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Abstract

We show that theories of mimetic gravity can be viewed as degenerate higher-order
scalar-tensor (DHOST) theories that admit an extra local (gauge) symmetry in addi-
tion to the usual diffeomorphism invariance. We reformulate and classify mimetic the-
ories in this perspective. Using the effective theory of dark energy, recently extended
to include DHOST theories, we then investigate the linear perturbations about a ho-
mogeneous and isotropic background for all mimetic theories. We also include matter,
in the form of a k-essence scalar field, and we derive the quadratic action for linear
perturbations in this case.
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1 Introduction

Mimetic Matter was introduced by Chamseddine and Mukhanov in [1] as a model of
modified gravity that mimics cold dark matter [2–5]. The original proposal was then
extended to inflation, dark energy and also theories with non-singular cosmological and
black hole solutions [6–10]. Mimetic theories have also been studied in [11–14]. More
specifically, their linear stability has been considered in [15–21]. See also e.g. [22] for a
review on mimetic gravity and [23–27] for earlier related works.

The goal of this paper is to revisit mimetic gravity in the context of Degenerate Higher-
Order Scalar-Tensor (DHOST) theories, introduced in [28] and further explored in [29–33],
as summarized in e.g. [34] (see also [35–37] for a study of the screening mechanism in these
theories). DHOST theories are scalar-tensor theories that encompass Horndeski [38] and
so-called Beyond Horndeski (or GLPV) theories [39, 40] (another particular subclass of
DHOST theories was also found earlier in [41] via disformal transformations of Einstein
gravity). Despite the presence of second derivatives of the scalar field in the Lagrangian
and higher order Euler-Lagrange equations, DHOST theories contain at most three degrees
of freedom (one scalar and two tensorial modes), because their Lagrangian is degenerate
[28].

Mimetic theories can be reformulated as scalar-tensor theories with second derivatives
of the scalar field in their Lagrangians. Moreover, the conformal (or, more generally, the
disformal) symmetry that characterizes the resulting scalar-tensor Lagrangian guarantees
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that the latter is degenerate, thus implying that they form a subclass of DHOST theories,
as already pointed out in [30]. When mimetic theories are restricted to a quadratic or cubic
dependence on the second derivatives of the scalar field, one can use the full classification
of quadratic and cubic DHOST theories obtained in [33] and identify the subclasses that
contain these mimetic theories. Mimetic theories with a quartic or higher dependence on
second derivatives of the scalar field provide examples of DHOST theories that are not
included in the classification of [33].

In the present work, we draw upon our recent analysis of DHOST theories [42], based
on the effective approach to dark energy developed in [43–45], to study linear perturba-
tions in theories of mimetic gravity using their DHOST formulation. Our calculations are
consistent with those presented in [46], based on the Lagrange multiplier formulation.

The paper is structured as follows. In Section 2, we start with a brief introduction to
mimetic gravity, presenting two equivalent formulations: the DHOST formulation, which
we exploit in this work, and the Lagrange multiplier formulation, which has often been
used in the literature. We also show that mimetic theories, with a quadratic or cubic de-
pendence on second derivatives of the scalar field, belong to specific subclasses of DHOST
theories. We then turn to the study of linear cosmological perturbations and first review
the effective theory of dark energy, in Section 3. Concentrating on the DHOST formulation
of mimetic gravity, we obtain the quadratic action for linear cosmological perturbations.
For completeness, we briefly present the study of linear perturbations within this alterna-
tive formulation in Section 5. We summarize our work and conclude in the final section.
A few technical details are summarized in the Appendix.

2 Mimetic gravity: short review and classification

In this section, we first give a brief review of mimetic gravity before constructing the
general mimetic gravity action which propagates at most three degrees of freedom.

2.1 Non-invertible disformal transformation

Mimetic gravity is a scalar-tensor theory defined by a general action of the form

S[g̃µν , φ] =

∫
d4x
√−gL(φ, ∂µφ,∇µ∇νφ ; gµν) , (2.1)

where the variation must be taken with respect to φ and the auxiliary metric g̃µν , related
to gµν via a non-invertible disformal transformation,

gµν = Ã(φ, X̃) g̃µν + B̃(φ, X̃) ∂µφ∂νφ , X̃ ≡ g̃µν∂µφ∂νφ . (2.2)

Note that in the original model of mimetic dark matter, the Lagrangian in (2.1) depends
only on gµν and not explicitly on φ, since the Lagrangian is the Einstein-Hilbert term for
gµν , L = R. In the following, we will use the notation φµ ≡ ∂µφ and φµν ≡ ∇µφν .

The fact that the disformal transformation is non-invertible implies that the functions
Ã and B̃ are not arbitrary but are related according to [47]

Ã(φ, X̃)

X̃
+ B̃(φ, X̃) = h(φ) , (2.3)
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where h(φ) is an arbitrary function of φ. Due to the non-invertibility condition (2.3),
the metric g̃µν cannot be fully determined from gµν and φ. Indeed, the metric gµν is left
invariant under the local transformations

δφ = 0 and δg̃µν = ε
(
Ã,X̃ g̃µν + B̃,X̃ φµφν

)
(2.4)

of the field φ and the metric g̃µν , where ε is an arbitrary function and Ã,X̃ (or B̃,X̃)

denotes the derivative of Ã (or B̃) with respect to the variable X̃. As a consequence,
(2.4) defines a local invariance of the mimetic action. In general, the finite version of the
infinitesimal transformation (2.4) can only be defined implicitly. For Ã = −X̃ and B̃ = 0,
as in the original mimetic theory [1], the finite transformation is an arbitrary conformal
transformation, g̃µν → C(xρ) g̃µν . See [48] for a recent study of a large class of conformally
invariant scalar-tensor theories, which partially overlaps with the mimetic theories studied
here (as discussed in detail in the appendix of [46]).

