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Abstract

The classical models used for describing the mechanical behavior of woven fabrics do not fully account
for the whole set of phenomena that occur during the testing of such materials. This lack of precision is
mainly due to the absence of energy terms related to the microstructural properties of the fabric and, in
particular, to the bending stiffness of the yarns. The importance of the bending stiffness on the overall
mechanical behavior of woven reinforcements, if already essential for the complete description of balanced
fabrics, becomes even more important in the case of unbalanced ones. In this paper it is shown that the
unbalance in the bending stiffnesses of the warp and weft yarns produces macroscopic effects that are
extremely visible: we mention, for example, the asymmetric S-shape of a woven interlock subjected to a
Bias Extension Test (BET).

We propose to introduce a constrained micromorphic model and, simultaneously, a discrete model
that are both able to account for i) the angle variation between warp and weft tows, ii) the unbalance in
the bending stiffness of the yarns and iii) the relative slipping of the tows.

The introduced constrained micromorphic model is rigorously framed in the spirit of the Principle of
Virtual Work for the study of the equilibrium of continuum bodies. A suitable constraint is introduced in
such micromorphic model by means of Lagrange multipliers in the strain energy density and the resulting
constrained model is seen to tend to a particular second gradient one. The main advantage of using such
constrained micromorphic model is that the kinematical and traction boundary conditions that can be
imposed on some sub-portions of the boundary of the considered body take a natural and unique meaning.

The discrete model is set up by opportunely interconnecting Euler-Bernoulli beams with different
bending stiffnesses in the two directions by means of rotational and translational elastic springs. The
main advantage of such discrete model is that the slipping of the tows is described in a rather realistic
way. Suitable numerical simulations are presented for both the continuum and the discrete models and
a comparison between the simulations and the experimental results is made showing a definitely good
agreement.

Introduction
For decades textile composites made of woven fabrics have been successfully employed in aircraft and automo-
bile engineering and they are gaining an even increased interest due to their excellent mechanical properties
such as a very high specific-strength and excellent formability properties. Fibrous composite reinforcements
present improved characteristics, namely high specific stiffness and strength, good deformability, dimensional
stability, low thermal expansion, good corrosion resistance and many others. Among the quoted character-
istics, the good deformability is what makes these materials perfect to be formed in various shapes with
limited expenses. On the other hand, some complex behaviors of the woven fabrics, for instance the onset
of wrinkling and slippage, limit the admissible deformations during the stamping operations and can render
the modeling of such materials difficult to be achieved. Due to the complexity of the micro-macro behavior
of fibrous composite reinforcements, the need of a comprehensive model for the prediction of the mechanical
response of such materials during the forming represents a real scientific challenge (see e.g. [9]).

The structure of the fabric is characterized by two main directions of woven tows (warp and weft) and,
therefore, in those directions the fabric has a very high extensional rigidity. The way in which these fabrics
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are weaved varies according to the different production methods and it is therefore possible to observe various
schemes of weaving patterns such as those shown in figure 1 for unbalanced fabrics. Each of these schemes
leads to a different type of composite reinforcements and thus to different mechanical properties. Furthermore,
the warp and weft of a fabric can be either balanced (with the same properties) or unbalanced (the warp
and weft present different characteristics due, for example, to a different number of constituting fibers). Such
unbalanced fabrics may be of use, for example, in all those engineering applications that require a material
that has to be stressed in a main direction. In such situations the use of an unbalanced fabric conveys a real
advantage in terms of material response and therefore an economic advantage as well.

Figure 1: Schemes of weaving for unbalanced fibrous composite reinforcements

In order to produce the fabrics, the yarns (that are themselves composed of thousands of small carbon
fibers) are weaved together forming a very complex texture. In such a structure it is no wonder that the
interaction between the yarns and their behavior at a mesoscale play a fundamental role on the overall
response of the material. One of the main features that determines the properties of the fabric is the friction
between the yarns that both prevents the slipping and generates the shear rigidity of the fabric. This shear
stiffness fundamentally determines the behavior of the fabric being usually orders of magnitudes lower than
the elongation stiffness of the yarns. The shear angle variation between warp and weft can hence be thought
to be the principal deformation mode of fibrous composite reinforcements. However, the shear stiffness of the
fabric and the elongation stiffness of the yarns are not enough to fully describe the response of such materials.
The yarns, possess an in-plane bending stiffness that determines some peculiar behaviors of the material at
the macroscopic scale (see e.g. [26, 31]). Particularly, in the case of an unbalanced fabric the difference in
the thickness of the two families of yarns leads to peculiar responses.

Notwithstanding the importance of a complete and effective modeling of fibrous composite reinforcements,
the most common models for the description of the mechanical behavior of such materials fail to describe
comprehensively their response.

In this paper we propose to use a micromorphic model to describe the mechanical behavior of unbalanced
fibrous composite reinforcements with an application to the Bias Extension Test, which is a very well known
mechanical test in the field of composite materials manufacturing (see e.g. [10, 39, 47, 68]).

We try to limit at most the complexity of such model by introducing a unique kinematical scalar field ϕ
in addition to the classical macroscopic displacement u. As usual in micromorphic models, the strain energy
density of the considered material is supposed to depend on the first gradients of both u and ϕ.

In order to describe at best the physics of the problem it is useful to interpret the variable ϕ as the angle
variation between warp and weft, so that a dependence of the strain energy density on ∇ϕ actually accounts
for the bending stiffness of the yarns. Indeed, it is possible to understand that when varying the angle from
one value to a different one, this cannot be done too sharply, but a smooth gradient of the angle variation
must occur that is physically associated to the bending of the tows.

As a matter of fact, the angle variation between the two material directions m1 and m2 can be directly
associated to the gradient of the displacement field (such angle variation is known to be the invariant i8 =
〈m1, C ·m2〉, of the Cauchy-Green strain tensor C). In order to let the micromorphic variable ϕ tend to the
angle variation i8, we decide to use suitable Lagrange multipliers in the micromorphic strain energy density.
The resulting constrained micromorphic model can be actually interpreted as a particular second gradient
model since the first gradient of ϕ tends to the gradient of i8 which is itself a function of the gradient of u.
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As we will show in detail in the body of the paper, the proposed constrained micromorphic model is able
to account for

• the basic mechanism of angle variation between warp and weft

• different bending rigidities in the warp and weft directions

• the decrimping and eventual relative slipping of the yarns.

When applying such constrained micromorphic model to the description of the Bias Extension Test (BET)
on an unbalanced fabric, we are able to recover the characteristic macroscopic asymmetric S-shape of the
specimen (essentially due to the two different bending stiffnesses), as well as the deformation patterns of
warp and weft tows at the mesoscopic scale. More precisely, for what concerns the slipping of the yarns
which is experimentally observed, it is accounted for in our continuum model by means of the introduction
of “equivalent elongations” in the two material directions.

The reader may think that the fact of passing through a constrained micromorphic model to formulate
a specific second gradient one is an artificial procedure that provides additional complexity to the modeling
of the considered materials. Nevertheless, we will show that the fact of starting from a micromorphic model
and to subsequently constrain it in order to tend to a second gradient one, is a more natural way to clarify
the physical meaning of the considered problem. In particular, the fact of considering a micromorphic
model avoids any confusion concerning the boundary conditions that can be imposed in the considered
physical problem. We will see that we will be naturally led to impose kinematical boundary conditions that
immediately take the precise physical meaning of imposing the displacement and the angle between warp and
weft on given subsets of the boundary. Similarly, there will be a unique way to impose forces and double forces
at the boundary of the considered micromorphic medium where tractions are assigned, and the introduced
“force” will be seen to be directly related to the force which is measured by the employed testing machine.

On the other hand, if we would have started directly from a second gradient model the way of imposing
physical boundary conditions would have been much more complicated. In fact, it is known (see e.g. [50, 54,
55]) that there is no a unique way to define forces and double forces in second gradient theories, but multiple
combinations of such contact actions may be prescribed on the boundary which are all equally legitimate but
which give rise to different boundary value problems.

It is our hope to convince the reader that the physics of the boundary conditions which have to be imposed
to model the BET is naturally suggested by the use of the used constrained micromorphic model.

In a second time, we introduce a discrete model for the description of the Bias Extension Test on un-
balanced fabrics. To do so, we use long Euler-Bernoulli beams with different bending stiffnesses in the two
directions, which are suitably interconnected by rotational and translational springs in such a way that the
main characteristics of the experimental Bias Extension Test are described. In particular, we are able to
recover in a realistic way both the macroscopic asymmetric shape of the specimen as well as the pattern of
the yarns at the mesoscopic scale which include shear strain, bending and slipping. Since the yarns constitut-
ing the specimen never experience compression during the BET, we can sensibly affirm that the introduced
model of interconnected Euler-Bernouilli beams actually describe, at least qualitatively, the overall behavior
of the reinforcement.

Even though the proposed discrete model only involve elastic elements (beams and springs), it is able to
catch in a quite realistic way the main features of the deformation of unbalanced fabrics. A point that could
be improved in this sense is to introduce some dispersion in the model (friction), following e.g. the methods
presented in [35, 57], in order to account for the phenomenon which is experimentally observed and which
suggests that, after unloading, the specimen does not perfectly return to its initial undeformed shape.

The results obtained via the discrete model allow us to comfort those obtained via the constrained
micromorphic continuum model and they additionally allow to bring more light on the mechanisms of slipping
that occur during the BET on unbalanced fabrics.

