead to some macroscopic effects like the asymmetric deformed shape analyzed in [6, 36].
Finally, the calibration of the second gradient parameter could be attempted via a three point bending of
an interlock, as in [37]. Which combination of these tests is best suited for the determination of the second
gradient parameters is still to be decided, but it is important to have multiple observable effects so that it is
possible to validate the chosen parameters.

The results obtained in this paper are a confirmation of the great potential of the use of a second gradient
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model for the description of the wrinkling phenomenon and, more generally, of the behavior of composite
materials. In the authors’ opinion, the results presented in this paper and in [6, 27, 36, 37] are starting to
clearly show how a second gradient model can be a potential solution for most of the issues relative to the
description of the behavior of dry woven fibrous composite.

3.4 Some considerations concerning mesh-dependency of the performed simu-
lations

3.4.1 First gradient model with linear shape functions

As stated above, the results obtained via a first gradient model appear to be mesh-dependent, due to the
non-stability of the wrinkling description. The aim of this subsection is to present this issue in the case of a
classical first gradient implementation and, hence, to show the stabilization effect obtained with the insertion
of a second gradient energy.

The augmented continuity shape functions introduced for the second gradient model are momentarily
discarded, so that it is possible to frame the mesh-dependency problem in a more traditional setting. In the
simulations of this subsection, it was chosen to implement a model with the Lagrange linear shape functions.
The study of the mesh-density’s influence on the first gradient solution is made with two types of mesh,
namely:

• hexahedral meshes obtained sweeping quadrilateral meshes on the boundary over the thickness of the
specimen (Fig. 4),

• tetrahedral elements (Fig. 5).

The same results cannot be obtained for the second gradient model because with such low continuity shape
functions the insertion of a second gradient energy cannot be detected and, hence, it plays no actual role in
the results.

In Fig. 4, the hexahedral meshes and the resulting deformed shapes of the specimen are shown. It is
important to remark that in this set of meshes the directions of the yarns D1 and D2, that are parallel to
the edges of the specimen, coincide with the normals to the mesh interfaces. This property makes it possible
to have a discontinuity on the derivatives in one of the fiber directions without losing the smoothness in the
other direction. In other words, it is possible to form a wrinkle at the element interfaces for one set of fibers
keeping the other set of fiber unaffected. This uncoupling can cause the formation of several wrinkles without
interfering in other deformation mechanisms. Being the effect strongly related to the positioning and number
of interfaces between meshes, it is not surprising that the result appears to be mesh-dependent. As a matter
of fact, it is possible to see in Fig. 4 how the increase in mesh-density seems to be connected to an increment
in the number of wrinkles.
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Figure 4: Solution of a first gradient model with linear shape functions and hexahedral meshes of different
sizes.
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Changing the type of mesh to tetrahedral elements as shown in Fig. 5, the improvement obtained in the
stability is very clear. Despite the solution is once again mesh-dependent, the differences obtained in the
output are much less with respect to the hexahedral mesh. The explanation for this result is that, in this
case, the normals to the interfaces between the meshes do not always coincide with the direction of the fibers
making the appearance of a wrinkling phenomenon at the interfaces more difficult.
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Figure 5: Solutions for a first gradient model with linear shape functions and tetrahedral elements of different
sizes.

The conclusion on the results presented in this subsection is that a first gradient model with linear shape
function may present unphysical wrinkling phenomena. It is still possible to obtain realistic results from such
a model, but the dimension and the orientation of the elements should be carefully chosen to avoid unphysical
wrinkling.

3.4.2 First and second gradient models with augmented continuity shape functionss

In this subsection, a study of first and second gradient solutions obtained considering augmented continuity
shape functions is presented in Fig. 6. At first glance, it could seem that the mesh considered is poorer with
respect to the previous case, but with the third degree polynomials used as shape function the number of
nodes is comparable to the linear case.

It is possible to see that the first gradient solution still seems to depend on the size of the mesh. The
wrinkles are not spikes corresponding to an interface between two mesh-elements, as happened in Fig. 4,
because the augmented continuity shape functions impose the smoothness of the strain during the deformation
process.