From a Hamiltonian point of view, the existence of this extra symmetry leads to the
presence of a first-class constraint that generates the above gauge transformations (2.4).
This constraint adds to the usual Hamiltonian and momentum constraints associated with
diffeomorphism invariance. This has been explicitly shown in a simple case in [30]. As a
consequence, mimetic gravity is necessarily a degenerate theory in the sense defined in [28]
and thus belongs to the family of DHOST theories.

However, contrary to most DHOST theories, the first class primary constraint in
mimetic gravity does not lead to a secondary constraint, which is necessary to remove
the Ostrogradsky ghost, at least in the context of classical mechanics [49,50] or field the-
ory with multiple scalars [51]. For this reason, it was unclear whether the scalar mode in
mimetic gravity is healthy or not [52–54].

2.2 Mimetic Lagrangians

In the following, we are interested in Lagrangians of the form

L = f2(φ,X)R+ f3(φ,X)Gµνφµν + Lφ(φ, φµ, φµν) , (2.5)

where the only Riemann-dependent terms are proportional to the scalar curvature R and
the Einstein tensor Gµν (associated with the metric gµν) to ensure that the metric carries
only two tensor degrees of freedom (see e.g. discussion in [33] and also [55]). Furthermore,
the relation (2.3) implies immediately that X depends only on φ, since

X ≡ gµνφµφν = Ã−1

(
g̃µν − B̃

Ã+ B̃X̃
∇̃µφ ∇̃νφ

)
φµ φν =

X̃

Ã+ B̃X̃
=

1

h(φ)
. (2.6)

Hence, the functions f2 and f3 depend on φ only. As a consequence, the term proportional
to f3 can always be transformed, via an integration by parts, into [30]

f3(φ)Gµνφµν =
f3,φ
2h

R+ f3,φ[φµνφ
µν − (φµµ)2]− f3,φφ

h
φµµ −

h,φ
2h3

f3,φφ + ∇µJµ , (2.7)

where the explicit expression of Jµ is irrelevant here. For this reason, one can take f3 = 0
in (2.5) without loss of generality (up to a redefinition of f2 and Lφ).
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In [33], only terms that are at most cubic in second derivatives of the scalar field have
been considered. Generalizing the classification of degenerate theories to higher powers of
second derivatives of φ would probably be tedious. Interestingly, mimetic gravity provides
us naturally with a particular class of DHOST theories that involves arbitrary functions
of second derivatives of φ.

As shown in App. A.1 and A.2, one can restrict eq. (2.3) to the case h(φ) = −1 (for
configurations with time-like gradient) and B̃ = 0 without loss of generality, assuming
that matter is coupled to the metric gµν . Therefore, for simplicity we restrict to the
non-invertible conformal transformation

gµν = −X̃ g̃µν (2.8)

in the action. This implies the condition

X = gµνφµφν = −1 . (2.9)

Let us now discuss the term Lφ, involving second derivatives of the scalar field. This term
can be viewed as a scalar constructed by contracting powers of the matrix

[φ]µν ≡ φµν , (2.10)

with the vector field φµ or with the metric gµν . Hence, it can be expressed as a function
of φ and of the two sets of scalar quantities ϑn ≡ φµφν [φ]nµν and

χn ≡ gµν [φ]nµν , (2.11)

where n is an integer. However, as X = −1, we have

2φµνφν = ∇µX = 0 , (2.12)

which implies immediately that ϑn = 0 for any n ≥ 1. As a consequence, Lφ is a function
of φ and χn only, and the mimetic action can be reduced, without loss of generality, to
the form

S[gµν , φ] =

∫
d4x
√−g [f2(φ)R + Lφ(φ, χ1, · · · , χn)] , (2.13)

where n is arbitrary and where the variation is taken with respect to g̃µν related to gµν
by eq. (2.8).

2.3 DHOST formulation

To illustrate the DHOST formulation of mimetic gravity, it is convenient to work with a
concrete model. For simplicity, we first restrict to the quadratic case and consider

S[gµν , φ] =

∫
d4x
√−g

[
f2(φ)R + a1(φ)L

(2)
1 + a2(φ)L

(2)
2

]
, (2.14)

where a1(φ) and a2(φ) are arbitrary functions of φ in front of the quadratic terms L
(2)
1 = χ2

and L
(2)
2 = χ2

1, and we have used the first two elementary quadratic Lagrangians among

the five L
(2)
A (A = 1, . . . , 5) introduced in [28], i.e.,

L
(2)
1 = φµνφ

µν , L
(2)
2 = (2φ)2 , L

(2)
3 = (2φ)φµφµνφ

ν ,

L
(2)
4 = φµφµρφ

ρνφν , L
(2)
5 = (φµφµνφ

ν)2 .
(2.15)
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Upon the change of metric (2.8) (see [30] for details about the transformations of the
quadratic action under general conformal-disformal transformations), the action (2.14)
can be rewritten, after some integrations by parts, as a quadratic DHOST action of the
form