The paper is organized as follows

• In section 1 we set-up the equilibrium problem for both Cauchy and micromorphic continua. To do so,
we introduce suitable spaces of configurations and of admissible variations whose structure is directly
related to the kinematical boundary conditions that are imposed in the considered problem. We hence
formulate the equilibrium problem for the considered (Cauchy and Micromorphic) continua by means of
the use of the Principle of Virtual Work. Finally, we treat in more detail the problem of the equilibrium
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of a first gradient continuum by obtaining the irreducible form of the work of internal actions for such a
continuum. This irreducible form allows to individuate the type of boundary contact actions which can
be introduced in Cauchy media, namely “forces” per unit area. Finally, we explicitly show a method to
calculate external contact actions by means of the use of the Principle of Virtual Work: such method
is based on a wise choice of particular test functions that allow to isolate forces and double forces on
some specific parts of the boundary.

• In section 2 we study the equilibrium of an unbalanced 2D fabric subjected to a Bias Extension Test.
This study is carried out following three subsequent steps. First of all the physical problem (BET on
unbalanced fabric) is precisely described with particular attention to the description of the imposed
kinematical and boundary conditions (see e.g. [10, 13, 35, 47]). Secondly, a discussion concerning the
most appropriate continuum model which is needed to describe the physical phenomenon of interest
is carried out. We propose a constrained micromorphic model to accomplish this task (see also [31]).
Such model is able to account for i) the angle variation between warp and weft yarns, ii) the unbalanced
bending stiffness of the two families of fibers and iii) the relative slipping of the yarns by means of the
introduction of “equivalent elongations”. Last but not least the introduced constrained micromorphic
model is seen to be able to introduce in a natural way the boundary conditions which are peculiar
of the BET. Finally, we present the numerical simulations of the proposed constrained micromorphic
continuum model to show that it is able to satisfactorily describe the experimental evidences.

• In section 3 we introduce the discrete model for the description of the BET by means of the use
of Euler-Bernoulli beams suitably interconnected by rotational and translational elastic springs. We
show that the obtained results fit well the available experimental evidences both for what concerns the
macroscopic and microscopic deformation patterns. In particular, the phenomenon of relative slipping
of the yarns is unveiled in a rather precise way so allowing a wise interpretation of the equivalent
elongations introduced in the continuum micromorphic model.

We explicitly remark that section 1 contains an introductory theoretical treatise which is convenient to
frame the considered mechanical problem in the framework of the Principle of Virtual Work. We believe that
such a discussion is indeed very useful for those readers who want to make a clear connection between a neat
mathematical formulation of the Principle of Virtual Work and the description of the mechanical phenomena
that such principle can provide. Actually, an intelligible and self-consistent disquisition ranging from the
mathematical setting to the mechanical interpretation of the Principle of Virtual Work is difficult to be
found in academic articles, so that we believe that section 1 represents an added value for the present paper.
Some of the introduced notations are voluntarily lightened with respect to those presented in classical more
mathematical books (see e.g. [51]) in order to make easier the connection between the mathematical and the
mechanical aspects of the same problem. The reader who is not interested in establishing such connection
can skip this opening section, directly passing to the mechanical setting-up of the considered problem. On
the other hand, the reader who is interested in a more precise and general mathematical formulation of the
problem can refer e.g. to [51].

1 The Principle of Virtual Work and the equilibrium of Cauchy and
micromorphic continua

In what follows we will call Cauchy continuum body a set of material particles occupying the volume B in
its reference configuration and whose motion is described by means of a suitably regular, kinematical field
u : B → R3 which we call the displacement field of the considered body. We denote by1 δu : B → TR3 the
virtual displacement field associated to the considered body. Finally, we will denote by ∂B the boundary of
B.

Generalizing this definition of Cauchy continuum, we will introduce a simple micromorphic continuum
body by complementing the previously defined Cauchy continuum with a supplementary, suitably regular,
scalar kinematical field ϕ : B → R, that we generally call micro-motion. We denote by2 δϕ : B → TR the
virtual variations of the kinematical field ϕ. We remark that, in the spirit of Mindlin [54] and Eringen [30],

1Here and in the sequel we denote by TR3 the tangent bundle to the manifold R3. We recall that the virtual variation δu of
a displacement field u has the structure δu(X) = (u(X), δw(X)), where δw(X) is a vector attached to the Eulerian point u(X).

2Here and in the sequel we denote by TR the tangent bundle to the manifold R. We recall that the virtual variation δϕ of a
micro-strain field ϕ has the structure δϕ(X) = (ϕ(X), δψ(X)), where δψ(X) is a vector attached to the image point ϕ(X).
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such supplementary kinematical field represents the motion of a microstructure which is embedded in the
considered body. Such micro-motion is, in principle, completely independent of the macroscopic motion of
the matrix. Nevertheless, in some cases of physical interest, as the one which will be analyzed in this paper,
it is worth to relate such micro-descriptors to the derivatives of the macroscopic displacement field. As we
will show later on in much more detail, this can be done by constraining the introduced micromorphic model
with suitable Lagrange multipliers to be added in the strain energy density, or equivalently, by introducing
a penalty term in the energy itself. We want to stress the fact that we prefer to keep a more general
micromorphic model and to subsequently constrain its strain energy density in order to let it tend to a
second gradient one. This choice is preferable if one wants to interpret in a unique way the external actions
of the considered continuum. In fact, (see e.g. [50, 54, 55]) if one starts directly from a second gradient
energy, the interpretation of boundary contact actions, namely forces and double-forces, depends on the type
of manipulation which is done on the work of internal actions by means of procedures of integration by parts.
More particularly, if one decides to stop at a given level of integration by parts, or to continue further to the
subsequent level, the definition of force and double force is not the same3. When considering micromorphic
continua in which only first gradient of the introduced kinematical fields appear in the strain energy density,
only one level of integration by parts is possible and then the boundary contact actions are uniquely defined
and take immediate physical meaning when framed in the considered physical problem.

The equilibrium of a Cauchy continuum body subjected to given boundary conditions can be studied
by means of the Principle of Virtual Work. Such fundamental principle of Mechanics states that a body,
subjected to specific external actions, is in equilibrium if the work of internal actions is balanced by the work
of external actions. In formulas, we say that a displacement field u∗ is an equilibrium configuration if 4

Pint (u∗, δu) + Pext (u∗, δu) = 0, (1)

for any compatible δu. In most cases, the external and internal works can be seen as the first variation
of suitable functionals Aint (u) : Q → R and Aext (u) : Q → R, so that the Principle of Virtual Work (1)
actually implies the minimization of a functional A := Aint +Aext. More specifically, we can write

Pint (u, δu) + Pext (u, δu) = δA(u, δu) := lim
t→0+

A (u+ t δu)−A(u)

t
, (2)

where we denoted by δA the first variation of the functional A, where u ∈ Q, δu ∈ Tu and the sets Q and Tu
will be defined in more detail later on.

Suitably generalizing the definitions given above for first gradient continua, the Principle of Virtual
Work can be reformulated for the introduced micromorphic continuum by saying that a couple (u∗, ϕ∗) is of
equilibrium if

Pint (u∗, ϕ∗, δu, δϕ) + Pext (u∗, ϕ∗, δu, δϕ) = 0, (3)

for any compatible (δu, δϕ).
Again, the external and internal works can be seen as the first variation of suitable functionals Aint (u, ϕ) :

Q × D → R and Aext (u, ϕ) : Q × D → R, so that the Principle of Virtual Work (3) actually implies the
minimization of a functional A := Aint +Aext. More specifically, we can write

Pint (u, ϕ, δu, δϕ) + Pext (u, ϕ, δu, δϕ) = δA(u, ϕ, δu, δϕ) := lim
t→0+

A (u+ t δu, ϕ+ t δϕ)−A(u, ϕ)

t
, (4)

where we denoted again by δA the first variation of the functional A, where (u, ϕ) ∈ Q×D, (δu, δϕ) ∈ Tu×Tϕ
and the sets Q, D, Tu and Tϕ will be defined in more detail later on.

Suitable generalizations of the Principle of Virtual Work can be introduced in order to account for inertial
and dissipative effects, but, since we deal in this paper only with static problems, we refrain here to present
such more complex framework.

The most fundamental questions which have to be confronted to properly set up a mechanical theory by
means of the Principle of Virtual Work is to establish:

3We need to mention the fact that no common agreement is currently available concerning the choice of different but equally
legitimate sets of boundary conditions deriving to different levels of integration by parts. Nevertheless, this is what is found e.g.
in [50, 54, 55] and we tend to adopt this viewpoint in the recent times.

4We remark that, depending on the conventions which are used for the signs in the definition of the work of internal and
external actions, slightly different versions of the Principle of Virtual Work can be found in the literature.
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• the constitutive form of the work of internal actions in terms of the displacement and, eventually, of
the micro-descriptor (such constitutive choice is related to the intrinsic nature of the medium that one
wants to study),

• the expression of the work of external actions, which allows to establish how the external world acts
on the considered medium and to define the concept of force, double force, or other more complex
interactions.

As a matter of fact, we can imagine to act on the boundary of the considered body by imposing either

• kinematical (or essential or geometric) boundary conditions: the displacement and/or eventually the
micro-descriptor are assigned on some portion ΣK of the boundary ∂B,

• traction (or natural) boundary conditions: forces and/or, eventually, other more complex external
interactions are assigned on some portion ΣT of the boundary ∂B.