Fig. 6 explicitly shows that the stability of the model seems to be increased by adding a second gradient
energy. Indeed, the wrinkling phenomenon is controlled by the second gradient terms and the corresponding
result appears to be mesh-independent even with a small constitutive parameter (α = 0.1N). The fact that
second gradient terms stabilize the numerical onset of wrinkling so producing more realistic results is not
surprising. Indeed, the presence of an out-of-plane bending stiffness of the yarns (which is of course evident
from a phenomenological point of view) makes energetically expensive the formation of wrinkles. On the
other hand, since no energetic cost is associated to out-of-plane bending withing first gradient theories, the
onset of a myriad of wrinkles is allowed even if this solution deviates from experimental evidence. If the value
of α is increased, the results obtained with the different meshes considered are the same as in Fig. 4 and,
therefore, they are not included here.
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Figure 6: Mesh-dependency of the first and the second gradient model with shape functions with augmented
continuity.

The presented results are very promising but, it must be noted that the augmented continuity shape
functions are just a workaround for the real problem which is that of implementing robust finite elements
for the simulation of woven composite reinforcements in view of structure design. The continuity of the
derivatives is weakly imposed and it is, therefore, not strictly granted. A study on the validity of a model
implementing the augmented continuity shape functions should be made, even if it seems that the presented
model is reliable in the description of the analyzed phenomenon. Alternative methods to stabilize the solution
can also be found in the literature [39] consisting in the insertion of small structural elements (such as beams)
in the interior of the FE in the direction of the yarns, so indirectly accounting for their bending stiffness.

3.4.3 Influence of cutting the corners on the onset of wrinkling for first and second gradient
solutions

During experimental testing, it is a spread routine to cut the corners of the specimen as shown in the first
line of figure 7, see [15]. This change in the geometry can have an influence on the onset of wrinkling during
the deep drawing of the fabric. It is possible to notice that cutting the corner leads to a slightly reduced
amount of wrinkling in the first gradient model, while for the second gradient model the wrinkling is already
not relevant and therefore almost no influence is seen by the cutting of the corners. The considerations
concerning the dependence of the solution from the size of the mesh remain the same as in the previous
subsections both for the first and second gradient case.
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Figure 7: Influence of cutting the corners on the onset of wrinkling for the first and the second gradient
model with shape functions with augmented continuity.

4 Conclusions
The woven fabrics posses a huge potential due to their very specific characteristics. However, there is still no
common agreement concerning the approach to be adopted for the modeling of such materials during their
dry preforming. The classical models used for the woven composite preforming fail to describe a wealth of
observed experimental evidences. In particular, the description of the wrinkling phenomenon is one of the
weakest points of such models.

The introduction of terms in the energy depending of higher order derivatives are useful to describe
the deformation energy associated to the micro-structure. In the authors’ opinion, this possibility is of
fundamental importance for an accurate description of the preforming of the woven fabrics as well as for
the control of the wrinkling phenomenon. In this paper, the results obtained with the introduction of an
energy depending on the in-plane and out-of-plane curvature of the yarns are presented and it is shown how
the onset of the wrinkling during the deep drawing can be controlled so as to reproduce real experimental
evidence.

In the literature, second gradient models have already been used to describe specific experimental behav-
iors of fibrous composite reinforcements and this article provides additional evidences supporting the potential
of the use of this type of models for such materials. It is the authors’ belief that it should be considered a
proven fact that the addition of simple second gradient energy terms could be critical to describe numerous
observed phenomena such as the one analyzed here. However, the simple quadratic energy hereby used is
not likely to be completely sufficient for the general description of the non-linear behavior of the fabrics, but
it is descriptive enough to understand the usefulness of a second gradient model for such materials. Further
studies are needed to find more complex non-linear second gradient constitutive laws fully descriptive of the
mechanical behavior of the woven fabrics at very large strains and subjected to different boundary and/or
loading conditions.
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