S[g̃µν , φ] =

∫
d4x

√
−g̃
[
f̃0(φ, X̃) + f̃1(φ, X̃)

∼
2φ+ f̃2(φ, X̃)R̃+

5∑
A=1

ãA(φ, X̃)L̃
(2)
A

]
,(2.16)

with

f̃0 = 3X̃2 f2,φφ(φ) , f̃1 = 3X̃ f2,φ(φ) , f̃2 = −X̃f2(φ) , ã1 = a1(φ) , ã2 = a2(φ) ,

ã3 =
2

X̃

[
a1(φ) + 2a2(φ)

]
, ã4 = − 2

X̃

[
3f2(φ) + a1(φ)

]
, ã5 =

2

X̃2

[
a1(φ) + 2a2(φ)

]
.

(2.17)

If f2 = 0, one can easily check that the above theories belong to the subclass IIIa (or
M-I), as defined in [30] (or in [31]). If f2 6= 0 but a1 + a2 = 0, then one gets theories
belonging to the subclass Ia (or N-I). In particular, this is the case of the original mimetic
theory. Finally, in the generic case where f2 6= 0 and a1 + a2 6= 0, these theories are in the
class II. More precisely, they belong to subclass IIa (or N-III) if f2 6= a1 and to subclass
IIb (or N-IV) if f2 = a1.

The above calculation can be generalized to the case of a non-invertible disformal
transformation, given by eq. (2.2) with eq. (2.3), using the results of [30]. Starting from
the action (2.14), one obtains an action of the form (2.16), where now f̃2 is an arbitrary
function and

ã1 = c̃1(φ)

(
f̃2(φ, X̃)

X̃

)3

+
f̃2(φ, X̃)

X̃
, ã2 = c̃2(φ)

(
f̃2(φ, X̃)

X̃

)3

− f̃2(φ, X̃)

X̃
,

ã3 =
4c̃2f̃

2
2

(
3X̃f̃2,X − 2f̃2

)
− 2c̃1f̃

2
2

(
f̃2 − 2X̃f̃2,X

)
+ 2X̃2

(
f̃2 − 2X̃f̃2,X

)
X̃4

,

ã4 = −2c̃1f̃
3
2

X̃4
−

4f̃2,X̃

X̃
+

8f̃2
2,X̃

f̃2
,

ã5 =
2c̃1f̃

2
2

(
3f̃22 + 6X̃2f̃22,X − 8f̃2X̃f̃2,X

)
+ 4c̃2f̃

2
2

(
2f̃2 − 3X̃f̃2,X

)2
− 2X̃2

(
f̃2 − 2X̃f̃2,X

)2
f̃2X̃5

,

(2.18)

with c̃1(φ) and c̃2(φ) two independent functions of φ only. For mimetic theories in the
subclass Ia, one must impose the additional condition that c̃2 = −c̃1. One can check
that the above functions satisfy the degeneracy conditions given in [28]. The remaining
functions, f̃0 and f̃1, have rather complicated expressions in terms of f̃2 and we do not
give them explicitly here.

We can also extend our discussion to cubic (or even higher) theories adding to (2.14)
all the terms that are cubic in second derivatives, i.e.,

b1(φ)χ3
1 + b2(φ)χ1χ2 + b3(φ)χ3 . (2.19)
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These correspond to the first three elementary cubic Lagrangians L
(3)
1 , L

(3)
2 and L

(3)
3

introduced in [33]. Performing the non-invertible conformal transformation (2.8) leads to
a minimal cubic DHOST for the metric g̃µν , whose Lagrangian is

10∑
A=1

b̃A(φ, X̃)L̃
(3)
A , (2.20)

with

b̃1 = − b1

X̃3
, b̃2 = − b2

X̃3
, b̃3 = − b3

X̃3
, b̃4 = −6b1 + 2b2

X̃4
,

b̃5 =
2b2

X̃4
, b̃6 =

2b2 − 3b3

X̃4
, b̃7 =

3b3

X̃4
, b̃8 =

3b3 + 4b2

X̃5
,

b̃9 = −3
4b1 + 2b2 + b3

X̃5
, b̃10 = −2

4b1 + 2b2 + b3

X̃6
. (2.21)

According to the classification of cubic DHOST theories in [33], these theories either belong
to class 3M-I, if 9b1 + 2b2 6= 0, or to class 3M-III, if 9b1 + 2b2 = 0, and are compatible with
the quadratic theories (2.17).

2.4 Lagrange multiplier formulation

The mimetic action (2.1) can also be reformulated as an action for the metric gµν instead
of g̃µν as follows [52]

S′[gµν , φ] =

∫
d4x
√−g [L(φ, φµ, φµν ; gµν) + λ(X + 1)] , (2.22)

where λ enforces the mimetic constraint X = −1, given in eq. (2.9). If we express the
action as in (2.13), this action takes the form

S′[gµν , φ] =

∫
d4x
√−g [f2(φ)R + Lφ(φ, χ1, · · · , χn) + λ(X + 1)] . (2.23)

Note that there is no X dependence in this Lagrangian, except in the term proportional
to λ. If one assumes an explicit dependence of f2 and Lφ on X (as in e.g. [12,14]), as well
as on ϑn = φµφν [φ]nµν , then the equations of motion turn out to be equivalent to those
obtained from the Lagrangian (2.23) where X is replaced by −1 and all the ϑn by zero.