In order to be more general, we can introduce

• The surface ΣK1
on which displacement is assigned and the surface ΣK2

on which we can eventually
assign the micro-descriptor ϕ. Clearly, ΣK = ΣK1

⋃
ΣK2

, and the two sets ΣK1
and ΣK2

may eventually
partially or totally overlap depending on the considered physical problem.

• The surfaces ΣT1 on which we assign forces and ΣT2 on which we can assign more complex interactions
and that can as well partially or totally overlap depending on the physical problem in study. We also
have ΣT = ΣT1

⋃
ΣT2

.

If, in the considered physical problems (this may eventually arrive in micromorphic theories), mixed
kinematical-traction boundary conditions are applied, also the sets ΣK1

and ΣT2
and/or ΣK2

and ΣT1
may

eventually have non-vanishing intersection.
We also explicitly mention that, in order to be able to recover all the possible external interactions, each

of the introduced sets ΣK1 , ΣK2 , ΣT1 and ΣT2 may collapse in the empty set or can cover the whole boundary
∂B. Finally, we remark that, by definition, we set ΣK

⋃
ΣT = ∂B. Finally, we also mention that we will

neglect external volume forces in the following treatment.

1.1 Space of configurations and spaces of admissible variations
Depending on the intrinsic nature of the considered body (first gradient or micromorphic), the expressions
for the work of internal and external actions take specific forms which will be better specified later on.

Independently of the specific form taken by the internal and external work, we want to underline here
that the problem of finding the equilibrium configuration of a given continuum (Cauchy or micromorphic)
subjected to specific boundary conditions reduces to the problem of finding, in suitable sets, the kinematical
fields which satisfy the Principle of Virtual Work ((1) or (3)) for any virtual admissible variations.

We start by introducing the equilibrium problem for a Cauchy continuum, defining a suitable set Q,
called space of configurations of the considered medium which contains information about the kinematical
constraints which must be verified by the displacement field. More precisely, we define the space of configu-
rations for a Cauchy continuum as5

Q = {u | u = ū on ΣK1} , (5)

where ū is a suitably assigned function. Roughly speaking, the set Q represents the set in which we look
for the solution of our minimization problem and contains only those displacement fields which satisfy the
imposed kinematical boundary conditions.

On the other hand, we define the set of admissible variations as

Tu = {δu | u+ δu ∈ Q} . (6)
5We remark that the set Q should also contain informations concerning the desired regularity on u, but we limit ourselves

here to talk about “suitably regular” functions.
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We explicitly remark that, being u = ū on ΣK1 , in order to have δu belonging to the set of admissible
variations, one must have that ū+ δu = ū on ΣK1 . This clearly implies that δu = 0 on ΣK1 , and hence the
set of admissible variations takes the form Tu = {δu | δu = 0 on ΣK1

}.With the introduced notations, we
can formulate the equilibrium problem for a Cauchy continuum as:

Find u∗ ∈ Q such that Pint(u∗, δu) + Pext(u∗, δu) = 0 for any δu ∈ Tu∗ .

The setting-up of the equilibrium problem for a micromorphic continuum can be obtained, suitably
generalizing what done for Cauchy continua. In particular, a supplementary set D must be defined to specify
the space of configurations for such continuum6:

D = {ϕ | ϕ = ϕ̄ on ΣK2
} ,

where ϕ̄ is a suitably assigned function. Roughly speaking, the set D represents the set in which we look for
the solution for the micro-motion of our minimization problem and contains only those micro-motions which
satisfy the imposed kinematical boundary conditions.

Moreover, we define a supplementary set of admissible variations as

Tϕ = {δϕ | ϕ+ δϕ ∈ D} .

With the introduced notations, we can formulate the equilibrium problem for a micromorphic continuum as:
Find (u∗, ϕ∗) ∈ Q × D such that Pint(u∗, ϕ∗, δu, δϕ) + Pext(u∗, ϕ∗, δu, δϕ) = 0 for any (δu, δϕ) ∈

Tu∗ × Tϕ∗ .

1.2 The example of the equilibrium of a first gradient continuum
As it has been previously pointed out, in order to establish the equilibrium problem for a given continuum
body subjected to specific external interactions, the expressions of both the work of internal and external
actions must be specified.

For a first gradient continuum the work of internal actions is defined through the definition of the action
functional Aint which can be introduced in the static case as7

Aint = −
ˆ
B

W (∇u) dv,

where W is the strain energy density which, in a first gradient model, constitutively depend only on the first
gradient of displacement.

In the case of first gradient theories we can hence recognize that the work of internal actions can be
written as 8

Pint(u, δu) = −
ˆ
B

δW (∇u) dv = −
ˆ
B

〈
∂W

∂∇u
, ∇δu

〉
dv

(7)

=

ˆ
B

〈
Div

(
∂W

∂∇u

)
, δu

〉
dv −

ˆ
∂B

〈
∂W

∂∇u
· n , δu

〉
ds,

where to obtain the last identity the divergence theorem has been used. Equation (7) furnishes the irreducible
expression of the work of internal actions for a first gradient continuum. This means that no more integrations
by parts can be performed to ulteriorly manipulate this expression of Pint. It can be remarked from such
irreducible form of the internal work that, as far as the boundary ∂B is concerned, only quantities expending
work on the virtual displacement δu (i.e. forces) can be recognized. It is for this reason that, based on the
validity of the Principle of Virtual Work, we can affirm that the only boundary external actions that can
be sustained by a first gradient continuum are forces per unit area, i.e. external actions expending work on

6We remark that the set D should also contain informations concerning the desired regularity on ϕ, but we limit ourselves
here to talk about “suitably regular” functions.

7Classically, in the dynamic case the internal action functional is defined as the space-time integral of the Lagrangian density
L = T − W , where T is the kinetic energy density. In the particular case of statics, the minus sign remains after the due
simplifications.

8The operator Div stands for the classical divergence operator. Being A a tensor field of any order n > 0, we define its
divergence as the n − 1 tensor (DivA)i1,...in−1

= Ai1,...in,in . Finally 〈a, b〉 = ai1,...in bi1,...in indicates the scalar product
between two tensors of any order n ≥ 1 and the Einstein convention of sum over repeated indices is used.
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δu. These observations are at the origin of the introduction of the work of external actions for first gradient
continua in the form9

Pext(u, δu) =

ˆ
ΣT1

〈f, δu〉 ds, (8)

where f : B → R3 is a suitable function assigned on ΣT1 .
Once assigned the specific form for the work of internal and external actions, the equilibrium problem for

a first gradient continuum can be hence reformulated as follows:
Find u∗ ∈ Q such that Pint(u∗, δu) + Pext(u∗, δu) = 0 for any δu ∈ Tu∗ ,
where now Pint, Pext, Q and Tu∗ are given by (7), (8), (5) and (6) respectively.

1.2.1 Evaluation of the reaction force corresponding to an imposed boundary displacement.

Once that the solution u∗ of the equilibrium problem for a first gradient continuum has been found following
the steps presented in subsection 1.2, it may be interesting to know which is the reaction force acting on
ΣK1 that balances the displacement ū which has been imposed on the surface ΣK1 itself. In other words,
we are looking for the force that one should apply on the portion of the boundary ΣK1

in order to produce
the displacement ū on ΣK1

and the displacement field u∗ within the considered body. In order to answer to
this question, it is possible to pass again through the Principle of Virtual Work, but imagining now that a
work of external forces must be introduced also on the portion of the boundary ΣK1 . We hence re-define the
external work (8) by adding an additional term as follows

Pext(u, δu) =

ˆ
ΣT1

〈f, δu〉 ds+

ˆ
ΣK1

〈fR, δu〉 ds. (9)

The reaction force can hence be calculated by writing the Principle of Virtual Work as
ˆ
B

〈
Div

(
∂W

∂∇u∗

)
, δu

〉
dv −

ˆ
∂B=ΣT1

⋃
ΣK1

〈
∂W

∂∇u∗
· n , δu

〉
ds+

ˆ
ΣT1

〈f, δu〉 ds+

ˆ
ΣK1

〈fR, δu〉 ds = 0

(10)
and imposing that it must be valid for any arbitrary displacement δu. Such identity must be satisfied, in
particular, for a virtual displacement field δū which is such that

• δū is constant on ΣK1

• δū is continuous on ∂B

• δū is vanishing outside ΣK1 except on a suitably small region in order to preserve continuity with the
imposed displacement at the boundary.

For such particular test function, the Principle of Virtual Work (10) implies

ˆ
ΣK1

〈fR, δū〉 ds =

〈ˆ
ΣK1

fR ds , δū

〉
=

〈ˆ
ΣK1

∂W

∂∇u∗
· nds , δū

〉
.

The constant test field δū can hence be simplified on the two sides and, introducing the quantity R :=´
ΣK

fR ds, we can finally write

R =

ˆ
ΣK1

∂W

∂∇u∗
· nds. (11)

We call R the reaction force associated to the imposed displacement ū on ΣK1 . We will see that the fact of
computing the reaction forces on the basis of the procedure shown here may be of interest for comparing the
results of the performed numerical simulations to the experimental data. In fact, when a standard testing
machine measures a “force” associated to an imposed displacement, it is actually measuring a resultant force
on the considered boundary.

We explicitly remark that, an equivalent way to calculate the reaction force can be found considering the
work of internal forces before integrating by parts as given in the first equality in expression (7), i.e.

Pint(u, δu) = −
ˆ
B

〈
∂W

∂∇u
, ∇δu

〉
dv.

9We recall once again that, to the sake of conciseness, we suppose in this paper that bulk external actions are vanishing.
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With reasoning analogous to the previous ones, if we write the Principle of Virtual Work evaluated in the
equilibrium solution u∗, we have

−
ˆ
B

〈
∂W

∂∇u∗
, ∇δu

〉
dv +

ˆ
ΣT1

〈f, δu〉 ds+

ˆ
ΣK1

〈fR, δu〉 ds = 0,

which must be satisfied for any δu. If we hence choose a particular test function δū such that

1. δū is constant on ΣK1

2. δū is continuous on ∂B

3. δū is an arbitrarily assigned, non-vanishing function outside ΣK1

we can evaluate the reaction force by noticing that

〈R, δū〉 =

ˆ
B

〈
∂W

∂∇u∗
, ∇δū

〉
dv −

ˆ
ΣT1

〈f, δū〉 ds. (12)

We explicitly remark that Eq. (12) is a scalar equation, which means that the three components of the vector
R cannot be directly calculated only using such equation. Nevertheless, if we choose suitable test functions δū
which are aligned with one of the directions of the used reference system, we can arrive to evaluate separately
the components of R. In particular, let {ei}i∈{1,2,3}, be an orthonormal basis with respect to which we want
to evaluate the three components Ri = 〈R, ei〉 of the reaction force R. We choose a test function δū which
possesses all the characteristics previously listed except that the point 1. is replaced by

• δū is equal to ei on ΣK1
.

In this case the component Ri can be easily calculated according to Eq. (12).
Clearly, if the problem is well formulated, the value of the reaction R calculated with expression (11)

must coincide with the one calculated using expression (12). The second way of evaluating the reaction
force has many advantages, especially when we want to do it numerically. Indeed, it is always more stable
to numerically evaluate a volume integral than a surface integral. It is for this reason that, for the case of
micromorphic continua shown in the next section, we will limit ourselves to show how to calculate reaction
forces and double-forces, by passing trough the evaluation of volume integrals.

2 Equilibrium of a 2D unbalanced woven fabric modeled as an or-
thotropic micromorphic continuum

It has been known since the pioneering works by Piola [70], Cosserat [14], Mindlin [54], Toupin [86], Eringen
[30], Green and Rivlin [38] and germain1973method [36] that many microstructure-related effects in me-
chanical systems can be still modeled by means of continuum theories. It is known since then that, when
needed, the placement function must be complemented by additional kinematic descriptors, called sometimes
micro-structural fields. More recently, these generalized continuum theories have been widely developed (see
e.g. [25, 23, 24, 22, 1, 33, 87, 32, 34, 29, 28]) to describe the mechanical behavior of many complex systems,
such as e.g. porous media [19, 48, 80, 81], capillary fluids [11, 16, 18, 21, 17], exotic media obtained by
homogenization of heterogeneous media [3, 69, 82]. Interesting applications on wave propagation in such
generalized media has also gained attention in the recent years for the possible application of this kind of
materials to passive control of vibrations and stealth technology (see e.g. [20, 49, 71, 78]).

In this section, we will frame the problem of determining the equilibrium of a 2D, unbalanced, woven
reinforcement modeled as a micromorphic material, in the spirit of section 1. With this precise aim in
mind, we will first present the particular physical problem that we want to study, then we will propose
suitable expressions for the work of internal and external actions and we will introduce the adapted spaces
of configurations and of admissible variations. We will finally formulate the equilibrium problem for the
introduced micromorphic continuum and we will solve it by means of suitable numerical simulations.
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2.1 The physical problem: bias extension test on an unbalanced fabric
We consider in this subsection the description of the physical problem that we want to analyze and for which
we will develop a suitable mechanical second constrained micromorphic model in the next subsection. The
material that we consider here is an unbalanced fabric, i.e. a fibrous reinforcement in which the warp and
weft yarns have very different thickness due to the fact that they are constituted by a significantly different
number of fibers. This unbalance is reflected in a different mechanical behavior of the two orders of yarns. In
order to sketch a simplified description of the mechanical behavior of unbalanced fabrics we can notice that

• the yarns can be supposed to be quasi-inextensible in both the warp and weft directions, due to the
very high tensile resistance of the constituent carbon fibers. This means that, notwithstanding the
different thickness of the yarns, we can suppose that they do not sensibly elongate. Actually, an initial
apparent elongation of the yarns due to decrimping can be eventually observed when testing the woven
material, but it is reasonable to suppose that such apparent elongation, if present, has eventually the
same characteristics in both directions.

• The warp and weft being strongly unbalanced, we can infer that they possess very different bending
stiffnesses. More particularly, the thick yarns are sensible to exhibit a higher resistance to bending
than the thin ones.

• Depending on the nature of the externally applied load and/or boundary conditions, the yarns can
experience some relative slipping. More precisely, it is possible that the contact point between two
yarns can move during the deformation of the macroscopic piece.

We are interested in this paper to the description of a Bias Extension Test on an unbalanced fabric of
the type described above. More precisely, the specimens object of the study are rectangular carbon fiber
interlocks (the height must at least 2.5 times longer than the basis) with unbalanced yarns oriented at ±45◦

with respect to the long side of the specimen (see Fig. 2). The two shorter edges of the specimens are
clamped in suitable devices which assure the following kinematical boundary conditions

• vanishing displacement on Σ1,

• constant assigned displacement u0 on Σ2,

• angle between warp and weft blocked at 45◦ on Σ1 and Σ2 (i.e. vanishing angle variation between the
two families of yarns during the motion of the fabric).

Figure 2: Experimental set-up for a bias extension test on an unbalanced fabric: it must be |Σ4| ≥ 2.5 |Σ1|.
For the considered experimental test we have |Σ1| = 70mm and |Σ4| = 220mm. Moreover, the specimen is
15mm thick, but we suppose that this has no influence on the results, i.e. no displacement neither deformation
occur out of the plane of the fabric.

The experimental result of the performed mechanical test is a S-shaped macroscopic deformation as the
one presented in figure 3.
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Figure 3: Experimental deformed shape for an imposed displacement u0 = 56mm.

The obtained asymmetric shape is related to the fact that the material properties and, in particular, the
bending stiffnesses of the yarns are not the same in the two privileged material directions. Moreover, due
to the applied boundary conditions, some non-negligible slipping of the yarns is also observed, above all for
what concerns the central part of the specimen in which yarns with two free ends are located.

We will more precisely describe later which is the precise pattern of the yarns inside the considered
specimen. On the other hand, we want to point out here that, indeed, a sensible differential bending can
be observed in the considered specimen. In fact, the thin yarns are seen to be sensibly bent in some thin
transition layers, while the thick yarns do not bend at all as highlighted in Fig. 4.

Figure 4: Differential bending of the thick (b) and thin (c) yarns as observed in the experimental deformed
shape (a).

Such differential bending is certainly at the origin of the asymmetric deformed shape.
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2.2 The equilibrium problem for an orthotropic micromorphic continuum sub-
jected to Bias Extension Test

In this subsection we want to set up a consistent continuum mechanical framework which is able to account
for

• the presence of two preferred material directions inside the macroscopic body,

• the unbalance of the fabric which, for what said in subsection 2.1, basically means that the two families
of yarns have different bending stiffnesses,

• the relative slipping of the yarns.

In order to do so, we need to remark that the desired continuum model (constrained micromorphic) must
be such that

• the chosen first gradient constitutive laws account for the orthotropy of the considered medium,

• it allows to describe the curvature of material lines. Moreover, the resistance to curvature must be
different for the two family of yarns, which means that the introduced constitutive laws must account for
different bending stiffnesses for the two families of yarns. In order to reduce the adopted micromorphic
model to a second gradient one, suitable constrains must be introduced in order to let higher order
derivatives appear in the strain energy density,

• notwithstanding the quasi-inextensibility of the carbon yarns, it includes equivalent elongation modes in
the yarns directions in order to indirectly account for the slipping of the fibers. The fact of considering
such elongation modes, also allows the model the possibility of describing the initial decrimping of the
yarns.

In order to formulate the equilibrium problem for the considered continuum subjected to a Bias Extension
Test in the general framework introduced in section 1, we need to specify the particular form that Pint, Pext,
Q , D, Tu and Tϕ take in the treated example.

2.2.1 Work of internal actions for a 2D, orthotropic, constrained micromorphic continuum

We start by specifying the expression of the work of internal actions which is suitable to describe the
deformation of the considered system. To do so, we start by recalling classical results for first gradi-
ent, hyperelastic orthotropic continua which prescribe the functional dependence that the strain energy
density of an orthotropic continuum must have on the Cauchy-Green strain tensor C = FT · F (see e.g.
[8, 7, 13, 41, 45, 43, 65, 66, 72, ?, 84]).

Here and in the sequel, we denote by χ : B → R3 the placement function associated to the considered
body that associates to any material particle X ∈ B its current position x in the deformed configuration and
which can be related to the displacement field by means of the relation χ = u+X. Moreover, we denote by
F = ∇χ the space gradient of the introduced placement field.

We start by assuming that the strain energy density can be given in the form

W (C,∇ϕ) = WI(C) +WII(∇ϕ). (13)

Representation theorems for 3D orthotropic first gradient materials are available in the literature (see e.g.
[72, 44, 15]), which state that the functional dependence of the strain energy density on the strain tensor
C must be given in terms of its invariants iO := {i1, i4, i6, i8, i9, i10}, where the introduced invariants are
defined in table 1 in which also their physical interpretation can be found.