Let us illustrate this point with a simple Lagrangian of the form∫
d4x
√−g [f2(φ,X)R + Lφ(φ,X, ϑ1) + λ(X + 1)] , (2.24)

where we have introduced an explicit dependence on X and ϑ1 = φµφµνφ
ν . This action

leads to the mimetic constraint X = −1 and to the metric equation of motion

f2Gµν =

(
1

2
Lφ −2f2

)
gµν +∇µ∇νf2 − Lφ,ϑ1Xµφν

− [λ+ f2,XR+ Lφ,X +∇α(φαLφ,ϑ1)]φµφν .

(2.25)
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The equation for the scalar field φ can be obtained from the Bianchi identity. The trace of
the above equation enables us to express the Lagrange multiplier λ in terms of the metric
and the scalar field, namely

λ = 2Lφ − 32f2 + f2R− f2,XR− Lφ,X −∇α(φαLφ,ϑ1) , (2.26)

where we have used the mimetic constraint and also Xµ = 0. Substituting this expression
back into (2.25) leads to the traceless metric equation

f2Gµν =

(
1

2
Lφ −2f2

)
gµν +∇µ∇νf2 + (2Lφ − 32f2 + f2R)φµφν . (2.27)

This is exactly the same equation as the one obtained from (2.24) with X = −1 and
ϑ1 = 0 directly in the Lagrangian. This conclusion remains valid when Lφ is an arbitrary
function of the variables ϑn.

3 Effective approach to cosmological perturbations

Since mimetic theories can be formulated in different ways, there are various but equivalent
approaches to study cosmological perturbations in mimetic gravity. For our purpose, it will
be convenient to use the unifying formulation given by the effective approach developed
in [43–45] and extended to higher-order scalar-tensor theories in [42].

Let us start by briefly reviewing this approach for general DHOST theories [42]. We
will use the ADM parametrization for the metric:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (3.1)

where N is the lapse function, N i the shift vector, hij the three dimensional metric and
the components of the extrinsic curvature tensor Kij are given by

Kij =
1

2N
(ḣij −DiNj −DjNi) , (3.2)

where Di denotes the covariant derivative compatible with hij .
We work in the so-called unitary gauge where the constant time hypersurfaces coincide

with the uniform scalar field hypersurfaces. Assuming that the evolution of φ is monotonic,
without loss of generality, we choose φ(t) = t on the background solution. In this gauge,
we can expand any action in terms of the metric and matter fluctuations up to quadratic
order. Adopting the notation of [42] for the effective description of DHOST theories, the
gravitational part of the action expanded around a flat FLRW metric ds2 = −dt2+a2(t)d~x2

can always be written in the form

SETofDE =

∫
d3x dt

√
h
M2

2

{
δKijδK

ij −
(

1 +
2

3
αL

)
δK2 + (1 + αT)(3)R

+H2αKδN
2 + 4HαBδKδN + (1 + αH)(3)RδN + 4β1δKδṄ + β2δṄ

2 +
β3
a2

(∂iδN)2
}
,

(3.3)

where δN and δKij are respectively the perturbations of the lapse and of the extrinsic
curvature, δK is the trace of δKij and (3)R is the 3-dimensional Ricci scalar.
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In [42] it was shown that the effective parameters introduced above satisfy either of
the degeneracy conditions

CI : αL = 0 , β2 = −6β21 , β3 = −2β1 [2(1 + αH) + β1(1 + αT)] , (3.4)

CII : β1 = −(1 + αL)
1 + αH

1 + αT
, β2 = −6(1 + αL)

(1 + αH)2

(1 + αT)2
, β3 = 2

(1 + αH)2

1 + αT
,

(3.5)

depending on the class of the DHOST theory considered (see Table 1 in App. B1 of [42]).
As a consequence, this restricts by three the number of independent parameters.

In the following, we use this approach to study cosmological perturbations of mimetic
theories, first in Sec. 4, using the DHOST formulation of mimetic actions and then in the
Lagrange multiplier formulation (2.23) in Sec. 5. The two formulations are equivalent and
lead to the same results, as expected.

For the analysis of linear perturbations, we will also include matter in the action,
described in terms of a scalar field ψ with a Lagrangian depending on its first derivatives
[56],

Sm =

∫
d4x
√−g P (Y ) =

∫
d4x
√
−g̃ X̃2P (Ỹ ) , (3.6)

where

Y ≡ gµν∂µψ∂νψ = − 1

X̃
g̃µν∂µψ∂νψ ≡ Ỹ . (3.7)

We have written the matter action explicitly in terms of the physical metric gµν and in
terms of the auxiliary metric g̃µν , since we will need both expressions to analyse linear
perturbations in the DHOST formulation and in the Lagrange multiplier formulation.

4 Perturbations in the DHOST formulation

In this section, we study linear perturbations of mimetic theories in their DHOST formu-
lation. In the first subsection we will characterize the effective formulation of all mimetic
DHOST and thus we will consider the general non-invertible transformation (2.2). It
is sufficient to use the simplest non-invertible transformation (2.8) to study the linear
perturbations of all mimetic theories, which we do in the subsequent subsection.