Explicit expressions for the strain energy potential as function of the invariants iO which are suitable
to describe the real behavior of orthotropic hyperelastic materials are difficult to be found in the literature.
Certain constitutive models are for instance presented in [45], where some polyconvex energies for orthotropic
materials are proposed to describe the deformation of rubbers in uniaxial tests. Explicit anisotropic hypere-
lastic potentials for soft biological tissues are also proposed in [42] and reconsidered in [5, 79] in which their
polyconvex approximations are derived. Other examples of polyconvex energies for anisotropic solids are
given in [85]. It is even more difficult to find in the literature reliable constitutive models for the description
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of the real behavior of fibrous composite reinforcements at finite strains but some attempts can be for instance
recovered in [2, 13]. Furthermore, the mechanical behavior of composite preforms with rigid organic matrix
(see e.g. [27, 53, 52, 67]) is quite different from the behavior of the sole fibrous reinforcements (see e.g. [12])
rendering the mechanical characterization of such materials a major scientific and technological issue.

Invariant Expression Meaning in terms of deformation
i1 tr(C) Averaged changes of length
i4 m1 · C ·m1 Local stretch in the direction m1

i6 m2 · C ·m2 Local stretch in the direction m2

i8 m1 · C ·m2 Angle variation between the directions (m1,m2)
i9 m1 · C ·m3 Angle variation between the directions (m1,m3)
i10 m2 · C ·m3 Angle variation between the directions (m2,m3)

Table 1: Invariants of the Green-Lagrange strain tensor in the orthotropic case. The vectors m1 and m2 are
unit vectors in the two privileged directions of the material and m3 := m1 ×m2.

For the particular 2D case that we study here we assume that the first gradient energy takes the following
particular constitutive form

WI(C) =
1

2
Kel

[
(
√
i4 − 1)2 + (

√
i6 − 1)2

]
+

1

2
Kshi

2
8, (14)

where the parametersKel andKsh are assumed to be constant. The constitutive choice (14) can be motivated
by noticing that the invariants i9 and i10 represent out-of-plain angle variations of the yarns which are not
considered in the present 2D case. Moreover, in a first instance, the isotropic invariant i1 can be considered
to be uninfluential in the considered orthotropic case.

It must be remarked that this simple quadratic choice for the first gradient strain energy density, even
if providing geometric non-linearities, could be not sufficiently general to describe larger deformations for
which more complex hyperelastic constitutive laws should be introduced. More than that, since for very
large strains the integrity of the material starts to be affected due to the excessive slipping, there is no
interest in attempting the modeling of the targeted unbalanced materials after a given strain threshold. In
order to precisely identify the maximum strain that the material can withstand before failure due to excessive
slipping, more experimental campaigns should be carried out. We limit ourselves here to remark that:

• After a first threshold the material behavior starts to present a softening (see experimental pattern in
Fig. 8) which can be directly related to slipping. To model such behavior, more general hyperelastic
laws with respect to the one presented in this paper should be introduced, but this falls outside the
scope of the present work.

• If the experiment is prolonged, the slipping becomes so important that the integrity of the material
starts to be affected and some yarns are pulled out of the specimen. In this case, both discrete and
continuum model loose their predictability.

In summary, we are saying that, with the considered constitutive choice and when remaining in the mod-
erate strain regime, the main first gradient deformation modes allowed in the deformation of the considered
material are

• the angle variation i8 between the warp and weft direction

• the equivalent elongations i4 and i6 in the directions of the warp and weft which account for decrimping
and, eventually for slipping.

As for the micromorphic energy, we make the following particular constitutive choice

WII(∇ϕ) =
1

2
〈α,∇ϕ〉2 =

1

2
(α1ϕ,1 + α2ϕ,2) , (15)

where the vector α = (α1, α2) is the vector of constant micromorphic elastic parameters whose components
α1 and α2 have to be different to account for the unbalance of the microscopic characteristics of the material.
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Moreover, we denoted by ϕ,1 and ϕ,2 the space derivatives of ϕ with respect to the space coordinates in the
directions m1 and m2 (warp and weft) respectively.

We explicitly remark at this point that we want to give a precise physical meaning to the micro-descriptor
ϕ in order to catch at best the experimental behaviors described in subsection 2.1. We have pointed out
that a supplementary deformation mode with respect to classical first gradient ones must be introduced in
order to catch all the physics of the considered problem. More particularly, additionally to angle variations
(i8) and equivalent elongations in the yarns’ directions (i4 and i6), we need to account for the bending of the
two families of fibers. It is known (see also [26, 31]) that bending strains of the fibers inside the considered
macroscopic specimen can be accounted for by introducing second derivatives of the displacement field in
the strain energy density. In particular, such bending of the yarns can be related to the space gradient of
the angle variation i8: if sharp variations of angle between warp and weft occur in small regions inside the
specimen, it means that the yarns must necessarily bend in order to rapidly change their direction and give
rise to such angle variation.

In the light of such remarks, it is sensible to suppose that the introduced micro-descriptor ϕ must be
indeed related to the angle variation i8: if, for example, we let ϕ tend to i8, then expression (15) for the strain
energy density accounts for space derivatives of the angle variation and hence, finally, for the bending of the
two families of yarns. Indeed, (see also [26, 31]), it may be rather easily inferred how i8,1 can be interpreted
as the bending of the yarns disposed in the m1 direction and, analogously, i8,2 represents the bending of the
yarns aligned in the m2 direction.

Based on the physics of the problem discussed in the previous subsection, we do not introduce second
gradient effects related to the gradients of the other invariants. We are then excluding that sharp spacial
changes of elongation occur in the considered material.

At this point, the reader may believe that the fact of considering a micromorphic medium is redundant
for treating the considered problem of the Bias Extension Test, since a second gradient model could have
been directly introduced, instead of constraining a micromorphic model to become a second gradient one.
Nevertheless, the intermediary step of passing through a micromorphic model is essential, at least for two
reasons

• the imposed boundary conditions take a precise and unique meaning

• the numerical implementation of the considered problem is more easily treatable since lower order
differential equations are involved.

The first point of the unique meaning of the imposed boundary conditions is crucial if one wants to deal
with a model which has an easily recognizable physically grounded interpretation. In fact, as far as second
gradient theories are concerned, the boundary conditions that can be imposed may take different, but equally
legitimate, forms for the same physical problem (see e.g. [50]): for example, in a second gradient theory, a
given angle can be imposed either by directly assigning the angle or by suitably choosing the components of
the normal derivative of displacement on the boundary. Depending on whether one choice of the kinematical
conditions or the other one is made, the dual traction counterparts (dual of the angle variation or of the
normal derivative) have different expressions and the definition of the force can be also shown to be non-
equivalent in the two cases. Such non-uniqueness of the way of imposing second gradient boundary conditions
is directly related to the number of integration by parts which one decides to make in the expression of the
internal work: in second gradient theories, the second gradient of the virtual displacement can be integrated
by parts twice, by making use of the standard divergence theorem and of the surface divergence theorem.

On the other hand, micromorphic models only involve first gradients of the introduced kinematical fields,
so that only one level of integration by parts can be conceived (only the standard divergence theorem is used
in a micromorphic model). This fact, avoids any sort of indeterminacy for the imposable boundary conditions
when micromorphic models are considered (see e.g. also [6]).

In order to implement the fact that we want to constrain the micromorphic energy (13) to a second
gradient one, we need to introduce a suitable Lagrange multiplier Λ with associated strain energy density
WΛ

WΛ(Λ, i8, ϕ) = Λ (ϕ− i8) (16)

In this constrained framework the global energy of the system is not simply (13), but must be comple-
mented with this additional coupling term and in the considered 2D case becomes

W (i4, i6, i8, ϕ,∇ϕ,Λ) = WI(i4, i6, i8) +WII(∇ϕ) +WΛ(Λ, i8, ϕ). (17)
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We explicitly mention that, the introduction of the Lagrange multiplier Λ does not modify the definition of
the set D.

According to the constitutive choices (14) and (16), the work of internal actions of the considered 2D,
orthotropic, constrained micromorphic continuum can be written as

Pint
II = δAint = −δ

ˆ
B

(WI +WII +WΛ) dv = −
ˆ
B

(δWI + δWII + δWΛ) dv.

Computing the first variation of the introduced internal action functional, we can write

Pint
II = −

ˆ
B

[
∂WI

∂i4
δi4 +

∂WI

∂i6
δi6 +

(
∂WI

∂i8
+
∂WΛ

∂i8

)
δi8 +

∂WII

∂∇ϕ
δ∇ϕ+

∂WΛ

∂ϕ
δϕ+

∂WΛ

∂Λ
δΛ

]
dv,

which for the particular constitutive choice made to treat the physical example considered in this paper,
takes the particular form

Pint
II =

ˆ
B

[
−1

2
Kel

(
1− 1√

i4

)
δi4 −

1

2
Kel

(
1− 1√

i6

)
δi6 − (Kshi8 − Λ) δi8

(18)

−1

2
〈α,∇ϕ〉 〈α,∇δϕ〉 − Λ δϕ− (ϕ− i8)δΛ

]
dv.