4.1 Effective description

In the unitary gauge, using (2.6), one obtains

φ̇2(t)

N2
= −X = − 1

h(t)
, (4.1)

which implies that N has no spatial dependence. Moreover, one can always redefine the
time and the scalar field such that φ = t and N = 1 without loss of generality, see also
App. A.1. Furthermore, according to the definition of χn given in (2.11), we find, in
unitary gauge,

χn = (−1)ntr(Kn) ≡ (−1)nKi2
i1
Ki3
i2
· · ·Kin

in−1
Ki1
in
, (4.2)
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so that the action (2.13) reduces to

S =

∫
d4x
√
h
[
f2

(3)R− 2f2,φK + f2(KijK
ij −K2)

+Lφ (t,−K; · · · , (−1)ptr(Kp))
]
, (4.3)

where we have used the Gauss-Codazzi relation1 and integrated by parts its last term.
We need to expand this action up to quadratic order in the perturbations. The expan-

sion of Lφ is given by

Lφ = L̄φ(t) + c0(t)δK + c1(t)δK
j
i δK

i
j + c2(t)(δK)2 +O(δK3

ij) , (4.5)

where L̄φ(t) denotes Lφ evaluated on the background. In the second term, c0 is defined
by

c0(t) ≡
∑
n=1

(−1)nnHn−1Lφ,n , (4.6)

where Lφ,n stands for the derivative of Lφ with respect to χn evaluated on the background.
The coefficients c1 and c2 in the third and fourth terms of (4.5) are given by combinations
of the first and second derivatives of Lφ with respect to χn, respectively

c1(t) ≡
1

2

∑
n=1

(−1)nn(n− 1)Hn−2Lφ,n , (4.7)

c2(t) ≡
1

2

∑
(n,m)

nmHn+m−2Lφ,nm , (4.8)

where the right-hand sides are evaluated on the background. Notice that in the simple
case (2.14), these expressions reduce to c1 = a1 and c2 = a2.

Using these results and integrating by parts the term proportional to c0(t), we can
rewrite the quadratic action in terms of the effective parameters introduced in the previous
section as

SETofDE =

∫
d3x dt

√
h
M2

2

{
δKijδK

ij −
(

1 +
2

3
αL

)
δK2 + (1 + αT)(3)R

}
, (4.9)

where
M2

2
= f2 + c1 , αL = −3

2

c1 + c2
f2 + c1

, αT = − c1
f2 + c1

. (4.10)

The parameters that do not appear in this action (because δN = 0), i.e. αK, αB, αH, β1,
β2 and β3, simply remain undetermined.

Now, we can express this effective action in terms of the new metric g̃µν , introduced in
(2.2). The transformations of the parameters under general disformal transformations have
been given in [42] (see also [57, 58] for earlier work) and we report them for convenience

1The Gauss-Codazzi relation is

R = (3)R + KµνK
µν −K2 + 2∇ν(nνK − nµ∇µnν) . (4.4)
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in App. A.3. As shown in [42], the structure of the action (3.3) is preserved under this
transformation of the metric. Therefore, the action takes the form

S̃ETofDE =

∫
d3x dt̃

√
h̃
M̃2

2

{
δK̃ijδK̃

ij −
(

1 +
2

3
α̃L

)
δK̃2 + (1 + α̃T)(3)R̃

+ H̃2α̃KδÑ
2 + 4H̃α̃BδK̃δÑ + (1 + α̃H)(3)R̃δÑ + 4β̃1δK̃δ

˙̃N + β̃2δ
˙̃N2 +

β̃3
ã2

(∂iδÑ)2
}
,

(4.11)

where the time-dependent parameters are related to M2, αL, αT, via the non-invertible
disformal transformation (2.2).

In particular, we define

α̃Y ≡ −
X̃

Ã

∂Ã

∂X̃
, α̃D ≡ −

B̃

B̃ + Ã/X̃
, α̃X ≡ −

X̃2

Ã

∂B̃

∂X̃
, (4.12)

with the property that
1 + α̃X + α̃Y = 0 , (4.13)

which follows from the non-invertibility, see eq. (2.3). One finds (see App. A.3 for details)

M̃2 = M2Ã
√

1 + α̃D , α̃L = αL , α̃T = −1 +
1 + αT

1 + α̃D
, (4.14)

while the other parameters can be expressed as

α̃H = −1 + α̃Y(1 + α̃T) ,

β̃1 = −α̃Y(1 + α̃L) ,

β̃2 = −6α̃2
Y(1 + α̃L) ,

β̃3 = 2α̃2
Y(1 + α̃T) ,

(4.15)

and

α̃B = −(1 + α̃L)

(
1 +

˙̃αY

H̃

)
,

α̃K = 6α̃B −
6

M̃2ã3H̃2

d

dt̃

(
M̃2ã3H̃α̃Yα̃B

)
.

(4.16)

Note that α̃Y can be expressed in terms of α̃T and α̃H using the first equation in (4.15)
and then substituted in the other expressions. As a consequence, from the point of view of
the tilde frame, we find that M̃2, α̃L, α̃T and α̃H are free functions whereas the functions
β̃1, β̃2 and β̃3 are determined, in terms of α̃L, α̃T and α̃H, by conditions that coincide
with the degeneracy conditions CII, see eq. (3.5). Moreover, α̃K and α̃B are fixed by the
relations (4.16). Therefore, mimetic theories are particular DHOST theories that satisfy
CII and eq. (4.16). For α̃L = 0 they satisfy both CI, see eq. (3.4), and CII. One can check
that these conditions are preserved by invertible disformal transformations. See Fig. 1 for
a summary on the classification of theories based on linear perturbations.
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Mimetic theories

CI-theories

eq. (3.4)

CII-theories
eq. (3.5)

eqs. (4.16)

Figure 1: Theories of category CI and CII are respectively characterized by the conditions
(3.4) and (3.5) (with tildes on all coefficients). In this figure, they are respectively repre-
sented by the left- and right-hand side disc. Note that some theories can be both CI and
CII, as shown by the overlapping region between the two discs. Mimetic theories are a sub-
set of theories of category CII, verifying the conditions on α̃K and α̃B given by eq. (4.16).
They are represented by the gray region. Each category, CI, CII and mimetic, is preserved
under invertible disformal transformations.

To illustrate these results, let us consider the simple case (2.8) where Ã = −X̃ and
B̃ = 0. In this case, α̃D = 0 and α̃Y = −1, and we find that the parameters (4.10) are
transformed according to

M̃2 = −2X̃(f2 + c1) , α̃L = −3

2

c1 + c2
f2 + c1

, α̃T = − c1
f2 + c1

. (4.17)

The remaining parameters can be written in terms of the three parameters above by using
eq. (4.15) with α̃Y = −1. Hence, in this special case α̃H is no longer independent.

4.2 Linear perturbations

Let us study the linear perturbations in mimetic theories in the presence of matter mini-
mally coupled to gµν (see eq. (3.6)). To do so, it is sufficient to take a particular DHOST
representative by choosing the special case of Ã = −X̃ and B̃ = 0. Therefore, we consider
eq. (4.11) with the relations (4.15) and α̃Y = −1.

Including matter and specializing the action (4.11) to scalar perturbations, defined by

h̃ij = ã2(t)e2ζ̃δij , Ñ i = δij∂jχ̃ , ψ = ψ0(t) + δψ , (4.18)
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we obtain the total quadratic action2

Squad =

∫
d3x dt ã3

{
M̃2

2

[
− 6(1 + α̃L)ζ̇2 +

2

ã2
(1 + α̃T)(∂iζ)2 +

[
4(1 + α̃L)ζ̇

− 2P ′ψ̇0δψ
]
∂2χ̃− 2

3
α̃L(∂2χ̃)2

]
− P ′

c2m

[
δψ̇2 − c2m

ã2
(∂iδψ)2

]
− 6P ′ψ̇0 δψ̇ ζ

}
,

(4.19)

where we have introduced the sound speed of matter fluctuations [59]

c2m ≡
P ′

P ′ − 2ψ̇2
0P
′′
, (4.20)

and defined
ζ ≡ ζ̃ − δÑ . (4.21)

Moreover, note that δÑ only appears in the combination (4.21). This is due to the
conformal invariance of the theory. Indeed, up to linear order, the metric can be written
as

ds2 ' e2δÑ
[
− dt2 + 2Nidx

idt+ ã2e2(ζ̃−δÑ)d~x2
]
, (4.22)

which shows that, for a conformally invariant theory, only the combination given by
eq. (4.21) matters.

Following the analysis of [42], we distinguish two cases. For α̃L 6= 0, variation with
respect to χ̃ yields

∂2χ̃ =
3

α̃L

[
(1 + α̃L)ζ̇ − P ′

2
ψ̇0δψ

]
, (4.23)

which can be plugged back into the action to give

Squad =

∫
d3x dt ã3

{
A

[
ζ̇2 − c2s

(∂iζ)2

ã2
− P ′ψ̇0δψζ̇

]
− 6P ′ψ̇0δψ̇ ζ

− P ′

c2m

[
δψ̇2 − c2m

ã2
(∂iδψ)2

]
+

3

4

M̃2P ′2ψ̇2
0

α̃L
δψ2

}
,

(4.24)

with

A ≡ 3M̃2

α̃L
(1 + α̃L) , c2s ≡ −

α̃L(1 + α̃T)

3(1 + α̃L)
. (4.25)

At this stage, we remind the reader that the normalization of the quadratic action for
tensor modes is fixed by M̃2/8 and that the speed of propagation of tensors is given by
c2T = 1 + α̃T in this formulation [44,45]. Since (1 + α̃L)/α̃L > 0 to avoid that ζ propagates
a ghost, the propagation speed squared of scalar fluctuations has a sign opposite to that of
tensor fluctuations. This implies an instability either in the scalar or in the tensor sector.
In fact, this is true not only for mimetic gravity but for any DHOST theory in the category
CII defined in [42].

2Note that, due to the definition of X, P ′ has sign opposite to P , so that the matter action has the
correct sign in the action (4.19).

13



For α̃L = 0, the analysis is different. The variation of the action (4.19) with respect to
χ̃ implies a relation between ζ̇ and δψ, i.e.,

δψ =
2ζ̇

P ′ψ̇0

. (4.26)

This can be used to replace δψ in the action (4.24) above, to yield an action for ζ only.
This action contains a ζ̈2 term, which leads to a fourth-order equation of motion. This
is consistent with the results of [21, 46], where one can find discussions on their physi-
cal interpretation. Notice that, together with the degeneracy condition CII, the mimetic
condition eq. (4.16) is crucial for this result.