Considering the definitions of the invariants given in table (1), it can be checked that

δi4 = m1 · δ
(
FT · F

)
·m1 = 2 (F ·m1) · (δF ·m1)

δi6 = m2 · δ
(
FT · F

)
·m2 = 2 (F ·m2) · (δF ·m2)

δi8 = m1 · δ
(
FT · F

)
·m2 = (F ·m2) · (δF ·m1) + (F ·m1) · (δF ·m2) ,

so that, replacing such expressions in the first three terms of the internal work (18), recalling that δF =
∇(δχ) = ∇(δu), suitably integrating by parts each term and using the divergence theorem we finally get

Pint
II =

ˆ
B

〈
Div

[
Kel

(
1− 1√

i4

)
(F ·m1 ⊗m1)

]
+ Div

[
Kel

(
1− 1√

i6

)
(F ·m2 ⊗m2)

]
, δu

〉
dv

+

ˆ
B

〈 Div [ (Ksh i8 − Λ) F · (m1 ⊗m2 +m2 ⊗m1) ] , δu 〉 dv −
ˆ
B

(ϕ− i8)δΛ dv

−
ˆ
∂B

[
Kel

(
1− 1√

i4

)
(m1 · n) + (Ksh i8 − Λ) (m2 · n)

]
〈 (F ·m1) , δu 〉 ds (19)

−
ˆ
∂B

[
Kel

(
1− 1√

i6

)
(m2 · n) + (Ksh i8 − Λ) (m1 · n)

]
〈 (F ·m2) , δu 〉 ds

+

ˆ
B

[α · ∇ ( 〈 α,∇ϕ 〉 )− Λ] δϕ−
ˆ
∂B

〈 α,∇ϕ 〉 〈 α, n 〉 δϕ

where we denoted by n the unit normal to the Lagrangian boundary ∂B. We explicitly remark that imposing
arbitrary variations δΛ implies the desired constraint ϕ = i8.

The expression (19) is the irreducible form of the work of internal actions for the considered constrained
micromorphic medium. We explicitly remark that, the boundary contact actions intervening in the considered
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problem expend work on δu (forces) and on δϕ (double-forces). As far as the boundary ∂B is concerned, it
can be inferred from Eq. (19) that the dual quantity to the virtual displacement δu contains informations
about the first gradient deformations i4, i6, i8 as well as the Lagrange multiplier Λ. We are in some way
saying that the internal force which would eventually balance an externally applied force involve deformation
mechanisms related to elongations of the warp and weft, angle variations, but also (through the Lagrange
multiplier Λ) some microstructure-related deformation modes. On the other hand, the internal double-force
(couple) which would eventually balance an externally applied double force, involve deformation mechanisms
associated to the local bending of the yarns (first derivatives of the angle variation ϕ = i8).

Analogously to what done in subsection 1.2.1, we could use this irreducible expression of the work of
internal forces to suitably calculate the reaction forces and double-forces on the part of the boundary where
we assign the kinematical constraints. Nevertheless, since in our numerical simulations we only use the
second method to calculate such reactions (passing through the evaluation of volume integrals), we will limit
ourselves to present it in subsection 2.2.4.

2.2.2 Work of external actions for the considered constrained micromorphic continuum

According to the procedure shown in the previous section, in order to formulate the equilibrium problem for a
given continuum, the work of external actions must be given on the portion of the boundary ΣT = ΣT1

⋃
ΣT2

where tractions are assigned. According to the irreducible expression (19) which we consider for the work
of internal actions, the external work that balances the boundary terms of the internal one, must contain
“forces” f that expend work on the virtual displacement δu and “double-forces” τ that expend work on
the virtual angle variation δϕ. In particular, the work of external forces for the considered micromorphic
continuum is assumed to take the form

Pext
II =

ˆ
ΣT1

〈f, δu〉 ds+

ˆ
ΣT2

τ δϕ ds. (20)

For the particular case of the bias extension test considered here, we have that traction boundary conditions
are assigned on the surfaces Σ3 and Σ4. More precisely, we have that ΣT1

≡ ΣT2
= Σ3

⋃
Σ4: forces and

double forces are simultaneously assigned on Σ3 and Σ4. More particularly, since in the Bias Extension Test
Σ3 and Σ4 are free boundaries the assigned value of forces and double forces is the null value:

f = 0, τ = 0.

2.2.3 Space of configurations for the bias extension test

Once that the works of external and internal actions have been given for the considered particular case,
the kinematical boundary conditions must be assigned and the associated space of configurations and of
admissible variations must be identified.

For the experimental set-up of the Bias Extension test shown in Fig. 2, we want to assign

• u = 0 and ϕ = 0 on Σ1 and

• u = u0 = const and ϕ = 0 on Σ2. If we want to frame this situation in the more general picture given
in section 1, we have to set ΣK1 ≡ ΣK2 = Σ1

⋃
Σ2 and the space of configurations Q × D for the

considered micromorphic continuum subjected to a Bias Extension Test takes the particular form

Q = {u | u = 0 on Σ1 and u = u0 = const, on Σ2} ,
(21)

D = {ϕ | ϕ = 0 on Σ1 and ϕ = 0, on Σ2}

The spaces of admissible variations that must be associated to such space of configurations are given by

Tu = {δu | u+ δu ∈ Q} , Tϕ = {δϕ | ϕ+ δϕ ∈ D} . (22)

Since both the displacement u and the angle variation ϕ are assigned on Σ1

⋃
Σ2, then it must be δu = 0 and

δϕ = 0, so that the spaces of admissible variations can equivalently be written as Tu = {δu | δu = 0 on Σ1

⋃
Σ2}

and Tϕ = {δϕ | δϕ = 0 on Σ1

⋃
Σ2}.
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Suitably generalizing what done before, the equilibrium problem for the considered constrained micro-
morphic continuum subjected to a Bias Extension Test can be formulated as

Find (u∗, ϕ∗) ∈ Q × D such that Pint(u∗, ϕ∗, δu, δϕ) + Pext(u∗, ϕ∗, δu, δϕ) = 0 for any (δu, δϕ) ∈
Tu∗ × Tϕ∗ ,

where now Pint, Pext, Q, D, Tu and Tϕ are given by (19), (20), (21) and (22) respectively.
The mathematical question of well-posedness of the geometrically nonlinear micromorphic approach has

been discussed in [60, 58, 59]- the extension of these results to the anisotropic setting is straightforward.
Some attendant results in the large strain and small strain setting, including an efficient numerical treatment
and further modeling and well-posedness results can be found in [37, 46, 62, 63, 64, 61].

2.2.4 Evaluation of reaction forces and double forces

As done in subsection 1.2.1 we can ask ourselves how, in the framework of the considered constrained
micromorphic model, we can calculate the reaction forces and double-forces which would be needed to produce
the kinematical conditions assigned on Σ1 and Σ2 as well as the solution (u∗, ϕ∗) obtained solving the
considered constrained micromorphic equilibrium problem. To do so, we proceed as in subsection 1.2.1
and we introduce a work of external forces also on the portion of the boundary Σ1

⋃
Σ2 where kinematical

boundary conditions have been assigned, so that the work of external forces takes the modified form

Pext
II =

ˆ
ΣT1

〈f, δu〉 ds+

ˆ
ΣT2

τ δϕ ds+

ˆ
ΣK1

〈fR, δu〉 ds+

ˆ
ΣK2

τR δϕds, (23)

where we remind that ΣT1
≡ ΣT2

= Σ3

⋃
Σ4 and that f = 0 and τ = 0 for the considered Bias Extension

Test. Moreover, ΣK1 ≡ ΣK2 = Σ1

⋃
Σ2 . In order to determine the reaction forces and double forces which

balance the imposed displacements and angle variations on Σ1 and Σ2, we could pass through the use of the
irreducible form of the work of internal actions, as we have explicitly shown for the first gradient case in
subsection 1.2.1.

Nevertheless, since for the performed numerical simulations we only used the evaluation of volume inte-
grals, we present here only this last method. To this aim, we write the Principle of Virtual Work for the
considered particular example, evaluated in the solution (u∗, ϕ∗,Λ∗) of the equilibrium problem, as

ˆ
B

[
−1

2
Kel

(
1− 1√

i∗4

)
δi4 −

1

2
Kel

(
1− 1√

i∗6

)
δi6 − (Kshi

∗
8 − Λ∗) δi8 − 〈α,∇ϕ∗〉 〈α,∇δϕ〉 − Λ∗ δϕ

]
dv

(24)

−
ˆ
B

(ϕ∗ − i∗8)δΛ dv +

ˆ
ΣK1

〈fR, δu〉 ds+

ˆ
ΣK2

τR δϕ = 0

where the expression for the work of internal actions given in Eq. (18) has been used setting i∗4 := i4(u∗),
i∗6 := i6(u∗), i∗8 := i8(u∗) and where we impose that this last form of the Principle of Virtual Work must be
satisfied for any δu, δϕ and δΛ .

In order to calculate the reaction force, we choose particular test functions δū, δϕ̄ and δΛ̄ such that

1. δū is vanishing on Σ1 non-vanishing and constant on Σ2

2. δū is an arbitrarily assigned, non-vanishing continuous function outside ΣK1

3. δϕ̄ = 0 everywhere

4. δΛ̄ = 0 everywhere.

With this choice, we can evaluate the reaction force as

〈R, δū〉 =

ˆ
B

[
1

2
Kel

(
1− 1√

i∗4

)
δī4 +

1

2
Kel

(
1− 1√

i∗6

)
δī6 + (Kshi

∗
8 − Λ∗) δī8

]
dv (25)

where we set R :=
´

Σ2
fR ds, δī4 := δi4(δū), δī6 := δi6(δū) and δī8 := δi4(δū). In order to evaluate the

three components of the reaction force, we choose suitable test functions δū which are aligned with one of the

17



directions of the used reference system. In particular, let {ei}i∈{1,2,3}, be an orthonormal basis with respect
to which we want to evaluate the three components Ri = 〈R, ei〉 of the reaction force R. We choose a test
function δū which possesses all the characteristics previously listed except that the point 1. is replaced by

• δū is equal to ei on Σ1 .