Let us finish with a short discussion on the case α̃L = 0 without matter. In that case,
one must go back to the action (4.19), which reduces to

Squad =

∫
d4x ã3

M̃2

2

{
−6ζ̇2 +

2(1 + α̃T)

a2
(∂iζ)2 + 4ζ̇∆χ̃

}
. (4.27)

From this action, ζ and χ̃ satisfy the equations

ζ̇ = 0 ,
d

dt

(
ã3M̃2χ̃

)
+ ãM̃2(1 + α̃T )ζ = 0 , (4.28)

which shows that ζ is not a dynamical variable. Replacing the second equation into the
first one we find a second-order equation for χ̃,

d

dt

[
1

ãM̃2(1 + α̃T)

d

dt

(
ã3M̃2χ̃

)]
= 0 , (4.29)

which involves no gradient. Thus, in the absence of matter χ̃ behaves as a scalar with a
vanishing speed of sound, as it was found in [1, 24,27] and more generally in [14].

5 Perturbations in the Lagrange multiplier formulation

We now discuss linear perturbations in the Lagrange multiplier formulation, with the
action

S[gµν , φ] =

∫
d4x
√
g [f2(φ)R + Lφ(φ, χ1, · · · , χn) + λ(X + 1)] . (5.1)

In unitary gauge, the equation for λ is no longer an equation of motion but reduces to a
constraint that fixes the lapse to N = 1. Hence, from the beginning, we can set N = 1
in the action. The rest of the analysis is identical to what is done at the beginning of
Sec. (4.1) and it is straightforward to get eq. (4.9).

Let us now compute the quadratic action for linear perturbations, starting directly
from eq. (4.9). We can concentrate on the scalar perturbations and, analogously to what
was done in the previous section, we introduce the variables ζ and χ, but this time without
a tilde,

hij = a2(t) e2ζδij , N i = δij ∂jχ . (5.2)
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Substituting into the quadratic action (4.9), we obtain an action for the perturbations ζ
and χ,

Squad =

∫
d3x dt a3

{
M2

2

[
− 6(1 + αL)ζ̇2 +

2

a2
(1 + αT)(∂iζ)2 +

[
4(1 + αL)ζ̇ − 4

M2
P ′ψ̇0δψ

]
∂2χ

− 2

3
αL(∂2χ)2

]
− P ′

c2m

[
δψ̇2 − c2m

a2
(∂iδψ)2

]
− 6P ′ψ̇0 δψ̇ ζ

}
.

(5.3)

This is the same action as eq. (4.19) but the tildes are absent from all quantities, not only
from ζ. Indeed, this action can be obtained from eq. (4.19) by considering the relation
between the metric perturbations in the two frames. From eq. (2.8) one gets

N i = Ñ i , hij =
1

Ñ2
h̃ij , (5.4)

which yields
a = ã , χ = χ̃ , ζ = ζ̃ − δÑ . (5.5)

Notice that this last relation is the same as eq. (4.21). From this action, it is obvious that
the analysis is completely analogous to the one made in Sec. 4.2. A similar analysis in the
formulation with the Lagrange multiplier has been performed in [46].

6 Conclusion

We have studied mimetic theories in the framework of Degenerate Higher-Order Scalar-
Tensor (DHOST) theories. Indeed, as explained in Sec. 2, mimetic theories can be viewed
as particular DHOST theories characterized by an extra symmetry. In general, this extra
symmetry is an invariance under a combination of conformal and disformal transformations
of the auxiliary metric used for the variation of the action. From the Hamiltonian point of
view, this symmetry gives a constraint in the theory (in addition to the usual Hamiltonian
and momentum constraints associated with diffeomorphism invariance), which is first class,
in contrasts with non-mimetic DHOST theories characterized by a pair of extra second-
class constraints.

We have found that, generically (when f2 6= 0 and a1+a2 6= 0), mimetic theories belong
to the class II of DHOST theories. However, some mimetic theories exist in the subclass Ia
of DHOST theories (when a1+a2 = 0), the subclass that also contains Horndeski theories.
For mimetic DHOST theories, the six coefficients of the quadratic terms (i.e. f2 and the
five ai) are specified in terms of a single function of X, e.g. f2(X,φ) and two arbitrary
functions of φ only (c1(φ) and c2(φ), which reduce to only one in the subclass Ia), as given
by the expressions (2.18).

In the second part of this work, we have investigated the linear perturbations around
a FLRW solution in these theories, using the effective theory of dark energy, reviewed in
Sec. 3. We have applied this approach to two different formulations of mimetic theories.
The first formulation, called “DHOST” formulation, is worked out in Sec. 4. The quadratic
action is obtained starting from a generic DHOST theory, using a non-invertible conformal
metric transformation, eq. (2.8). The effect of this transformation on the parameters of
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the quadratic action was derived in [42] and is reviewed in App. A.3. Using these results,
the final quadratic action is given in terms of four independent parameters (instead of
6 independent parameters in the non-mimetic case), with the others fixed by the non-
invertible transformation. Interestingly, the quadratic parameters for mimetic theories
always satisfy the condition CII, defined in (3.5). The few mimetic theories that belong to
the subclass Ia satisfy both the conditions CI and CII. This is illustrated in Fig. 1.