In this case the component Ri can be easily calculated according to Eq. (25).

Analogously, in order to calculate the reaction double-force, we can choose particular test functions δū,
δϕ̄ and δΛ̄ such that

1. δū = 0 everywhere

2. δϕ̄ is vanishing on Σ1, non-vanishing and constant on Σ2

3. δϕ̄ is an arbitrarily assigned, non-vanishing continuous function outside ΣK1

4. δΛ̄ = 0 everywhere.

With this choice, we can evaluate the reaction double-force as

T δϕ̄ =

ˆ
B

[−〈α,∇ϕ∗〉 〈α,∇δϕ̄〉 − Λ∗ δϕ̄] dv, (26)

where we set T :=
´

ΣK2
τR ds.

2.3 Numerical simulations for the constrained continuum micromorphic model
In this subsection we show the numerical simulations that we have performed in order to find numerical
solutions of the equilibrium problem for an unbalanced fabric formulated as the equilibrium of a constrained
micromorphic continuum subjected to a Bias Extension Test as presented in subsection 2.2. Such equilibrium
problem has been implemented in COMSOLr using the weak form package in which the expression (18) for
the work of internal actions can be explicitly given. The work of external actions (20) is given in COMSOLr

just leaving Σ3 and Σ4 free which means that forces and double forces are assigned to be vanishing on the
considered subsets of the boundary. Finally, the space of configurations (21) is given assigning the kinematical
boundary conditions on Σ1 and Σ2 as explicitly established in subsection (2.1).

The numerical values used for the constitutive parameters are shown in table (2).

Kel Ksh α1 α2

0.7 MPa 21 kPa 2 kPa·m2 0.02 kPa·m2

Table 2: Parameters of the constrained micromorphic continuum model.

Such values have been chosen following a precise heuristic procedure that we present here

• First of all we remarked the bending stiffness α2 of the thin yarns is very small (eventually almost
vanishing), so that we choose a tentative (very small) value for such parameter

• subsequently, we choose the bending stiffness α1 of the thick yarns in order to fit at best the experimental
S-shape of the specimen (in Fig. 5 it is shown as the unbalance on the bending stiffnesses of warp and
weft is responsible for the S-shape of the specimen)

• then, we tuned the value of the “sliding” parameter Kel which was seen to have a direct influence on the
in-plane thickness of the specimen. Turning-on this parameter the height in the middle of the specimen
itself starts increasing and becomes closer to the real experimental shape (see e.g. Fig. (6))

• Finally, the in-plane shear parameter Ksh is tuned in order to fit at best the experimental load-
displacement curve (see Fig. 8).
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Figure 5: Vertical displacement of the mean horizontal axis for an imposed displacement of 56 mm and
different values of α1. We remark that no distortion of the specimen is present for a balanced fabric (α1 = α2).

Figure 6: Deformed shape for a displacement of 37 mm and different values of Kel

We need to spend some extra words on the way in which the reaction force and double force have been
numerically calculated.
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Figure 7: Definition of the global ({e1, e2}) and material ({m1,m2}) reference frames for the BET.

We followed the procedure presented in subsection 2.2.4 and, once calculated the solution (u∗, ϕ∗,Λ∗) for
each imposed displacement u0, we calculated the horizontal component of the reaction force R with respect to
an orthonormal reference frame {e1, e2} chosen as in Fig. 7 by using equation (25), where we chose particular
test functions δū, δϕ̄ and δΛ̄ such that

1. δū · e1 = X
L , ∀(X,Y ) ∈ B

2. δū · e2 = 0, ∀(X,Y ) ∈ B

3. δϕ̄ = 0, ∀(X,Y ) ∈ B

4. δΛ̄ = 0, ∀(X,Y ) ∈ B.

The obtained force-displacement curve is shown in Fig. 8, where the comparison with the experimental
curve and with the reaction force automatically calculated by COMSOLr are also depicted.

Figure 8: Load/displacement curve for the constrained micromorphic model
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In figures 9 and 10 it is shown the deformed shape for two imposed displacements u0, obtained via the
numerical simulations performed to solve the considered equilibrium of the constrained micromorphic model.
We remark that the following observations can be easily inferred from the performed numerical simulations:

• The macroscopic shape of the specimen is completely recovered.

• The microscopic pattern for the warp and weft is caught to a big extent. Indeed, the real behavior of
the thick yarns is almost perfectly recovered, while, the thin yarns which are experimentally seen to
undergo non-negligible slipping, are seen to be fictively elongated. We can affirm that where the thin
yarns are seen to be elongated with respect to their initial length a slipping is taking place.

• The shear parameter is chosen to correctly fit the experimental load-displacement curve. We highlight
the fact that the “force” of the introduced constrained micromorphic model is, to our understanding,
the correct one to be compared to the experimental one. In fact, in our micromorphic model, we
defined “force” the quantity which is dual to the virtual displacement δu. From a direct observation
of the irreducible form of the work of internal forces (19), we can infer that the internal actions which
balance a boundary externally applied force are directly determined by equivalent elongations, shear
angle variations and microstructure-related deformation mechanisms (through the Lagrange multiplier
Λ). Analogously, we can infer that the boundary internal actions (double-forces) which are dual to
the angle variation δϕ are directly determined by the localized bending strains which occur inside the
considered specimen. We state that the double-forces which are generated by the imposition of the
angle between warp and weft at the two extremities of the specimen do not contribute to the “force”
which is measured by the testing machine. Indeed, such angle is maintained fixed by the clamp device
used during the BET and a supplementary measurement tool would be needed in order to measure such
sort of couple which is generated by the clamp in order to keep the angle constant at the boundary
during the test. In summary, we are reasonably assuming that the machine only senses those macro
and micro deformations modes which induce macroscopic displacements (elongations, angle variations
and part of the local bending), while the remaining part of the local bending energy which is localized
at the micro-level is not sensed by the used machine.

Figure 9: Deformed shape in the simulation (red with black fibers) and experimental (Blue) for a displacement
of 37 mm
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Figure 10: Deformed shape in the simulation (red with black fibers) and experimental (blue) for a displace-
ment of 56 mm

As already pointed out, the used micromorphic model possesses a feature that the first gradient models
do not posses. In particular, the reaction at the clamps is not limited to a force, but a double-force (a
couple) arises which is needed to keep the angle between warp and weft constant during the test. Following
the methods described in subsection 2.2.4, once calculated the solution (u∗, ϕ∗,Λ∗) for a given imposed
displacement u0, it is possible to evaluate the reaction double-force T with respect to an orthonormal reference
frame {e1, e2} chosen as in Fig. 7 by using equation (26), where we chose particular test functions δū, δϕ̄
and δΛ̄ such that

1. δū · e1 = 0, ∀(X,Y ) ∈ B

2. δū · e2 = 0, ∀(X,Y ) ∈ B

3. δϕ̄ = X
L , ∀(X,Y ) ∈ B

4. δΛ̄ = 0, ∀(X,Y ) ∈ B.

The results obtained are shown in figure 11 where the computed reaction double-force is also compared
with the one automatically evaluated by COMSOLr .

Figure 11: Double-force/displacement curve as reaction T dual of δϕ.

In a material in which the shear is the main deformation mode one of the most important features to
check is the angle between the fibers.
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Figure 12: Angles between the fibers in the constrained micromorphic simulation for a displacement of of 56
mm

It can be noticed from Fig. 12 that no angle variation occurs in the red regions, while an important and
almost constant angle variation occurs in the middle of the specimen. The transition from one value of the
angle to the other one is made thanks to the creation of transition zones in which a smooth variation occurs.
By direct comparison with Fig. 10 it is possible to remark that the three regions at constant shear angle
individuated in Fig. 12 are determined by the fact that the thick yarns remain substantially undeformed,
while the thin yarns are kinematically blocked in the standard triangular zones of the BET, while bend in
the central part of the specimen. The change of direction of the thin yarns is the only one that determines
the angle variation between warp a weft.

We can finally remark that the bending of the thin yarns takes place in well defined transition zones where
smooth variation of the shear angle occur.

3 Discrete numerical simulations
In this section we propose to set up a suitable discrete model in which the motions of the single yarns are
singularly taken into account. To do so, we decide to use Euler-Bernoulli beams with different bending
rigidities which are interconnected with rotational and translational elastic springs in order to mimic at best
the real connections between the yarns. The results obtained with such discrete model allow to

• explicitly account for the slipping of the yarns

• better understand the potentialities and limitations of the constrained micromorphic continuum model
introduced in the previous section.

The main limitation of the discrete model that we are going to present can be found in the fact that the
interactions between adjacent fibers are all considered to be elastic. If this can be considered to be reasonable
to a certain extent, there are for sure some irreversible mechanisms such as friction that cannot be precisely
described here and that should follow the methods presented in [35] in order to be fully taken into account.
Indeed, when unloading the experimental specimen once that the BET has been performed, is not sufficient
to let the specimen return in its initial configuration. This means that a certain part of the deformation is
not elastic, but is due to irreversible mechanisms such as friction. Nevertheless a big amount of the imposed
deformation is recovered and we can hence suppose that the discrete model which we introduce here can be
thought to be a reasonable compromise between the complexity of the real microstructural motions and the
simplicity of the model that one wants to introduce.

The warp and weft yarns are modeled as long Euler-Bernouilli beams disposed at 45 degrees with respect
to the edges of the specimen (see Fig. 13). The connections between the two families of fibers is guaranteed
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at the contact points by rotational and translational springs as the ones sketched in Fig. 14. Both beams
and springs, are considered to be linear.

More particularly, the two families of yarns are modeled as beams with axial stiffness respectively K1 =
EA1 and K2 = EA2, and bending stiffness respectively K3 = EI1 and K4 = EI2 where E is the Young
modulus of the material constituting the yarns, A1 and A2 are the cross sections and I1, I2 the equivalent
moments of inertia. In order to model the interactions between the yarns the set of points in which the two
families of fibers intersect have been defined in COMSOLr. In this set of points, the interactions between
the two fibers are supposed to be

• the resistance to the variation of angle between the fibers, namely the shear stiffness which are accounted
for by the introduction of a set of rotational springs of stiffness Kϕ

• the resistance to the slippages, described by a second set of translational springs of stiffness Kslip to
describe the response to slippages.

• the mutual interactions between parallel fibers which are guaranteed by the weaving. Such interactions
are due to the presence of the orthogonal yarns which connect the two adjacent yarns considered here.
Therefore a set of springs (modeled as trusses with axial stiffness Kinter) has been inserted between
every two couples of close interaction points belonging to two different close yarns of the same family
(see Fig 14).

A possible downside of such discrete model is its difficult application for bigger specimens due to the high
number of degrees of freedom needed for a proper description of the yarns response. In this optic, continuum
models are preferable to discrete ones in view of the design of engineering structures.

Figure 13: Geometry of the discrete model: undeformed configuration.

In order to compare the discrete model with the results of the continuous ones it was implemented in
COMSOLr. In order to have a proper comparison,
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Figure 14: Schematics of the elastic interconnections between warp and weft yarns. (a) rotational spring, (b)
translational spring, (c) interaction between thin yarns and (d) interaction between thick yarns.

The elastic parameters used are shown in table 3. They have been chosen in order to be reasonably
compatible with yarns of small cross section area and Young moduli of carbon. The two elongation stiffnesses
K1 and K2 have been chosen of the same of magnitude in order to underline the fact that it is indeed the
difference in the bending stiffness of the two families of yarns which drives the asymmetry of the macroscopic
deformation. It must be pointed out that as far as this value is high enough it does not have a big influence
in the results in terms of both displacement and reactions. The parameters relative to the bending stiffness,
the slipping and the interaction between two fibers of the same set were chosen via a fit of the experimental
shape of the specimen. In particular the following characteristics were used to fit the different parameters:
the width of the specimen in the central part, the macroscopic S-deformation, the slipping of the fibers
and the distance between the fibers of the same set. The shear stiffness Kϕ, was chosen in order to fit the
experimental force with the reaction evaluated with the simulations.

K1 K2 K3 K4 Kϕ Kslip Kinter

50000 N 50000 N 0.4 N·m2 10−3 N·m2 2.510−4N·m 11 N/m 11 N

Table 3: Parameters of the discrete model

As done in the continuum model, in the figures 15 and 16 it is possible to see that the discrete model well
describes the S-response even at different values of displacement.

Figure 15: Deformed shape in the simulation (green) and experimental (blue) for a displacement of 37 mm
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Figure 16: Deformed shape in the simulation (green) and experimental (blue) for a displacement of 56 mm

The fact that the introduced model is able to well describe the slipping between the yarns can be more
precisely seen with reference to figures 17 and 18.

Figure 17: Deformed shape for a displacement of 56 mm and some initially superimposed points belonging
to thick yarns (black) and to thin yarns (red). The highlighted blue points correspond to the experimental
ones that can be observed in Fig. 18.

Figure 18: Deformed experimental shape: individuation of the slipping points.

In fact, the slippage of thin fibers can be recognized since

• the points of the thin fibers (red) which are initially located at the free boundaries are finally located
inside the specimen.

• the blue points highlighted in Fig. 17 and belonging to the thin yarns are easily recognizable in the
experimental deformed specimen shown in Fig. 18 and it can be recognized that the simulation well
describes the experimental behavior, at least qualitatively.
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The response of this model can be compared to the one obtained with the constrained micromorphic
continuum model. Indeed the different bending stiffnesses of the two families of yarns lead to a set of straight
thick fibers and a set of strongly bent thin fibers like in the continuum case. In this discrete simulation,
nevertheless, the slippages of the yarns are more precisely described.

We show in Fig. 19 that, with the constitutive choice of the parameters shown in table 3, also the
load-displacement curve of the discrete model results to be consistent with the experimentally obtained one,
as well as with that obtained by means of the constrained micromorphic continuum model. We can notice
that a slightly better fitting is recovered for the discrete model at moderate strains. A better fitting of the
continuum model xould be obtained for such moderate strains if more complex hyperelastic laws would be
introduced, but this falls outside the scope of the present paper.

Figure 19: Load-displacement curve for the experimental, discrete and second gradient models

Finally, Fig. 20 shows the angle between warp and weft yarns as obtained with the discrete model., even
in this model the angle between the set of fibers is almost a constant along the strong fibers direction while
drastically changes along the think yarns. The results of both the discrete and constrained micromorphic
continuum models, even with their very different natures, present the same qualitative description of the
experimental behavior reconfirming the good analogy between the bending stiffness of the yarns and the
second gradient effects in the continuum. This is another hint toward the importance of the insertion of a
second gradient energy in a continuous models in order to fully describe the phenomenological mechanical
response of the woven fabrics.
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Figure 20: Angles between the fibers in the discrete simulations for a displacement of of 56 mm

Further investigations should be more systematically directed towards the quantitative analysis needed
to precisely identify the macroscopic constitutive parameters in terms of the microscopic properties of the
yarns. Suitable multi-scale methods as the one introduced in [56] may be generalized to be applied to the
present case. Moreover, the description of the considered system at the microscopic scale may take advantage
of some of the results proposed in [4, 40, 76, 73, 77, 74, 75, 83].

4 Conclusions
In this paper a continuum constrained micromorphic model and a discrete model are introduced to reproduce
the Bias Extension Test on unbalanced fabrics. We show that both models are able to account for the main
macroscopic and microscopic deformation mechanisms that take place during the BET up to moderate strains,
namely

• the angle variation between warp and weft tows,

• the different bending stiffnesses of the two families of yarns (which is at the origin of the asymmetric
macroscopic S-shape of the specimen)

• the relative slipping of the yarns.

The results obtained with the two models are satisfactory when considering small and moderate defor-
mations so that it is conceivable to use the proposed models on more extended experimental campaigns.
This would allow a more precise identification of the introduced constitutive parameters, above all for what
concerns the different bending stiffnesses which are the main characteristics of fibrous composite interlocks.

Further studies should be focused on the improvement of the proposed models in the optic of more precisely
describe irreversible phenomena as friction which can have a non-negligible role during the deformation of
woven reinforcements.

Moreover, more extensive experimental campaigns should be carried out in order to determine which is
the strain threshold until which the integrity of the material is preserved and both the continuum and discrete
models can be considered to be predictive. In fact, after a given macroscopic deformation, some yarns start
to be pulled out from the specimen, so that further modeling efforts intrinsically loose their interest.

Finally, the theoretical and numerical tools presented in this paper can be extended in order to treat
equilibrium problems concerning 3D composite interlocks. For example, the 3 point bending test on unbal-
anced fabrics could be a useful way of testing and indirectly fitting new constitutive parameters related to
the out-of plane different bending stiffnesses of the two families of yarns.
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Appendix A: Alternative numerical implementation of the constrained
micromorphic model: penalty method
In this subsection, we briefly mention a method that can be used in order to numerically implement a con-
strained micromorphic model as an alternative to the method of Lagrange multipliers described in subsection
2.2.1. It is known as “penalty method” and consists in implementing a strain energy density which takes the
form

W (i4, i6, i8, ϕ,∇ϕ) = WI(i4, i6, i8) +WII(∇ϕ) +Wcoupling(i8, ϕ), (27)

where WI and WII are given in Eqs. 14 and 15 respectively, while the coupling energy takes the form

Wcoupling(i8, ϕ) =
K

2
(ϕ− i8)2,

where K is a constant that may ideally tend to infinity. Indeed, in order to guarantee the boundedness of
the strain energy density, it follows that ϕ must necessarily tend to i8. We numerically implemented such
penalty method in order to test the correct convergence of our equilibrium problem formulated with the
Lagrange multipliers. Being K constant, the considered virtual variations are only δu and δϕ and, moreover,
the constant K must be chosen sufficiently large in order to guarantee numerical convergence of the solution.
This last feature can be easily tested by controlling that the solution does not change when increasing the
value of K (see Fig. 21). The constitutive parameters remain the same as the ones used in the numerical
simulation with the Lagrange multiplier (see table 2). It is possible to notice that, suitably increasing the value
of K the model converges and the limit corresponds to the solution obtained with constrained micromorphic
simulation with Lagrange multipliers (see also Fig. 5).

Figure 21: Vertical displacement of the mean axis for a displacement of 56 mm and different values of K

This penalty method can be seen as a useful tool for the easy implementation of constrained micromorphic
models due to their high numerical stability.
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