We have studied the quadratic action of mimetic theories in the presence of external
matter, which for simplicity we have taken in the form of a scalar field with Lagrangian
dependent on its first derivatives. For α̃L 6= 0 we have found an instability either in the
scalar or in the tensor sector. In the case α̃L = 0, which contains the original mimetic
theory [1], we have shown that the dynamics of scalar perturbations can be expressed in
terms of an action for ζ only, which is quadratic in ζ̈. The same conclusion can be reached
in the Lagrange multiplier formulation, as shown in Sec. 5 and in Ref. [46].
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A Fields transformations: useful formulae

A.1 Scalar field redefinition

Let us show that we can fix h(φ) to the constant values ±1 simply by a field redefinition
in (2.3). Indeed, if we assume that there exist a new field φ̂ and a one-variable function
F such that φ = F (φ̂), then the disformal transformation (2.2) becomes

gµν = Â(φ̂, X̂)g̃µν + B̂(φ̂, X̂)φ̂µφ̂ν , (A.1)

where

X̂ =
X̃

(F ′)2
, Â(φ̂, X̂) = Ã[F (φ̂), (F ′)2X̂] , B̂(φ̂, X̂) = (F ′)2 B̃[F (φ̂), (F ′)2X̂] . (A.2)

Hence, the non-invertibility condition of the disformal transformation (2.3) becomes

Â(φ̂, X̂)

X̂
+ B̂(φ̂, X̂) = ĥ(φ̂) with ĥ(φ̂) ≡ (F ′)2 h[F (φ̂)] . (A.3)

Now, if we assume that the sign of h(φ) is constant, we can always find a redefinition of
the scalar field which allows to fix the function ĥ to ± 1. Indeed, this is the case if F
satisfies the differential equation

dF

dx
=

1√
|h[F (x)]|

, (A.4)
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which can be (at least formally) easily integrated according to

F (x) = G−1(x+ c) , G(y) ≡
∫
dy
√
|h(y)| , (A.5)

where c is a constant.

A.2 Disformal transformations of the metric

Let us show that one can fix the functions Ã and B̃ to Ã = ±X̃ and B̃ = 0 by a
redefinition of the metric g̃µν using a disformal transformation. For that, we are looking
for an invertible disformal transformation of the metric g̃µν

g̃µν = C(φ, X̂)ĝµν +D(φ, X̂)φµφν (A.6)

such that

gµν = ±X̂ ĝµν . (A.7)

This condition is possible if the functions C and D satisfy the conditions

Ã(φ, X̃)D(φ, X̂) + B̃(φ, X̃) = 0 , Ã(φ, X̃)C(φ, X̂) = X̂ , (A.8)

with

X̃ =
X̂

C(φ, X̂) + X̂D(φ, X̂)
. (A.9)

These conditions can be satisfied (at least locally) when the disformal transformation (A.6)
is invertible, in which case the relation (A.9) is well-defined.

A.3 Disformal transformation in the effective description

Let us consider the transformation

gµν = Ã(φ, X̃)g̃µν + B̃(φ, X̃)∂µφ∂νφ . (A.10)

Following [42], we review here the effect of this disformal transformation on the parameters
M2, αK, αB, αT, αH, αL, β1, β2 and β3. Let us define

α̃Y ≡ −
X̃

Ã

∂Ã

∂X̃
, α̃D ≡ −

B̃

B̃ + Ã/X̃
, α̃X ≡ −

X̃2

Ã

∂B̃

∂X̃
. (A.11)

The effective parameters in the quadratic action derived from S and those associated with
S̃ are related via the transformations given in eq. (2.22) of Ref. [42]. One finds

M2 =
M̃2

Ã
√

1 + α̃D

, αL = α̃L , 1 + αT = (1 + α̃D)(1 + α̃T) , (A.12)
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and

(1 + α̃X + α̃Y)(1 + αH) = 1 + α̃H − α̃Y(1 + α̃T) ,

(1 + α̃D)(1 + α̃X + α̃Y)β1 = β̃1 + α̃Y(1 + α̃L) ,

(1 + α̃D)2(1 + α̃X + α̃Y)2β2 = β̃2 − 6α̃Y(α̃Y(1 + α̃L) + 2β̃1) ,

(1 + α̃D)(1 + α̃X + α̃Y)2β3 = β̃3 + 2α̃2
Y(1 + α̃T)− 4α̃Y(1 + α̃H) .

(A.13)

We are interested in a non-invertible transformation (A.10), where 1 + α̃X + α̃Y = 0.
Therefore, the left-hand side of eq. (A.13) vanishes so that one has

1 + α̃H = α̃Y(1 + α̃T) ,

β̃1 = −α̃Y(1 + α̃L) ,

β̃2 = −6α̃2
Y(1 + α̃L) ,

β̃3 = 2α̃2
Y(1 + α̃T) .

(A.14)

Note that the parameter α̃Y can be expressed in terms of α̃H and α̃T using the first of
these equations and replaced in the other three equations, reproducing the degeneracy
conditions CII, eq. (3.5). Therefore, mimetic theories satisfy the conditions CII.

Using the above relations, from eq. (C.14) of Ref. [42] one also finds, for 1+α̃X+α̃Y = 0,

α̃B = −(1 + α̃L)

(
1 +

˙̃αY

H̃

)
,

α̃K = 6α̃B −
6

M̃2ã3H̃2

d

dt̃

(
M̃2ã3H̃α̃Yα̃B

)
.

(A.15)

We can thus conclude that mimetic theories are particular DHOST theories which satisfy
CII and the above relations. One can check that mimetic theories are closed under invertible
conformal/disformal transformations.
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